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ABSTRACT
Nonnegative matrix factorization (NMF) has been success-
fully applied to different domains as a technique able to find
part-based linear representations for nonnegative data. How-
ever, when extra constraints are incorporated into NMF, sim-
ple gradient descent optimization can be inefficient for high-
dimensional problems, due to the overhead to enforce the
nonnegativity constraints. We describe an alternative formu-
lation based on matrix exponentiation, where the nonnegativ-
ity constraints are enforced implicitly, and a direct gradient
descent algorithm can have better efficiency. In numerical ex-
periments, such a reformulation leads to significant improve-
ment in running time.

Index Terms— nonnegative matrix factorization, matrix
exponentiation

1. NMF AND CONSTRAINED NMF

Nonnegative matrix factorization (NMF) [1, 2] aims to find a
concise representation for nonnegative data. Given an m × n
data matrix V with Vi j ≥ 0 and an integer k ≤ min(m, n), NMF
finds two nonnegative factors W ∈ Rm×k and H ∈ Rk×n so that
V ≈ WH. The nonnegativity constraints make the represen-
tation purely additive that affords a part-based interpretation.
NMF has been successfully applied to neural coding [3], brain
imaging [4], face recognition [5], color science [6] and poly-
phonic music transcription [7], among others.

Mathematically, NMF is formulated as minimizing a loss
function L(W,H; V), subject to the nonnegativity constraints.
Two most commonly used objective functions are the squared
Euclidean distance

L2(W,H; V) = ‖V −WH‖22 =
∑

i j

(
Vi j − (WH)i j

)2
, (1)

and the matrix divergence

D(W,H; V) =
∑

i j

(
Vi j log Vi j

(WH)i j
− Vi j + (WH)i j

)
. (2)

Optimizing these objective function with W and H jointly
is usually difficult, and basically all NMF algorithms itera-
tively optimize one of W and H given the other. The origi-
nal NMF algorithm in [2] used multiplicative update steps, as

W ← W⊗(VHT )�(WHHT ) and H ← H⊗(WT V)�(WT WH)
for the matrix Euclidean distance (1), where operators ⊗ and
� denotes the point-wise multiplication and division, respec-
tively. Similar multiplicative updates can also be obtained for
for the matrix divergence (2). As long as the current estima-
tions of W and H satisfy the nonnegativity constraints, so do
the updated values. These multiplicative updates equal to gra-
dient descent with specific step sizes that always decrease the
objective function.

In many practical applications, however, nonnegativity
constraints are not sufficient, as the domain knowledge may
provide further relevant requirements on the representations.
We loosely refer to such variations of NMF that have ex-
tra constraints on the nonnegative factors as constrained
NMF. For instance, in problems such as face recognition, a
part-based representation is also preferably a sparse repre-
sentation, where a small set of factors with non-zero weights
suffice to reconstruct an objective. This leads to the devel-
opment of sparse NMF, which has been the focus of many
recent research works [3, 8, 9]. Other requirements such as
localness and smoothness have also been incorporated into
the NMF objective function for different applications, leading
to local NMF [10] and smooth NMF [4]. A general way to
introduce these further requirements on the NMF factors is to
add penalty terms in the NMF objective function1.

Nevertheless, when these new objective functions are
used, the multiplicative update steps are no longer viable,
as they do not guarantee to decrease the modified objec-
tive function of the constrained NMF. Numerical algorithms
for constrained NMF usually take a simpler yet inefficient
method. Basically, W and H are updated with a gradient
descent, yet whenever negative values appear in W or H, they
are clipped to zero. The procedure guarantees to converge to
a local minimum of the objective function, yet its efficiency
in high-dimensional problem is greatly affected by these clip-
ping operations. Especially, if following the gradient will
break the nonnegativity constraint on Wi j or Hi j, progress in
updating them can only be made with a projection of a full
gradient on the constraints, which can be significantly smaller

1Adding new constraints to the system is another way to incorporate
new requirements, yet through Lagrange multipliers, those constraints can
be treated similarly as penalty terms in the objective functions.



than a full gradient update step.

2. NMF WITH MATRIX EXPONENTIATION

To find an efficient optimization scheme applicable to NMF
and its constrained variants, in this paper, we take an alter-
native perspective of the NMF optimization. Specifically,
we reformulate NMF to find factors that are the point-wise
exponentiation of another matrices. The introduction of ma-
trix exponentiation annihilates the nonnegativity constraints,
and a gradient descent with matrix exponentiation always
searches the optimal solution within the feasible set, thus
avoids moving on the constraint boundaries. Furthermore,
gradient descent with matrix exponentiation can also make
greater progress in regions relatively faraway from the opti-
mal solution. All these help to reduce the number of itera-
tions to converge and improve the running efficiency of the
gradient-based solution to NMF and its constrained variants.

