
Exposing Image Splicing with Inconsistent Local Noise Variances

Xunyu Pan Xing Zhang Siwei Lyu∗

Computer Science Department
University at Albany, State University of New York

{xzhang5,xypan,slyu}@albany.edu

Abstract

Image splicing is a simple and common image tampering
operation, where a selected region from an image is pasted
into another image with the aim to change its content. In
this paper, based on the fact that images from different ori-
gins tend to have different amount of noise introduced by the
sensors or post-processing steps, we describe an effective
method to expose image splicing by detecting inconsisten-
cies in local noise variances. Our method estimates local
noise variances based on an observation that kurtosis val-
ues of natural images in band-pass filtered domains tend to
concentrate around a constant value, and is accelerated by
the use of integral image. We demonstrate the efficacy and
robustness of our method based on several sets of forged
images generated with image splicing.

1. Introduction
The past decade has witnessed remarkable advances in

digital image processing and computational photography,
resulting in sophisticated image-editing software systems
such as Adobe Photoshop and GNU GIMP. On the
other hand, the ease of digital image manipulation has also
posed many new challenges. In particular, digital images
have become more vulnerable to malicious tampering com-
pared to their non-digital counterparts. This circumstance
naturally calls for solutions to important and challenging re-
search questions such as “how can we determine an image’s
authenticity?” and “how can we detect and locate tampered
parts of an image?” [7].

In this work, we focus on the detection of a simple and
common image manipulation technique known as image
splicing, where a forged image is created by compositing
regions from different source images. Our image splic-
ing detection method is based on the fact that most digital
images contain noise introduced either during acquisition
(e.g., sensor or quantization noise) or subsequent process-
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ing (e.g., compression). For an un-tampered natural image,
the noise variances across different regions typically differ
only slightly. But with spliced regions from another im-
age with a significantly different intrinsic noise variance,
the inconsistency of local noise variances become a telltale
evidence of tampering.

The crucial step in our image splicing detection method
is to estimate noise variances across different regions in an
image. In doing so, we take advantage of a statistical regu-
larity of natural images – the kurtosis values of natural im-
ages in general band-pass filtered domains (e.g., DCT or
wavelet decomposition) are positive [4] and tend to be close
to a constant [3, 21, 34]. Then, approximating kurtosis of
natural images across different band-pass filtered channels
to be a positive constant, we construct an objective func-
tion, using the relationship between the image kurtosis and
noise variance in the band-pass filtered domain, to estimate
the global noise variance of the whole image. Our objec-
tive function is robust to infrequent outlying kurtosis values.
More appealingly the objective function has a closed-form
optimal solution, the algorithm based on which is further
extended to local noise variance estimation and accelerated
with integral image. Spliced regions are detected by seg-
menting the estimated local noise variances. The efficacy
and robustness of our method are demonstrated on several
sets of synthetic and realistic forged images generated with
image splicing.

1.1. Related Works

Noise could be introduced in an image by numerous fac-
tors during acquisition and processing, such as thermal ef-
fects, sensor saturation, quantization errors and transmis-
sion errors. Effective estimation of noise statistics, in partic-
ular variance, from a single noise-corrupted image is an im-
portant task, partly because other common image process-
ing algorithms such as denoising and deblurring are predi-
cated on a priori knowledge of the noise variance.

Most noise estimation methods make a simplifying as-
sumption of the noise as a zero-mean white Gaussian pro-
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Figure 1. Demonstration of kurtosis concentration of a natural im-
age for two types of band-pass filtered domains: DCT (left) and
FastICA (right). See text for details.

cess that is additive and independent of the image1. As such,
image noise can be statistically characterized by their vari-
ances. Based on the observation that noise tends to have
more energy in the high frequency bands than natural im-
ages, estimation of the global noise variance in an image
is usually based on the difference image between the noisy
image and its low-pass filtered response [15, 25, 29]. For
instance, the mean absolute deviation (MAD) of the differ-
ence image has been widely used as a reliable noise vari-
ance estimator [6]. However, these methods tend to over-
estimate the noise variance, as frequency alone is not suffi-
cient to differentiate noise from image.

