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Abstract. In this paper, we present a new kernel for unordered sets of
data of the same type. It works by first fitting a set with a Gaussian
mixture, then evaluate an efficient kernel on the two fitted Gaussian
mixtures. Furthermore, we show that this kernel can be extended to sets
embedded in a feature space implicitly defined by another kernel, where
Gaussian mixtures are fitted with the kernelized EM algorithm [6], and
the kernel for Gaussian mixtures are modified to use the outputs from
the kernelized EM. All computation depends on data only through their
inner products as evaluations of the base kernel. The kernel is computable
in closed form, and being able to work in a feature space improves its
flexibility and applicability. Its performance is evaluated in experiments
on both synthesized and real data.

1 Introduction

Kernel methods received attention originally as a “trick” to introduce non-
linearity into the support vector machines (SVM) [20]. Evaluating a kernel func-
tion between two data is equivalent to computing the inner product of their
images in a non-linearly mapped Hilbert space (the feature space). It is realized
later that kernel methods are more general: similar to SVMs, many other linear
algorithms also depend on data through their inner products. By substituting the
inner products with kernel evaluations, these linear algorithms assume power to
discover non-linear patterns in data [18]. Recent years have seen significant devel-
opment in “kernelizing” existing algorithms, examples include kernel PCA [15],
kernel FLD [14] and kernel k-means [1]. The kernelized algorithms inherit the
innate stability of their linear ancestors, thus largely reduce the possibility of
over-fitting the training data.

One important advantage of the kernel methods [18] is that they enable
algorithms originally designed for vectors of finite dimensions (e.g., PCA, FLD
or SVM) to work with discrete, structured or infinite dimensional data types,
such as strings [21], statistical manifolds [7] and graphs [11]. With properly
designed kernels, these data types are implicitly embedded into a vector space
and lend themselves to kernel-based algorithms.

In this paper, we present a kernel for unordered sets of data of the same type,
which are useful data models in many applications. For instance, in document
categorization, documents are usually represented as “bag-of-words”, which are
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unordered set of key words. Images can also be treated as “bag-of-tuples”, where
the element is the tuple of the position and intensity of a pixel in an image[8].
Instead of directly defining a kernel between two sets, we take the methodology of
first modeling each set probabilistically, and then constructing a kernel between
the two probabilistic models. More specifically, each set is treated as a collection
of i.i.d. samples from an unknown probability distribution, whose probability
density function (pdf) is taken from a parametric family. The kernel between
two sets is thus computed as evaluating a kernel between the two pdfs. In this
paper, we employ Gaussian mixtures to model the generating pdf of a vector set.
On the two estimated Gaussian mixtures, the (normalized) expected likelihood
kernel is evaluated, which affords an efficient computation without integration.
Furthermore, the Gaussian mixture fitting and kernel evaluation are extended
to a feature space implicitly defined by another kernel. The proposed method is
evaluated on both synthesized and real data sets.

2 Kernel Function and Kernel-Induced Feature Space

Given an input space X , a kernel K is a function K(x, z) = 〈φ(x), φ(z)〉H for
any x, z ∈ X , where φ is a mapping from X to a Hilbert space H (the feature
space), and 〈·, ·〉H is the inner product operator in H [18]. Admissible kernel
can be specified without implicit reference to H or φ with the finite positive
definite property: any real-valued symmetric binary function on X is a kernel if
it satisfies the finite positive definite property:

m∑

i,j=1

cicjK(xi, xj) ≥ 0

for any m ∈ N, any subset {x1, · · · , xm} of X and any choice of real num-
bers c1, · · · , cm. Equivalently, the finite positive definite property can be ex-
pressed as that the matrix formed by restricting the kernel function on any
finite subset of X is positive semi-definite. There is an equivalence between
a kernel function K(·, ·) and a corresponding kernel-induced feature space H:
any admissible kernel function also ensures the existence of a feature space and
vice versa.