To be more specific, we assume the two factors W and H
as point-wise exponentiation of two other matrices W and
H , respectively, as Wi j = eWi j and Hi j = eHi j , or more
compactly, W = e TW and H = e T H , where operator
T denotes the point-wise exponentiation. NMF optimization
with matrix exponentiation is solved with gradient descent
of W and H , as: Wt+1 ← Wt − ηW

∂L
∂W

∣∣∣
Wt

and Ht+1 ←

Ht − ηH
∂L
∂H

∣∣∣
Ht

, where ηW and ηH are suitable step sizes for
W and H , respectively. The gradients of the NMF objec-
tive function with regards toW andH have relatively simple
form. For (1), assuming all point-wise operations have higher
priority in computation, and using shorthand notation ⊗ and
� for point-wise multiplication and division, the derivatives
of L2(W,H; V) with regards toW andH are computed as:

∂‖V −WH‖22
∂Wmn

=
∂

∂Wmn

∑
i j

∑
k

exp(Wik +Hk j) − Vi j

2

= 2
∑

j

∑
k

exp(Wmk +Hk j) − Vm j

 ∂

∂Wmn
exp(Wmn +Hn j)

= 2 exp(Wmn)
∑

j

∑
k

exp(Wmk +Hk j) − Vm j

 exp(Hn j)

= 2
[
W ⊗

(
(WH − V)HT

)]
mn
,

and

∂‖V −WH‖22
∂Hmn

=
∂

∂Hmn

∑
i j

∑
k

exp(Hik +Wk j) − Vi j

2

= 2
∑

i

∑
k

exp(Wik +Hkn) − Vin

 ∂

∂Hmn
exp(Wim +Hmn)

= 2 exp(Hmn)
∑

i

∑
k

exp(Wik +Hkn) − Vin

 exp(Wim)

= 2
[
H ⊗

(
WT (WH − V)

)]
mn
.

Similarly, for (2), the derivatives of D(W,H; V) with regards
toW andH are computed as:

∂D(V‖WH)
∂Wmn

=
∂

∂Wmn

∑
i j

(
Vi j log

Vi j

(WH)i j
− Vi j + (WH)i j

)

=
∑

j

(
exp(Wmn +Hn j) −

Vi j exp(Wmn +Hn j)∑
k exp(Wmk +Hk j)

)

= Wmn

∑
j

H jn((WH)m j − Vm j)
(WH)m j

=
[
W ⊗

(
((WH − V) � (WH)) HT

)]
mn
,

and

∂D(V‖WH)
∂Hmn

=
∂

∂Hmn

∑
i j

(
Vi j log

Vi j

(WH)i j
− Vi j + (WH)i j

)

=
∑

i

(
exp(Wim +Hmn) −

Vin exp(Wim +Hmn)∑
k exp(Wik +Hkn)

)
= Hmn

∑
i

Wim((WH)in − Vin)
(WH)in

=
[
H ⊗

(
WT ((WH − V) � (WH))

)]
mn
.

It is interesting to note that the derivatives given in these equa-
tions are also the KKT complementarity conditions for ob-
jective function (1) and (2) [11]. The major difference is
that instead of updating W and H directly as in most ex-
isting works of NMF, their point-wise logarithm W and H
are used to remove the nonnegativity constraints. In terms
of numerical optimization techniques, matrix exponentiation
formulation of NMF can be viewed as an interior-point style
solution to the bounded optimization problem in the NMF,
with the exponentiation serves as the barrier function [12].
Note also that matrix exponentiation naturally implies a mul-
tiplicative update of W and H as in the original NMF al-
gorithm [2], since the gradient updating step is equivalent to
Wt+1 ← WteT

(
−ηW

∂L
∂W

∣∣∣
Wt

)
and Ht+1 ← HteT

(
−ηH

∂L
∂H

∣∣∣
Ht

)
.

However, the matrix exponentiation formulation can also be
employed in other constrained NMF algorithms where the
original multiplicative updates are not applicable. In prac-
tice, to avoid small updates forWi j andHi j with values close
to zero, when they are below a pre-set threshold, we set these
entries to zeros and stop optimizing them in the subsequent
steps.

3. EXPERIMENT

In this section, we report the empirical performance of gra-
dient descent with matrix exponentiation (ME) and compare
with the original NMF update algorithm (NMF) and the pro-
jected gradient descent of the (constrained) NMF objective
function without any transformation (PGD). We tested the al-
gorithm on both artificial data, where V is a randomly gen-
erated 100 × 100 positive matrix, and we search for factors



with k = 25, and a real data set from the a subset of the USPS
handwritten digit database, as proposed in [3]. All algorithms
compared started from the same randomly chosen initial val-
ues and stopped when the objective function did not decrease
more than a pre-given threshold. PGD and ME used optimal
step size in gradient updating found from an optimal search,
which is obtained by numerically solve a 1D nonlinear equa-
tion at each step.