An alternative methodology is to use the relationship be-
tween noise variance and certain higher-order statistics of
natural images to obviate the low pass filtering step. In
[31], using training samples and the Laplacian model for the
marginal statistics of natural images in band-pass filtered
domains, a function is learned for estimating noise vari-
ances. Another family of data set independent estimation
methods uses the relationship between noise variance and
image kurtosis in band-pass filtered domains (see Eq.(1)).
However, many works along this direction (e.g., [2, 23, 27])
assume knowing the kurtosis of the original image, which
makes them impractical for practical applications. The al-
gorithm of [34] is the first kurtosis-based method that does
not require knowing the kurtosis values and achieves state-
of-the-art performances (more details given in Section 3).

Image noise have found many uses in digital image
forensics. Most notably, the existence or lack of the PRNU
(photo response non-uniformity) noise has been used for
identifying the source camera model or ensuring authentic-
ity of an image [5, 9, 19, 20]. There have been three major
previous works using local noise variances to detect image
splicing. The method in [28] is based on an estimator of
noise variance from the kurtosis of the original image. The
method in [22] is based on the MAD noise variance esti-
mator in the high-pass band from an orthonormal wavelet
decomposition. The more recent work in [26] demonstrate
detection of spliced regions by extending the noise variance

1A more realistic model where image noise variances depend on pixel
intensities are used in [18] to obtain a lower-bound on the global noise
level.

estimator in [34] to local blocks.
Image splicing can also be detected using other features.

For instance, the existence of spliced regions in an image
can be detected using a classifier of image statistics-based
features learned from a training set of authentic and forged
images [1, 11, 24], however, these methods do not locate
the spliced regions. Other methods (e.g., [13, 17]) ex-
tract features from camera response functions (CRF). How-
ever, these semi-automatic methods are typically very slow
and not suitable for practical analysis due to the compli-
cated nonlinear optimization in estimating CRF [17]. An-
other family of detection methods (e.g., [12, 16]) use dou-
ble JPEG artifacts to detect image splicing. However, since
these methods rely on the JPEG image format, they cannot
be applied to images that are not in the JPEG format.

In contrast, the proposed method has the following ad-
vantages:

1. it does not explicitly rely on the knowledge of image
format or tampering procedure;

2. it has detection accuracy at the level of pixels yet the
overall algorithm is still efficient;

3. its detection performance is extensively evaluated on
several different sets of synthesized and actual image
splicing forgeries with different formats and level of
sophistication.

We will compare existing image splicing detection methods
with our method in detail in Section 5.2.

2. Kurtosis Concentration
For a random variable x, we define its kurtosis as κ =

µ̃4

(σ2)2
− 3, where σ2 = Ex

{
(x− Ex {x})2

}
and µ̃4 =

Ex
{

(x− Ex {x})4
}

are the variance and fourth order cen-
tral moment of x, respectively. In particular, by this defini-
tion, a Gaussian variable has kurtosis zero.

It has been observed in several recent works (e.g., [3, 21,
34]) that for natural images, kurtosis values across different
band-pass filter channels tend to be close to a constant, a
phenomenon we call kurtosis concentration. One probable
cause of kurtosis concentration is that natural images tend to
have spherically symmetric distributions [21], and therefore
have isotropic statistics (including kurtosis), in band-pass
filtered domains from whitening transforms including those
from DCT and FastICA.

We demonstrate kurtosis concentration in Fig. 1 using
a natural image and two different types of band-pass filter
transforms, as:

1. 255 band-pass AC filters from a 16× 16 DCT decom-
position, in ascending order of their basic frequency,

2. and 255 band-pass filters obtained from the FastICA
decomposition [14] learned from overlapping patches
of 16× 16 pixels in size collected from the image.



The blue dots are kurtosis values obtained from the re-
sponses of the image convolved with the band-pass filters
corresponding to the order given in the horizontal axes. The
red dashed line is the mean of these kurtosis values with
the shaded region corresponding to ± standard deviation.
One notable characteristics of these results is that the kur-
tosis values are all positive, reflecting the super-Gaussian
marginal statistics of natural images in the band-pass fil-
tered domains [4]. More importantly, except for a few out-
liers, the majority of the kurtosis values are found not far
from their mean value, confirming the concentration behav-
ior of the kurtosis values.

