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ABSTRACT

Vignetting is the phenomenon of reduced brightness in an im-
age at the peripheral region compared to the central region.
In this paper, we describe a new method for model based sin-
gle image vignetting correction. We use the statistical prop-
erties of natural images in the discrete derivative domains
and formulate the vignetting correction problem as a maxi-
mum likelihood estimation. We further provide a simple and
efficient procedure for better initialization of the numerical
optimization. Empirical evaluations of the proposed method
using synthesized and real vignetted images show significant
gain in both performance and running efficiency.

1. INTRODUCTION

Due to the design of camera lenses, volume of light transmit-
ted to the image sensor tends to decrease somewhat from the
center of the image to the corners, and such a phenomenon
is known as vignetting [8]. Vignetting is also intentionally
added, by burning the outer edges of the photograph for film
stock or using digital imaging techniques such as the Lens
Correction filter in Photoshop, to achieve certain creative
effects or to draw attention to the main subject. However,
there are many situations in photography such as wide-angle
landscapes where vignetting is unwanted. The attenuation of
brightness in a vignetted image is also undesirable for com-
puter vision algorithms where accurate intensity values are
needed. On the other hand, the specific way a camera lens
causes vignetting can provide useful ballistic information for
its identification, and is useful for forensic analysis [1].

In this paper, we describe a new method for model based
single image vignetting correction, which aims to factorize a
vignetted image into the product of the original image and
a spatially varying vignetting function, using only one ob-
served vignetted image and a parametric model of the vi-
gnetting function. This is an ill-posed problem, as many dif-
ferent combinations of the original image and the vignetting
function can produce the same observed vignetted image. To
obtain a reasonable solution, we use statistical properties of
natural photographic images that do not have vignetting ef-

fects. Specifically, using marginal distributions of the mean
responses of natural images in the derivative domains, we for-
mulate the vignetting correction problem as a maximum like-
lihood estimation. Compared to the existing works on sin-
gle image vignetting correction [13, 14], the proposed work
has the following important properties: (i) our method does
not require the vignetting function to be centered at the im-
age center — it estimates the center from the vignetted image
as part of the procedure. (ii) Our method handles elliptical
vignetting functions. (iii) We use maximum likelihood esti-
mation based on a robust statistical model for natural images,
which leads to a simpler optimization procedure. Empirical
evaluations of the proposed method using both synthesized
and real vignetted images show significant gain in both per-
formance and running efficiency.

2. RELATED WORK

Correcting vignetting is easy if the vignetting function is
known. For high-end single lens reflex digital cameras, such
information can be stored on chip for stock lenses and used
to correct vignetting after an image is captured, an example is
the Peripheral Illumination Correction function in the recent
Cannon EOS 50D cameras. If the vignetting parameters are
not directly accessible, they can still be obtained by camera
calibration with an image of uniform brightness, e.g., [5, 12].
If the camera is not at our disposal, the vignetting function
can be estimated using a sequence of images of a static scene
captured by the same camera and lens [3, 4, 6].

The most challenging case for vignetting correction, how-
ever, is when we only have a single vignetted image and no
specific information about the camera and lens. A single
image vignetting correction method was described in [13],
where the vignetted image is first segmented into texture and
non-texture regions, and the vignetting function is estimated
from the non-texture regions with a robust outlier exclusion.
However, the requirement of image segmentation makes this
algorithm slow and segmentation errors affect the final correc-
tion result. An improved method was described in [14] based
on the empirically observed symmetry in the distributions of



directional derivatives. As no segmentation is required, this
method achieves improvement in both performance and run-
ning time. On the other hand, both methods assume that (1)
the center of the vignetting function is fixed at the image cen-
ter, and (2) the shape of the vignetting function is circular.
Thus they are not able to deal with vignetted images cropped
off-center or from elliptical vignetting functions.