3 The Gaussian Mixture Model

We consider unordered sets of d-dimensional vectors, χ = {x1, · · · , xN}. One
can model the data in χ as i.i.d samples from a multivariate Gaussian distri-
bution G(x; µ, C) = 1

(2π)
d
2 |C| 12

exp(− 1
2 (x − µ)T C−1(x − µ)), parameterized by

the mean µ and the covariance matrix, C. Parameters µ and C are estimated
from data with the sample mean µ̄ = 1

N

∑N
i=1 xi and the empirical covariance

matrix C̄ = 1
N−1

∑N
i=1(xi −µ̄)(xi −µ̄)T , respectively. Major advantages of Gaus-

sian is simplicity. However, a Gaussian cannot model a multi-modal distribution,
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which usually is the case in practice. In this aspect, a Gaussian mixture has much
more modeling flexibility. A finite Gaussian mixture is defined as:

p(x) =
M∑

k=1

αkG(x; µk, Ck), (1)

where M ∈ N is the number of components, α1, · · · , αM are the mixing coeffi-
cients satisfying

∑M
k=1 αk = 1 and αi ≥ 0 for i = 1, · · ·M . Parameters µk and Ck

are the mean and covariance of each Gaussian in the mixture. It can be shown
that [16] with a sufficient number of components, any probability density can be
approximated to any degree by a Gaussian mixture.

The parameters in a Gaussian mixture, the mixing coefficients, α1, · · · , αM ,
the mean and covariance of each component, µ1, · · · , µM and C1, · · · , CM , can
be estimated from set χ with the expectation-maximization (EM) algorithm [2],
given that the number of components M is known. Starting from initial values
of these parameters, the EM algorithm proceeds by executing the following steps
until convergence,

pk(i) =
αkG(xi; µk, Ck)

∑M
j=1 αjG(xi; µj , Cj)

for i = 1, · · · , N, k = 1, · · · , M (2)

αk = 1
N

∑N
i=1 pk(i), for k = 1, · · · , M (3)

µk =
∑N

i=1 xipk(i)
∑N

i=1 pk(i)
, for k = 1, · · · , M (4)

Ck =
∑N

i=1(xi − µk)(xi − µk)T pk(i)
∑N

i=1 pk(i)
, for k = 1, · · · , M. (5)

The EM algorithm guarantees to converge within finite steps to a local maximum
of the log-likelihood function of the parameters given data χ. More details of the
EM estimation for Gaussian mixtures can be found in [2].

4 Kernels Between Sets of Vectors

A kernel function for unordered sets of d-dimensional vectors, χ = {x1, · · · , xN},
can be built from the probabilistic modeling of the set. Specifically, each set
can be treated as a collection of i.i.d. samples from a probability distribution,
whose density function (pdf) is approximated with a parametric family P . A
kernel between the estimated two pdfs can be defined and used as the kernel
between the two sets. With the estimated pdfs, generally, any similarity mea-
sures between two pdfs, such as the Jensen-Shannon divergence, Kullback-Leibler
divergence or the χ2 distance, can be used to construct kernels between two
pdfs [5]. The problem is that such measures may not be efficiently computable,
especially in high-dimensional data spaces. In a related work [10], P was cho-
sen as the multivariate Gaussian distributions. Then the Bhattacharyya kernel,
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KB(p, q) =
∫
X

√
p(x)

√
q(x)dx, was computed between the two Gaussian dis-

tributions. This kernel is a special case of the more general class of probabil-
ity product kernels [9], which is defined as KPP (p, q) =

∫
X p(x)ρq(x)ρdx, with

ρ = 1/2. For pdfs in the exponential family (multivariate Gaussian as a special
case), the probability product kernels can be computed efficiently without inte-
gration. However, when the two distributions are Gaussian mixtures, the general
probability product kernels do not give rise to efficient evaluation, as numerical
integration can not be avoided.