3. Global Noise Variance Estimation
Denote y = x + z as the result of contaminating a natu-

ral image x with white Gaussian noise z of zero mean and
unknown variance σ2. Our goal is to estimate σ2 from the
noise corrupted image y alone with some general statisti-
cal knowledge of x. We would like to point out that the
Gaussian assumption is not as restrictive as it looks, in par-
ticular when the image is transformed from pixel domains
to band-pass filtered domains such as discrete cosine trans-
forms (DCT) and wavelet. This is because the non-Gaussian
independent noise in the pixel domain approaches Gaussian
after being linearly mixed by the band-pass filters, a direct
result of the central limit theorem [8].

We first transform the image into a band-pass filtered do-
main. We find that the particular form of the band-pass filter
transforms does not affect the algorithm and performance,
and use the AC filters from a fixed-point DCT decomposi-
tion for its efficiency. Further, if the band-pass filters are
normalized to have unit one, the variance of the noise is
same as that in the original pixel domain.

For a band-pass filtered domain of K channels (i.e., the
responses of image convolved with K different band-pass
filters), we denote the kurtosis of the original and the noisy
image in the kth channel as κk and κ̃k, respectively. We use
σ̃2
k for the variance of the kth channel of the noisy image y.

These statistics are related [2], as:

κ̃k = κk

(
σ̃2
k − σ2

σ̃2
k

)2

. (1)

For completeness, we provide a derivation of Eq.(1) in Ap-
pendix A. Eq.(1) can be further simplified if we consider the
statistical regularity of natural images in the band-pass fil-
tered domains – they tend to have super-Gaussian marginal
distributions [4], or equivalently, have positive kurtosis val-
ues (κk > 0). Also, σ̃2

k − σ2 is positive as it is the variance
of the noise free image in the kth channel. Therefore, we
can take square root on both sides of Eq.(1) to yield√

κ̃k =
√
κk

(
σ̃2
k − σ2

σ̃2
k

)
. (2)

Now we take advantage of the kurtosis concentration be-
havior of natural images in the band-pass filtered domains
(Section 2). In particular, this suggests that the kurtosis
of the noise-free natural image x across the K band-pass
filtered channels can be approximated by a constant, or
κk ≈ κ (k = 1, · · · ,K). We then form an objective func-
tion of minimizing the difference of the two sides of Eq.(2),
as:

min√
κ,σ2

K∑
k=1

[√
κ̃k −

√
κ

(
σ̃2
k − σ2

σ̃2
k

)]2

, (3)

whose optimal solution provides an estimation to the noise
variance. It turns out that this optimal solution is in closed-
form, as:

√
κ =

〈√
κ̃k
〉
k

〈
1

(σ̃2
k)2

〉
k
−
〈√

κ̃k

σ̃2
k

〉
k

〈
1
σ̃2
k

〉
k〈

1
(σ̃2

k)2

〉
k
−
〈

1
σ̃2
k

〉2

k

σ2 =
1〈
1
σ̃2
k

〉
k

− 1√
κ

〈√
κ̃k
〉
k〈

1
σ̃2
k

〉
k

,

(4)

where 〈·〉k is a shorthand notation for averaging over the K
band-pass filtered channels. A detailed derivation of Eq.(4)
is given in Appendix B. We should point out that Eq.(4) is
key to the extension of the global noise variance estimation
to efficient local noise variance estimation.

3.1. Comparison with Method of [34]

Our method is similar to the method in [34], which es-
timate noise variance by minimizing the squared difference
of the two sides of Eq.(1), as:

min
κ,σ2

K∑
k=1

[
κ̃k − κ

(
σ̃2
k − σ2

σ̃2
k

)2
]2

. (5)

We would like to point out two important advantages of our
method over Eq.(5). First, the solution optimizing Eq.(5)
does not afford a closed-form, which has to be solved nu-
merically. This makes it inefficient to extend it to local noise
variance estimation for detecting image splicing [26]. We
also find that the numerical implementation of Eq.(5) some-
times becomes diverging for low noise variances, which are
reflected by the N/A entries in Table 1.