3. SINGLE IMAGE VIGNETTING CORRECTION

Let us introduce some notations and the basic setting of the
vignetting correction problem. First, we assume that a vi-
gnetted image I,(x,y) is the product of the original image
I(x,y) and the vignetting function ¢(v; 0), I,(v) = I(V)p(v; 6),
where v = (x,y)7 is the vector of pixel locations, with the
origin of the image coordinate system being the image center,
and 6 concisely denote all parameters of ¢. Taking logarithm
on both sides, this is equivalent to

i,(v) = i(v) + log A(v) + log G(v), 1

with i(v) and i,(v) standing for log I(v) and log I,(v), respec-
tively. The goal of model based single image vignetting cor-
rection is to obtain parameters in the vignetting function, 6,
and recover the original image /(v), using only a single ob-
served vignetted image 1,(v). For the vignetting function, we
adopt a generalization of the Kang-Weiss vignetting model
[5], which allows for elliptical shapes for the vignetting func-
tions, as

$(v; 60) = A(v; ¢, PIG(V; il ). 2)

For conciseness, we will use A(v) and G(v) instead to denote
these functions subsequently. A(v) is the illumination factor
and is defined as A(v) = 1/(1 + r*/2)?, where

r= \/(v—c)TP(V—c),c=(C'),P:( prp2 )
(&) i

P2 D3

are the Mahalanobis distance to the center, the center and the
shape matrix of the vignetting function, respectively. The ef-
fective focal length f of the vignetting function is implicit in
the shape matrix P, and for a circular vignetting function, one
has p; = ps = 1/f% and p> = 0. G(v) is the geometric fac-
tor of the vignetting function and we use a polynomial of r as
1- Y%, i, fork = 5 asin [14].

We solve the vignetting correction problem by transform-
ing Eq.(1) into the discrete derivative domains. We use D/, to
denote discrete derivative operators used in this work, where
t € {x,y,xx,xy,yy} signifies the type of derivative, and A
gives the step size in computing such derivatives. Specif-
ically, we use first order derivative operators: Dil(x,y) =
I(x+ A,y) = I(x,y), D\I(x,y) = I(x,y + A) — I(x, ), and sec-
ond order derivative operators:

D I(x,y) = I(x+ A, y) + I(x — A, y) = 2I(x, y), D‘A’)'I(x, y) =
I(x,y+ A)+ I(x,y — A) — 2I(x,y), and
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Fig. 1: Log marginal histograms (green solid curves) for different

D\i(v) and A obtained with randomly chosen blocks from the van
Hateren database [11]. Red and black dashed curves correspond to
Gaussian densities of the same mean and variance, and the optimally
fitted generalized Laplacian densities, respectively.

DiI(x,y) = I(x+ A,y + A) = I(x,y + A)=I(x + A, y) = I(x,y).
When applied to an image, these discrete derivative operators
can be efficiently implemented as convolution of the image
with appropriate filters'. Conceptually, the discrete differen-
tial operators, after normalizing with the step size, implement
the corresponding continuous differential operators on tge

. . . . 1
discrete pixel lattice. For instance 1D, corresponds to -,

1 pax i
and ;D" corresponds to 7.

Applying the discrete derivative operators to both sides
of Eq.(1), we have, D}i,(v) = Dji(v) + D}logA(v) +
D/ log G(v). We then average both sides over all pixel lo-
cations v to obtain

D}i,(v) = D}i(v) + D, log A(v) + D}, log G(v). ~ (3)

Note that D/, i,(v) can be obtained from the observed vignetted

image, D} log A(v) and D} log G(v) can be computed from
the generalized Kang-Weiss vignetting function for a given
parameter setting 6. Eq.(3) suggests that from these terms,
we are able to compute D}i(v) = D}i(v) — D) logA(v) —
D/ log G(v). In general, term —D’, log A(v) — D, log G(v) in-
troduces statistical deviations to Di,(v) from D/ i(v) unless
the correct parameters for the vignetting function are cho-
sen. As D7 i(v) reflects properties of the original image with-
out vignetting, we can seek vignetting function parameters 6
that make D/ i,(v) — D/ log A(v) — D/, log G(v) consistent with
D, i(v) for natural images.

IThough more elaborated filters such as those in [2] can be employed, we
found the results are quite independent of the choice of filters.



3.1. Natural Image Statistics in Derivative Domains

Images resembling scenes from the physical world are loosely
tagged as natural images, and are known to occupy only a
small fraction of all possible images [9]. To solve the vi-
gnetting correction problem in Eq.(3), we need to investigate
the statistical properties of the average derivative domain

responses of natural images D’Ai(v). We collect 20, 000 ran-
domly chosen pixel blocks of size 200 x 200 from images
in the Van Hateren calibrated image database [11]. These
grayscale images are obtained from calibrated cameras with
no obvious vignetting effects and linearized intensities. We
first log transform the pixel intensity, then apply the dis-
crete derivative operators to the log pixel intensities of each
image block. We then collect the mean discrete derivative
domain response for each of the 20,000 blocks and obtain
their histograms. These histograms are shown in the log do-
main in Figure 1 (green solid curves) for different D’Ai(v) and
A values (columns). For the sake of comparison, Gaussian
densities with the same means and variances are shown as
red dashed curves. Also shown as black dashed curves in
each plot are the optimal fitting (using the method of mo-
ment matching [10]) of the generalized Laplacian density to
these histograms. From this experiment, we note that the
histograms of the mean responses of natural images in the
discrete derivative domain, similar to those of the raw deriva-
tive domain responses, have means close to zero and show
strong non-Gaussian characteristics. Furthermore, they can
also be well approximated with generalize Laplacian models.