5 Expected Likelihood Kernel Between Gaussian
Mixtures

In this work, we employ the expected likelihood kernel between the two esti-
mated Gaussian mixtures, as the results of running the EM algorithm on the
two unordered sets of d-dimensional vectors. The expected likelihood kernel is
defined as:

KEL(p, q) =
∫

X
p(x)q(x)dx, (6)

which is seen to be a special case of the probability product kernel with ρ = 1. As
formally stated in the following theorem, the expected likelihood kernel affords
an efficient computation for Gaussian mixtures.

Theorem 1. For two Gaussian mixtures of d dimensional real random vectors,

p(x) =
∑M1

k=1α
(1)

k G(x; µ(1)

k , C(1)

k ) and q(x) =
∑M2

k=1α
(2)

k G(x; µ(2)

k , C(2)

k ),

the expected likelihood kernel, Eq.(6), is computed as

KEL(p, q) = (2π)−
d
2 αT Γβ,

for α = (α(1)
1 , · · · , α(1)

M1
)T and β = (α(2)

1 , · · · , α(2)

M2
)T . The M1 × M2 matrix Γ is

formed as (Γ )ij = g(µ(1)
i , C(1)

i , µ(2)
j , C(2)

j ), where function g is defined as:

g (µ1, C1, µ2, C2) =
|C| 1

2 exp(1
2µT Cµ)

∏2
i=1 |Ci|

1
2 exp(1

2µi
T Ci

−1µi)
, (7)

with µ = C1
−1µ1 + C2

−1µ2 and C =
(
C1

−1 + C2
−1)−1

.

Proof. First, the integration of the product of two Gaussians, G(x; µ1, C1) and
G(x; µ2, C2), is computed as [17]:

∫

Rd

G(x; µ1, C1) × G(x; µ2, C2)dx = (2π)−
d
2 g (µ1, C1, µ2, C2) . (8)
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Substituting Eq.(8) into Eq.(6) and interchange the order of addition and mul-
tiplication (using Fubini’s theorem) yields

∫

Rd

p(x)q(x)dx =
∫

Rd

M1∑

i=1

α(1)
i G(x; µ(1)

i , C(1)
i ) ×

M2∑

j=1

α(2)
j G(x; µ(2)

j , C(2)
j )dx

=
M1∑

i=1

M2∑

j=1

α(1)
i α(2)

j

∫

Rd

G(x; µ(1)
i , C(1)

i ) × G(x; µ(2)
j , C(2)

j )dx

=
M1∑

i=1

M2∑

j=1

α(1)
i α(2)

j (2π)−
d
2 g

(
µ(1)

i , C(1)
i , µ(2)

j , C(2)
j

)
= (2π)−

d
2 αT Γβ.

Theorem 1 shows that one can evaluate the expected likelihood kernel on two
Gaussian mixtures in closed-form without integration. The kernel can further
be made independent of the dimensionality of data, if we use its normalization:
KNEL(p, q) = KEL(p,q)√

KEL(p,p)
√

KEL(q,q)
, which can be shown to be an admissible ker-

nel function. This property is essential when we extend to Gaussian mixtures
estimated in a kernel-induced feature space, where the dimensionality of the data
is usually not known.

6 Kernels Between Sets in Feature Space

The expected likelihood kernel evaluation for unordered sets can be extended
to data in a feature space implicitly defined by another base kernel κ. This is
the case when the sets contain non-vectorial data, the base kernel is used to
implicitly map them into a vector space. For vectors, such implicit nonlinear
mapping is also desirable when nonlinear data patterns are sought. Our basic
methodology stays the same: Gaussian mixtures are first fitted to data sets and
the (normalized) expected likelihood kernel is evaluated between the two fitted
Gaussian mixtures. What differs is that all steps are implicitly performed in a
feature space.