Furthermore, the kurtosis concentration does not exclude
the possibility of outlying kurtosis values that are signifi-
cantly different from their mean value across different band-
pass filtered channels (see Fig. 1). Such outliers have sig-
nificant effect on the squared loss between the two sides
of Eq.(1). On the other hand, if we denote the two sides
of Eq.(1) as a and b, we have (

√
a −
√
b)2 ≤ |a − b| for

any a, b ≥ 0. Since the objective function in Eq.(3) grows
slower than a l1 loss, which is more robust to outliers com-
pared with the l2 loss incorporated in Eq.(5), our method is
expected to be more robust in the presence of outliers.



PSNR
Kodak UCID Van Hateren

σ̃0 σ̂1 σ̃0 σ̂1 σ̃0 σ̂1

20dB
20.03 20.29 20.06 20.37 20.00 20.10
(0.12) (0.32) (0.21) (0.39) (0.04) (0.22)

25dB
25.04 25.38 25.19 25.55 25.00 25.12
(0.24) (0.55) (0.50) (0.76) (0.07) (0.33)

30dB
30.16 30.54 30.46 31.15 30.01 30.19
(0.53) (0.95) (1.16) (6.06) (0.17) (0.48)

40dB
41.08 N/A 41.71 N/A 40.46 43.24
(3.61) (N/A) (4.33) (N/A) (1.96) (17.68)

50dB
46.01 N/A 45.93 N/A 48.70 N/A
(4.82) (N/A) (5.80) (N/A) (3.70) (N/A)

Table 1. The average performance of our global noise variance
estimation method (σ̃0), with comparisons of the performance of
the work in [34] (σ̂1) on several different data sets. We show both
the mean and standard deviations (in parenthesis) of the estima-
tions. N/A entries correspond to cases when some running of the
estimator in [34] diverges.

3.2. Experimental Results

We test the performance of our global noise variance es-
timation method using three sets of grayscale images in un-
compressed PNG or TIFF formats:

1. 25 8-bit images from the Kodak database [10],
2. 200 8-bit images from the uncompressed image

database (UCID) [30],
3. 200 16-bit images from the Van Hateren database [32].

We choose images that have low intrinsic noise variances
and are taken under good illuminations. We then add
white Gaussian noise of different variances to these im-
ages with designated peak-signal-to-noise ratio (PSNR) to
accommodate the different dynamic ranges of these im-
ages. The PSNR, in unit of deci-Bell (dB), is defined as
20 log10

(
Imax
σ

)
, where Imax is the maximum pixel value of

the image, and σ is the standard deviation of the additive
white Gaussian noise. Table 1 summarizes the average per-
formance of our method, showing the mean and standard
deviation of the estimated noise variances in PSNR. We
compare the performance of our method with the state-of-
the-art work of [34]. Both sets of results are obtained based
on 63 channels from the AC filters in a 8 × 8 DCT decom-
position. Overall, these results indicate that our method
achieves more accurate estimations, in particular for low
noise variances (high PSNRs). One reason is the robustness
of our method to outliers of kurtosis. However, the differ-
ence in the estimations of the two methods reduces for low
PSNRs, with high noise overwhelming the image.

4. Local Noise Variance Estimation
The global noise variance estimation method assumes

that the noise variance σ2 is a constant across the image.
A more general scenario is for the noise variance to change

spatially. In this section, we extend the global noise vari-
ance estimator given in Eq.(4) to an efficient local noise
variance estimation method.