3.1. Sparse NMF

In the first set of experiments, we enforce the sparseness re-
quirement to the NMF problem by adding penalty term in the
NMF objective function that penalizes nonsparse decomposi-
tions. A particular effective measurement of sparseness of an
n-dimensional vector x is given in [3], as

s(x) =

√
n − ‖x‖1/‖x‖2
√

n − 1
=

√
n −

∑n
i=1 xi/

√∑n
i=1 x2

i
√

n − 1
.

which is 0 for a vector with equal entries (most nonsparse)
and 1 for a vector with only one nonzero entry (most sparse).
Note that as the factors are constrained to be nonnegative, the
l1 norm in s(x) is replaced with a summation, which is differ-
entiable. Following the method in [3], we used an augmented
objective function based on (1),

Ls(W,H; V) = L2(W,H; V)+λW

k∑
i=1

s(Wi)+λH

k∑
i=1

s(HT
i ) (3)

which penalizes nonsparse columns in W and HT , with λW

and λH constants controlling the balance between data fitting
and sparsity requirements in the factors. Matrix exponentia-
tion of this objective function is easy to set up with point-wise
exponentiation. Figure 1 are the experimental results of ap-
plying NMF, PGD and ME to the sparse NMF objective func-
tion (3) with both synthesized and USPS data set. The use
of multiplicative update in the original NMF on this problem
is inappropriate in the sense that those steps are not designed
to minimize objective function (3). Therefore, though it con-
verges with the least number of steps and least running time,
it does not always lead to a local minimum of the sparseness-
enhanced objective function. This is more clearly illustrated
in the right panel of Figure 1: NMF will stops at a local mini-
mum of the original NMF objective, which is not necessarily
a local minimum of the enhanced sparse NMF objective func-
tion. On the other hand, algorithm ME and PGD both lead to
a local minimum of (3), but ME achieves so with less iteration
steps and running time, due to its quick movement in regions
faraway from the solution and the avoidance of nonnegativity
constraints. Nevertheless, the optimal step search costs more
time in the case of ME than PGD, as the nonlinear equation
to be solved is slightly complicated, which accounted for the
disproportion of improvements in running time and iteration
steps.

3.2. Smooth NMF

Smooth NMF [4] is a constrained variant of NMF where one
seeks nonnegative factors that are also smooth, i.e., having
small difference between consecutive elements in the fac-
tors. Smooth NMF has application in analyzing fMRI data,
where a desirable property of the recovered factors is their
smoothness in the temporal and voxel domain. Mathemati-
cally, smooth NMF is formulated as optimizing the following
objective function:

Lm(W,H; V) = L2(W,H; V)+λW

k∑
i=1

‖DWi‖2+λH

k∑
i=1

‖DHT
i ‖2,

(4)
where D is a difference operator. Less smooth columns in
W and HT are penalized by the of l2 norm of their differ-
entials. Shown in Figure 2 are the performance of algorithm
NMF, PGD and ME with the smooth NMF objective function
on both synthesized and USPS data. As in the case of sparse
NMF, NMF updates does not guarantees to decrease the ob-
jective function, and thus not able to find a locally optimal
solution to smooth NMF. On the other hand, ME converges
with significantly less iteration steps than PGD. However, the
difference in running time is less significant, the reason is that
in solving the smooth NMF optimization, the optimal 1D line
search step for ME involves numerically solving a more com-
plicated nonlinear equation, and thus slow down the running
time of individual step. A practical strategy is to switch to
PGD whenever the improvement in objective function is im-
proved less than a pre-given threshold in ME. In practice, this
ad hoc solution achieved better (30%) improvement in the
running time of smooth NMF (not shown here).

4. CONCLUSION

In this paper, we describe a new formulation of NMF and
its constrained variants with matrix exponentiation. The ma-
jor advantage of this new formulation is that nonnegativity
constraints are enforced implicitly and thus obviate the over-
head of a gradient descent algorithm to check the nonnega-
tivity constraints. Furthermore, the nonlinear transformation
of the objective function introduced by matrix exponentiation
can also accelerate convergence speed in regions that are far-
away from the optimal solution, which also helps to reduce
the overall running time of constrained NMF. The bottleneck
of the proposed algorithm is the expensive step of searching
for an optimal update step, which usually involves numerical
solution of nonlinear equations. We are working on approxi-
mation schemes that can further improve the efficiency of the
current algorithm.
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of iteration steps vs. objective function for a typical run of the three algorithm on a synthesized datum.

run time iteration obj fun
(sec.) steps error

NMF 79.4 145.3 8.9
PGD 1332.2 1253.7 9.5 × 10−3

ME 1037.2 482.3 9.5 × 10−3

synthesized data
run time iteration obj fun

(sec.) steps error
NMF 197.2 232.5 21.4
PGD 1342.5 994.7 0.53
ME 1152.8 565.4 0.54

USPS
0 20 40 60 80 100

10
−3

10
−2

10
−1

10
0

10
1

10
2

iteration steps

ob
je

ct
 fu

nc
tio

n

NMF
PGD
ME 
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