Working in a feature space poses two fundamental difficulties for the kernel
evaluation described in Section 5. First, we may not fully recover a Gaussian in
a feature space from a finite set. This is especially true when the dimension of
the feature space is larger than the number of data in the set - only the partial
covariance of each Gaussian restricted in the subspace spanned by the data (with
a rank up to the size of the set) can be recovered. Another difficulty is that we
usually do not have direct access to individual data except their inner products,
computed with the evaluation of the base kernel. This renders the EM algorithm
and the evaluation of the expected likelihood kernel not directly applicable: the
estimation of the mean and covariance of each Gaussian (Eq.(4) and (5)) depend
on individual data.

In face of these problems, the kernel evaluation is modified in the following as-
pects. First, in both the EM algorithm and the kernel evaluation, in lieu of the de-
terminants and inverses of the full covariance matrices, the pseudo-determinants
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and pseudo-inverse [3] of the partial rank-deficient covariance matrix are used
to avoid recovering the full covariance matrices. The pseudo-determinant of a
matrix is the product of all its non-zero singular values1 and its pseudo-inverse is
obtained by inverting all nonzero singular values in its singular value decompo-
sition. A property of the pseudo-determinant and pseudo-inverse important for
the computation hereafter is Lemma 1. Due to limit of space, its is not presented
here and can be found in the longer version of this paper [13].

Lemma 1. If C = XRRT XT , and R and XT X are invertible, then we have

d(C) = |R̃T XT XR̃| and C† = XR̃R̃T XT ,

where R̃ = (RT XT X)−1 and † is the pseudo-inverse operator.

Another change is that both the EM algorithm and the (normalized) expected
likelihood kernel are reformulated to depends only on base kernel evaluation.
Specifically, the Gaussian mixtures are fitted with a variant of the kernelized
EM [6] and the evaluation of the (normalized) expected likelihood kernel is
modified to use the outputs of the kernelized EM.

To avoid clumsiness in notation, hereafter in this section we still describe
the reformulated algorithms in a vector space, bearing in mind that the inner
products of these vectors will be replaced with evaluations of the base kernel
in the feather space. Specifically, each datum is represented as a column vector,
and a data set χ = {x1, · · · , xN} is a matrix X = [x1, · · · , xN ] ∈ Rd×N . For two
different data sets, X1 and X2, their inner product matrix XT

1 X2 contains inner
products between all pairs of data from the two sets.

6.1 Kernelized EM

To make the EM algorithm, Eq.(2)-(5), depend on inner products of data while
being independent of individual data, we view it from an alternative perspective.
Rewriting Eq.(4) and (5), the updating steps of the mean and covariance of each
Gaussian in the mixture become

µk =
∑N

i=1xiwk(i), (9)

Ck =
∑N

i=1(xi − µk)(xi − µk)T wk(i), (10)

for k = 1, · · · , M , where wk(i) = pk(i)∑
N
i=1 pk(i)

is the weight associated with each

Gaussian component and each datum in the set. Denote wk=[wk(1),· · ·, wk(N)]T .
Eq.(9) and (10) can be rewritten more compactly as:

µk = Xwk, (11)
Ck = X(IN − wk1N

T ) diag(wk)(IN − 1NwT
k )XT . (12)

1 More formally, d(C) =
∏n

i=1(λi + 1 − sign(λi)2) where λi is the singular value of
matrix C and sign(x) = 1 for positive x, and 0 for x = 0 and −1 for negative x.
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where IN is the N × N identity matrix and 1N is the N -dimensional column
vector with all 1s. Operator diag(·) outputs a diagonal matrix whose diagonal
is set to the input vector. Modulo to the data matrix X , the estimated mean
and covariance of each Gaussian in the mixture are fully determined by weights
wk. EM can then be viewed as iteratively updating these weights in a boot-
strapping fashion.