Specifically, our goal is to estimate noise variance
σ2(i, j) at each pixel location (i, j) using Eq.(4), with
statistics collected from all surrounding rectangular win-
dows of (i, j), Ωk(i,j), k = 1, · · ·K, in all band-pass filtered
channels. In doing so, we first express the variance and kur-
tosis using the raw (un-centered) moments, µm = Ex {xm},
as:

σ2 = µ2 − µ2
1

κ =
µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1

µ2
2 − 2µ2µ2

1 + µ4
1

− 3.
(6)

The raw moments are estimated for each local window by
spatial averaging,

µm

(
Ωk(i,j)

)
≈ 1

|Ωk(i,j)|
∑

(i′,j′)∈Ωk
(i,j)

x(i′, j′, k)m,

where we denote x(i′, j′, k) the response at (i′, j′) in the
kth band-pass filtered channel. A naive implementation, ap-
plying Eq.(6) and then Eq.(4) to each local window Ωk(i,j),
will lead to an overall running time ofO(MNK), whereN
and M are the sizes of the image and local window in pixel.
This will become inefficient when M is relatively large. On
the other hand, we can use integral image [33] to accelerate
the overall algorithm to a running time of O(NK).

Integral image is a dynamic programming technique for
efficient computation of sum values in rectangular regions
in an image (or one channel in a band-pass filtered domain).
In particular, each pixel in an integral image constructed
from an image x, I(x)i,j , corresponds to the sum of all pix-
els of x in [1, i]×[1, j]. Summation in any [i, i+I]×[j, j+J ]
in x can be evaluated with just three addition/subtraction
operations on the corresponding integral image, as:
I(x)i+I,j+J − I(x)i,j+J − I(x)i+I,j + I(x)i,j .

Furthermore, an integral image can be efficiently con-
structed in linear time of the dimension of x.

Using integral image, we can efficiently compute raw
moments in overlapping rectangular regions. Specifically,
denote ◦ as point-wise multiplication, themth order raw mo-
ment in [i, i+ I]× [j, j + J ] can be computed, as:

1

IJ

[
I(x ◦ · · · ◦ x︸ ︷︷ ︸

m times

)i+I,j+J − I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i,j+J

− I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i+I,j + I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i,j

]
.

(7)

The basic steps of our local noise variance estimation algo-
rithm are then summarized as:

1. Decompose the image into K band-pass filtered chan-
nels using AC filters from the DCT decomposition;



noise-corrupted images detection results

Figure 2. Local noise variance estimation for three different im-
ages with different additive white Gaussian noise patterns.

2. Compute the integral images of the first to the fourth
order raw moments in each of the K band-pass filtered
channels with Eq.(7);

3. Compute variance and kurtosis for each local window
in each band-pass filtered channel with Eq.(6);

4. Estimate noise variance by evaluating Eq.(4) for each
local window across all band-pass filtered channels.

4.1. Experimental Results

We test the local noise variance estimation method us-
ing a set of images corrupted with spatially varying white
Gaussian noise of certain patterns. The left column of Fig. 2
shows three examples of the synthesized images, the top im-
age was generated with horizontal stripes of white Gaussian
noise, each stripe with different noise variances – PSNR
ranging from 13dB at the bottom to 20dB2 at the top with
1dB increment. The middle and bottom images were cre-
ated by adding white Gaussian noise of PSNR 20dB, of
an annular and a checkerboard structure, respectively. The
right column of Fig. 2 shows the estimated local noise vari-
ances of the corresponding images using our method, with
the intensities proportional to the estimated standard devia-
tions. These results were obtained based on 63 8 × 8 DCT
AC filters, with overlapping sliding windows of 32 × 32
pixels in each channel.

These results show that our method is very effective in
revealing the spatially varying noise variances in these im-
ages. On the other hand, note that different local noise

2We pick high noise variance so that noise will be visible in Fig. 2.

forged images detection
Figure 3. Detection results of our method for three forged images
with image splicing from the Columbia uncompressed image splic-
ing detection evaluation dataset [13]. See text for details.

variances intrinsic to the original image are also detected,
which are most clearly visible for the middle image that
has extensive smooth regions (e.g., sky) and textures (e.g.,
trees). This potentially can cause false detections when this
method is used for splicing detection (see Discussion).

5. Image Splicing Detection
One important application of our local noise variance es-

timation algorithm is to detect image splicing. As most dig-
ital images contain intrinsic noise, an un-tampered natural
image is expected to have similar noise variances across dif-
ferent locations. However, for a forged image with regions
from other images, the spliced region can be exposed with
the inconsistency in local image noise variances.