To update weights wk, it is sufficient to compute pk(i) with Eq.(2). In a
feature space, as suggested previously, the updating step is modified to use
the pseudo-determinant and pseudo-inverse of the partial covariance mat-
rices as:

pk(i) =
αkd(Ck)−

1
2 exp

(
− 1

2 (xi − µk)T C†
k(xi − µk)

)

∑m
j=1 αjd(Cj)−

1
2 exp

(
− 1

2 (xi − µj)T C†
j (xi − µj)

) . (13)

The key step in updating pk(i) and hence wk is to compute d(Ck) and (xi −
µk)T C†

k(xi − µk) for each data in the set and each Gaussian component. Ac-
cording to Lemma 1, the pseudo-determinant and pseudo-inverse of the partial
covariance matrix Ck can be computed as:

d(Ck) = |RT
k XT XRk| (14)

C†
k = XRkRT

k XT (15)

where the N × N matrix Rk is

Rk =
[
(IN − wk1N

T )
√

diag(wk)XT X
]−1

, (16)

with the square root computed component-wisely. Accordingly, d(Ck) is com-
puted from Eq.(14) and (16). With Eq.(15), term (xi − µk)T C†

k(xi − µk) is
evaluated as

(xi − µk)T C†
k(xi − µk) = (xi − Xwk)T XRkRT

k XT (xi − Xwk)
= ‖RkXT X(δi − wk)‖2, (17)

where δi is the N -dimensional column vector of all zeros except the i-th com-
ponent being 1. ‖ · ‖ is the 2-norm of a vector. Note that no direct dependence
on individual data or the data matrix appears in these computations. Matrix
XT X is formed by inner products between each pair of data in X and is com-
puted from evaluating the kernel matrix of κ on the input data set in the feature
space.

In summarizing words, with initial values, the kernelized EM algorithm2

proceeds by running the following steps until convergence

2 The algorithm described here is in the same spirit as the original kernelized EM
algorithm [6], differing in notations and the relaxed requirement of only recovering
partial covariances.
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– step 1: compute pk with Eq.(17), (14) and (13);
– step 2: update weights wk as wk(i) = pk(i)∑ N

i=1 pk(i) ;
– step 3: update mixing coefficients αk with Eq.(3);
– step 4: compute Rk with Eq.(16);

At the completion of the kernelized EM algorithm, the mixing coefficients αk,
vector wk and matrix Rk

3 are output for each Gaussian in the mixture. It is
from these outputs that the (normalized) expected likelihood kernel is evaluated
in the feature space.

6.2 Kernel Evaluation

In the feature space, the expected likelihood kernel (and its normalization) is
computed as in Theorem 1 with slight changes. First, the constant factor in
the expected likelihood kernel is dropped, to yield K̃EL(p, q) = αT M̃β on two
Gaussian mixtures p and q. Denote X1 and X2 as the data matrices for the two
mixtures. Vector α and β contains the mixing coefficients for p and q respectively.
Matrix M̃ is formed as (M̃)ij = g̃(µ(1)

i , C(1)
i , µ(2)

j , C(2)
j ) for each pair of Gaussians

from the two mixtures. Function g̃ is defined as:

g̃ (µ1, C1, µ2, C2) =
d(C)

1
2 exp(1

2µT Cµ)
∏2

i=1 d(Ck)
1
2 exp(1

2µk
T Ck

†µk)
, (18)

with µ = C1
†µ1+C2

†µ2 and C =
(
C1

† + C†
2

)†
, which is computed in four steps.

Compute d(Ck): From the outputs of the kernelized EM algorithm, d(Ck) is
computed with Rk and Eq.(14) as d(Ck) = |RT

k XT XRk|, for k = 1, 2.

Compute µk
T Ck

†µk: With Rk, Eq.(9) and (14), term µk
T Ck

†µk is computed
as:

µk
T Ck

†µk = wT
k XT

k XkRkRT
k XT

k Xkwk = ‖RT
k XT

k Xkwk‖2 (19)

for k = 1, 2.

Compute d(C): With C†
k = XkRkRT

k XT
k for k = 1, 2, we then have

C†
1 + C†

2 = X1R1R
T
1 XT

1 + X2R2R
T
2 XT

2 = [X1 X2]
[
R1 0
0 R2

] [
RT

1 0
0 RT

2

] [
XT

1
XT

2

]
.

Now denote

R =
([

RT
1 0
0 RT

2

] [
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

])−1

=
[
RT

1 XT
1 X1 RT

1 XT
1 X2

RT
2 XT

2 X1 RT
2 XT

2 X2

]−1

(20)

and with Lemma 1, it holds that
3 Note it is not necessary to output Rk as it can be computed from wk with Eq.(16).

However, it facilitates the evaluation of the kernel in next section.
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C =
(
C1

† + C†
2

)†
= [X1 X2]RRT

[
XT

1
XT

2

]
, (21)

from which d(C) is computed as

d(C) =
∣∣∣∣R

T

[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]
R

∣∣∣∣ (22)

Compute µT Cµ: Since we have µ = C†
1µ1 + C†

2µ2, expanding µT Cµ yields

µT Cµ = (C†
1µ1 + C†

2µ2)T C(C†
1µ1 + C†

2µ2) =
∑

i,j∈{1,2}
µT

i C†
i

T
CC†

j µj . (23)

Each term in the sum can be further expanded with µk = Xkwk and C†
k =

XkRkRT
k XT

k for k = 1, 2, as:

µT
i C†

i

T
CC†

j µj = wT
i XT

i XiRiR
T
i XT

i [X1 X2]RRT

[
XT

1
XT

2

]
XjRjR

T
j XT

j Xjwj

= wT
i XT

i XiRiR
T
i [XT

i X1 XT
i X2]RRT

[
XT

1 Xj

XT
2 Xj

]
RjR

T
j XT

j Xjwj . (24)

All the above steps depend on data only through their inner products. Thus
replacing these inner products with base kernel evaluations lead to computing
function g̃ in the feature space with base kernel evaluations. Subsequently, the
modified (normalized) expected likelihood kernel can also be computed based on
kernel κ. Combining with the kernelized EM algorithm, this yields a kernel for
unordered sets in the feature space.

7 Experiments

In this section, experimental results empirically evaluating the proposed kernel
with other works are presented. The experiments were conducted on both syn-
thesized and real data sets. In all experiments, the proposed kernel was coupled
with SVM classifiers. Our SVM classifiers were implemented based on package
LIBSVM [4] and were enhanced to work with kernels between sets. A simple
multi-class classification protocol, a one-versus-the-rest scheme in training and
a winner-takes-all strategy in testing was employed in classification.

7.1 Synthesized Data

Our synthesized data were 1, 000 sets of 5-D vectors of sizes ranging from 80 to
250 , each of which were random samples of one of the four different 5-D Gaussian
mixtures with five components. All data sets were categorized into four different
classes based on the Gaussian mixtures they were generated from. 700 out of the
1, 000 samples were used for training and the rest for testing. For a base of compar-
ison, an SVM classifier with an RBF kernel KRBF (x, z) = exp(− ‖x−z‖2

σ2 ) on 5-D
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vectors was trained. Each vector inherited class label of the set to which it belongs.
The classification of a set was the result of a majority vote with the projected class
labels of all its members. As no consideration is given to the correlation within a
set, this plain RBF kernel did not perform well, as evident from Figure 7(a).

Another SVM classifier with a kernel between unordered sets as described
in [10] was also compared, where a Gaussian was fitted to each set and the
Bhattacharyya kernel KB(p, q) =

∫
X

√
p(x)

√
q(x)dx was evaluated on the two

fitted Gaussians. For pdfs in the exponential family (Gaussian as a special case)
it has been shown that the Bhattacharyya kernel afford a close-form evalua-
tion [10]. However, for Gaussian mixtures with more than one components, the
Bhattacharyya kernel loses that advantage, as the integration is not able to be
removed. As shown in Figure 7(a), the Bhattacharyya kernel achieved a better
performance than the simple RBF kernel. The improvement is most probably
due to the better data modeling with a Gaussian fitting.