We further process the estimated local noise variances
by segmenting the image into regions with significantly dif-
ferent noise variances. While more sophisticated image seg-
mentation algorithms can be used, we find that the simple k-
means algorithm usually achieves satisfactory performance.
We then perform post-processing steps on the detected re-
gions: first we use an area threshold to remove small iso-
lated regions, then we use mathematical morphological op-
erations to smooth and connect the detected regions.

We test this algorithm on two sets of forged images cre-
ated with image splicing. The first experiment is based on
a set of 180 forged images obtained from the Columbia



forged images detection
Figure 4. Detection results of our method for a set of image splic-
ing image forgeries from Worth1000.com. See text for details.

uncompressed image splicing detection evaluation dataset
[13], which are in high resolution and uncompressed. The
original images providing the spliced regions are taken with
different camera models. Three examples of the forged im-
ages, together with their detection results, are shown in Fig.
3. As these results show, local noise variances provide re-
liable information for differentiating spliced regions from
those in the original images.

We further test our splicing detection method on a sec-
ond set of forged images created with image splicing and
collected from 50 candidates of the image manipulation
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Figure 5. ROC curves of detection accuracy v.s. false positive rates
for (left) different noise variances and (right) different sizes of the
spliced region in percentage of the size of the original image.

contest on Worth1000.com. Shown in Fig. 4 are several
randomly chosen examples of the forged images in this data
set and their detection results using our method. Note that
these forgeries are carefully manipulated and processed and
have realistic appearance, many can only be exposed based
on conceptual knowledge of the physical world (e.g., hip-
popotamus is unlikely to be found in arctic regions). On the
other hand, detections based on our method are effective in
revealing spliced regions using only low level image statis-
tics, albeit occasional false detections or mis-detections also
occur (see Discussion).

5.1. Quantitative Evaluation and Robustness

We further perform a quantitative evaluation of the per-
formance of our image splicing detection. In particular,
100 images were chosen from the UCID database [30]. For
each image, we added white Gaussian noise to a randomly
chosen rectangular region to simulate a spliced region with
different noise variance. We quantify the detection accu-
racy with the fraction of pixels in tampered regions that are
correctly identified, and define the false positive rate as the
fraction of pixels in un-tampered regions that are detected
as tampered ones.

All results are based on 63 AC channels from 8×8 DCT
decomposition with a fixed local window size. We use the
receiver-operator characteristics (ROC) curve as a compre-
hensive evaluation of the detection accuracy and false posi-
tive rates shown in Fig. 5. Performance levels on each ROC
curve are obtained by adjusting the segmentation threshold
of local noise variances. The reported ROC curves are re-
sults of averaging over 100 forged images.

The first panel in Fig. 5 corresponds to ROC curves for
a fixed size of the spliced region (16% of the original im-
age) and with different noise levels. We measure the added
noise strength with the local signal-to-noise ratio defined
as log10

(
σ2
0+σ2

σ2

)
, where σ0 and σ correspond to the vari-

ances of the spliced region in the original image (estimated
with the noise variance estimation method of Section 3) and
the added noise, respectively. The second panel in Fig. 5
shows ROC curves for a fixed noise variance corresponding

Worth1000.com
Worth1000.com


our method method in [22] method in [26]
image A 47 83 490
image B 38 53 333

Table 2. Running time (in seconds) comparison of noise-based
splicing detection methods based on the two images in Fig. 6.

to local SNR of 20dB and with different sizes of the spliced
regions in the percentage of the size of the original images.

These results show that the overall detection accuracies
for higher noise variances or larger regions are better. How-
ever, for low noise variances and smaller regions, higher
detection accuracy usually suggests higher false detections,
which can be attributed to the fact that natural images may
have different local noise variances due to the co-existence
of texture and smooth regions (see Section 4.1).

5.2. Comparison with Related Works

Next, we compare our method’s performance in splic-
ing detection with that of the previous methods. To make
the results impartial, we do not compare with methods that
only detect the occurrence of splicing without localizing the
spliced regions, e.g., [1, 11, 24]. Furthermore, we exclude
comparison with methods that are only tested on individ-
ual pixel blocks picked by the user, without comparable re-
sults showing the locations of detected spliced regions, e.g.,
[13, 17].

We first compare our method with two other recent
noise-based splicing detection methods [22, 26]3. The for-
mer is based on the maximum absolute deviation (MAD)
estimator of local noise variances in the high-pass band ob-
tained with an orthogonal wavelet decomposition, while the
latter directly applies the global noise variance estimation
method in [34] to local noise variance estimation. Both
methods examine only non-overlapping blocks (40×40 and
64 × 64, respectively) to balance performance and running
time (see Table 2).

We compare the performances of these methods with
our method based on two tampered images created using
Adobe Photoshop with spliced regions. The top three
rows of Fig. 6 show the original images contributing the
background, the original images contributing the spliced
regions, and the tampered images, respectively. The orig-
inal images used in making the forgeries are obtained from
Flickr.com: the first original image in the top row was
taken with a Canon 400D digital camera with an ISO speed
1600, while the source camera for the second original image
in the top row is unknown. The two original images in the
second row were taken with a Canon EOS-60D digital cam-
era with an ISO speed 1600 and a SONY DSC-H20 digital

3We did not compare with the remaining noise-based splicing detection
method in [28] because it requires user to select a region with less noise to
determine kurtosis of the original image, and thus cannot be implemented
as an automatic detection method.

(a)

(b)

(c)

(d)

(e)

(f)

image A (3000× 2000) image B (2600× 1940)

Figure 6. (a,b) Two pairs of original JPEG images from Flickr.
com. (c) Forgeries generated with image splicing using the orig-
inal images with Adobe Photoshop. Image courtesy of au-
thors of [26]. (d) Splicing detection results using our method. (e)
Splicing detection results using the method in [26]. (f) Splicing
detection results using the method in [22].

camera with an ISO speed 400, respectively. The different
sensor types and ISO speeds in these images lead to differ-
ent noise variances, even though the actual sensor noise is
usually non-Gaussian and not simply additive [18].

Comparisons in detection accuracy and running time are

Flickr.com
Flickr.com
Flickr.com


tampered image our method method of [16]

Figure 7. Comparison of splicing detection results of our method
with the method in [16]. Image courtesy of authors of [16].

shown in the last three rows of Fig. 6 and Table 2, respec-
tively. These results are obtained based on running the three
algorithms with unoptimized MATLAB code and a machine
with a 2.4GHz Intel CPU and 2GB RAM. For our method,
we use the same setting as described in Section 5.1. For
the two comparable methods, the settings were identical as
given in each paper. Though all three methods seem to lo-
cate the spliced region, our method provides a higher level
of accuracy because the region is determined to the level of
pixels. Furthermore, Table 2 shows that our method is rela-
tively more efficient than the two other alternatives in terms
of running time.

We further compare the performance of our method with
the splicing detection method based on locating the double
JPEG artifacts due to the tampering process [16]. The re-
sults on two example images are shown in Fig. 7. Both
methods seem to be able to identify similar tampered re-
gions, but our method is not able to detect the entire tam-
pered regions in these two images. One cause of this is that
the example images are heavily JPEG compressed, which
smoothes the image and destroys most of the noise char-
acteristics, and hence the difference in noise variances be-
tween the original images and the spliced regions. On the
other hand, the method of [16] only detects to the level of
8 × 8 JPEG blocks, while our method can provide more
accurate demarcation of the spliced region.

In addition, we would like to point out that for the
method of [16] to be effective, we have to ensure that (1)
the tampered image must be in JPEG format, (2) the im-
age contributing the background must be in JPEG format
and must have a different quality factor from the tampered
image, and (3) the spliced region has to exhibit no double
JPEG artifact [16]. These limitations affect the applicabil-
ity of the JPEG based detection methods, for instance, they
cannot be applied to tampered images in uncompressed for-

mat, or generated from original images of uncompressed
format, so even obvious spliced regions in simple examples
as shown in Fig. 3 will not be detected using this method4.
On the other hand, our method has relatively fewer restric-
tive assumptions and can be applied in a wider range of de-
tection situations.