However, it is the normalized expected likelihood kernel with a proper num-
ber of components in the estimated Gaussian mixture (M = 5) that achieved the
best overall performance, due to the more precise data modeling with Gaussian
mixtures. For the other choices of component number M, with single component
Gaussian mixture fitting, the normalized expected likelihood kernel is similar to
the Bhattacharyya kernel (without the square root in the definition), which is
reflected in their similar performance. For Gaussian mixtures with fewer compo-
nents than the ground truth (as in the case of M = 3), the performance is not
uniformly better than the base line case with M = 1. On the other hand, using
more mixture components (e.g., M = 7) did not achieve significant improve-
ment in performance yet the computational effort was increased. This bears
the question of how to know the number of components in advance, as the
EM can not be used to find it. Empirically, The number of components can
be found by cross-validation. A more systematic approach is to use techniques
that can automatically determine the number of components need on a data
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Fig. 1. Performance of the normalized expected likelihood kernel on the testing set for
(a) synthesized data and (b) MNIST handwritten digit image dataset. Solid lines are for
the Gaussian mixture with normalized expected likelihood kernel. Dashed lines are for
the Bhattacharyya kernel.
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set (e.g., [19]) and is left for future study. Also, in this experiment, for sim-
plicity we fitted the same number of Gaussians to all sets. It is straightforward
to extend to fitting Gaussian mixtures with different number of components to
different sets.

7.2 Handwritten Digits Recognition

Our real data were a small subset of handwritten digit images. Specifically, we
randomly chose 100 images for each of the 10 handwritten digit from the MNIST
database [12], with 700 for training and the rest for testing. Similar to [10], each
image was transformed to a set by sampling pixels with intensity greater than
191 on a 0 to 255 scale. The coordinates of these sampled pixel along with
their intensities were presented to the algorithm. From each image, a set of size
ranging from 50 to 108 with an average of 72 was obtained. Using a small sub-
set of pixels is to avoid inverting a large inner product matrix, which is the
most time consuming step in the kernel evaluation. Anticipating nonlinearity
in data modeling, we chose an RBF kernel as the base kernel to nonlinearly
map the 3-D tuples in each set into a feature space. To simplify the training
process, we avoided extensive tuning of the parameter in the base kernel and
in all cases the RBF kernel was set to have a width of σ = 0.1. The results
were the average over 100 random splits of the training/testing splits of all the
images chosen.

We trained again different SVM classifiers and their performances are shown in
Figure 7(b). As in the case of the synthesized data, a simple RBF kernel led to the
most inferior performance. However, the Bhattacharyya kernel with a RBF base
kernel and the normalized expected likelihood kernel with a one-component Gaus-
sian mixture modeling did not introduce much improvement, as a single Gaussian
is not sufficient to model the generating probability distributions of these data sets.
We then tested the normalized expected likelihood kernel with different number of
mixture components (M = 3 and 5). Compared to other kernels, they achieved a
substantial improvement in performance. Contrary to the previous case, it seems
that the specific number of mixture components is somehow irrelevant in this case,
as using 3 and 5 components did not result in significant difference in performance.
We also observed that classification was relatively stable with regards to the regu-
larization factor in the SVM classification.

8 Discussion

In this paper, we present a kernel between two unordered sets of data of the
same type. Each set is first fitted with a Gaussian mixture. Then the expected
likelihood kernel is evaluated between the two estimated Gaussian mixtures.
Furthermore, this kernel function can be extended to cases when the data are in
an implicitly defined feature space. The performance of this kernel is evaluated on
both synthesized and real data sets. One drawback of the proposed algorithm,
however, is running efficiency. Evaluating the kernel is quadratic in running
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time, which can be prohibitive in case of large data sets. We are working on
approximation algorithms that achieve fast running time. Also, we are working
on incorporating techniques that can automatically determine the number of
components in a Gaussian mixture estimation.
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