6. Discussion
In this work, based on the kurtosis concentration prop-

erty of natural images in band-pass filtered domains, we de-
scribe an effective method for estimating image noise vari-
ance. Our method is further extended to an efficient method
for the estimation of local noise variances, which is applied
to the detection and locating of spliced regions for digital
image forensics.

Though we have demonstrated some satisfactory detec-
tion performances, we are also aware of some limitations of
our method. First, our method relies on the assumption that
the spliced region and the original image have different in-
trinsic noise variances. Therefore, wherever their difference
in noise variances is not significant, our method may fail to
locate the spliced region. One case in point is when the
tampered image underwent heavy JPEG compression. Fur-
thermore, we assume that the intrinsic noise variances are
similar across different pixel locations within the original
image. This may not hold for images with distinct texture
and smooth regions (e.g., a tree in the background of sky),
or those with large regions of saturated pixels. Such inho-
mogeneous local noise variance can cause our method to
make false detections.

There are several important directions that we would like
to further extend the current work. One solution to reduce
false detections is to estimate the full second-order corre-
lations among local pixels. As noise typically has much
weaker inter-pixel correlations compared to textures in im-
ages, this can further help our method to differentiate image
structures from random noise of various forms. Second, we
would also like to further extend our method for the detec-
tion of video splicing by identifying significant difference in
spatial-temporal local noise variances. Last, we would also
like to apply our local noise variance estimation method to
the removal of spatially varying sensor noise to improve the
visual quality of digital images.
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Appendix A. Derivation of Eq.(1)
In this appendix, we derive the general relationship be-

tween kurtosis and variance in noise corrupted signals.
First, with signal x and white Gaussian noise z of zero mean
and variance σ2, we denote y = x+z as the noise corrupted
signal. Assuming independence of z to x and the additivity
of the fourth order cumulants (computed as µ4 − 3σ4) of
independent random variables [8], we have

µ4(y)− 3σ4(y) = µ4(x)− 3σ4(x) + µ4(z)− 3σ4(z)

σ2(y) = σ2(x) + σ2(z).

Further, because z is a Gaussian variable, we have µ4(z) =
3σ4(z). Expressing the fourth central moment as µ4 = (κ+
3)σ4, we have

(κ(y) + 3)σ4(y)− 3σ4(y)

= (κ(x) + 3)(σ2(y)− σ2(z))2 − 3(σ2(y)− σ2(z))2.

Rearranging the terms yields Eq.(1).

Appendix B. Derivation of Eq.(4)
First we expand the objective function in (1) as

L
(√
κ, σ2

)
=

K∑
k=1

(√
κ̃k −

√
κ+

√
κσ2

σ̃2
k

)2

,

The gradient of L
(√
κ, σ2

)
with regards to the two param-

eters are computed as, as:

∂L

∂σ2
= 2

K∑
k=1

(√
κ̃k −

√
κ+

√
κσ2

σ̃2
k

) √
κ

σ̃2
k

. (8)

∂L

∂
√
κ

= 2

K∑
k=1

(√
κ̃k −

√
κ+

√
κσ2

σ̃2
k

)(
σ2

σ̃2
k

− 1

)
(9)

Setting Eq.(8) to zero, and considering
√
κ > 0, we have

K∑
k=1

1

σ̃2
k

(√
κ̃k −

√
κ+

√
κσ2

σ̃2
k

)
= 0, (10)

Setting Eq.(9) to zero and substituting with Eq.(10) yield
K∑
k=1

(√
κ̃k −

√
κ+

√
κσ2

σ̃2
k

)
= 0,

from which we can obtain

σ2 =
1

1
K

∑K
k=1

1
σ̃2
k

− 1√
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1
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. (11)

Next, substituting Eq.(11) back into Eq.(10), we have

√
κ

 1
1
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∑K
k=1

1
σ̃2
k
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κ
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k

 K∑
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1
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k)2

+
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k=1

√
κ̃k
σ̃2
k

−
√
κ

K∑
k=1

1

σ̃2
k

= 0.

(12)

Further arranging terms and replacing average over dif-
ferent channels with 〈·〉k yield Eq.(4). Further checking
the second-order conditions ensures that the solution is the
unique global minimizer of Eq.(1).
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