3.2. Vignetting Correction as Maximum Likelihood

Due to the vignetting effect, the statistical properties of the vi-
gnetted image in the derivative domains are different from the
original image, especially, the vignetting function introduces
a bias in Eq.(3). We model the marginal densities of the mean
responses of original natural images in the derivative domains
with generalized Laplacians, p,a(x) o« exp (— |x/7,,A 'ﬂ"A ),
with parameters 5, o and y,.a estimated from the Van Hateren
imagebase as described in Section 3.1 for each r and A.
We then reformulate the vignetting correction as estimating
parameter 6 to maximize the joint (log) likelihood of D} i(v)
with regards to different r and A. In detail, dropping irrelevant
constants, we find parameter 6 that minimizes:

Z‘{Dgiv(v) — D} log A(v) — D/, log G(v)] " .
A Yr.A

with a constraint to ensure the shape matrix P to be positive
definite, i.e., p1p3 > p%.

Compared to the objective function used in [14] that is
based on the symmetry of directional derivatives, Eq.(4) is
simpler and justified with a more comprehensive description
of image statistics in the form of a statistical model. Opti-
mization of Eq.(4) is implemented with coordinate descent,

Fig. 2: Examples of restoring synthetic vignetted images. Left: vi-
gnetted image. Right: restored image.

by alternating between steps that optimizes {a/i}f:l with ¢ and
P fixed and that optimizes ¢ and P with {ai}f.‘:l fixed. Such
a procedure guarantees to converge to a local minimum of
Eq.(4), and each optimization step is implemented with gra-
dient based numerical methods.

4. EXPERIMENTS

We evaluate the performance and running efficiency of the
proposed model based single image vignetting correction
method. In the first set of experiments, we select 20 RGB
JPEG images of 320 x 480 pixels from the Berkeley image
segmentation database [7] that do not have obvious vignetting
effects. We apply synthesized vignetting function to these
images, and then use the method described in this work to
recover the vignetting functions and the original image. As
in this case, we have ground truth for both the vignetting
functions and the original images, these experiments give
us a chance to quantitatively evaluate the performance and
running efficiency of the proposed method. The synthesized
vignetting functions are created using the generalized Kang-
Weiss model, Eq.(1) with several settings for the centers and
shape matrices. We use the same set of (ay,- - ,as) for the
geometric component G(v).

We apply these synthetic vignetting functions to the 20
test images, where the same vignetting function is applied
to each RGB color channel individually. We evaluate vi-
gnetting correction performance using signal-to-noise ratio
(SNR) with unit in dB (the higher the better), and use relative
errors to quantify the estimated vignetting function parame-
ters. Specifically, for P we use ||P* — P||r/||P||r, where || - ||F
is the Frobenius norm, and for ¢ and {ai}fle , we use the ratio of
I, error of the estimation and the /; norm of the actual param-
eter values. We report the performance and running efficiency
corresponding to the three vignetting functions and averaged

SNR | error | error | error | time
(dB) | P(%) | ¢(%) | a (%) | (sec)
24.4 8.9 16.3 7.8 76.4

Table 1: Performance and running efficiency of the proposed algo-
rithm. See text for details.
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Fig. 3: Examples from the Berkeley database with strong vignetting
effects (left) and their corrections with our method (right).

over all 20 test images in Table 1. These results are based on
an unoptimized implementation of the algorithm with MAT-
LAB on a MacBook Pro laptop with due core Intel processor
of 2.6GHz and 2G memory. Figure 2 shows several examples
of the restored image. As these show, the vignetting effect has
been largely removed from the restored images.

In the second set of experiments, we apply our method to
some physically vignetted images. We choose several images
from the Berkeley database with strong vignetting effects, and
the correction results are shown in Fig.3. As these results
show, in most of the cases our method can successfully re-
move the vignetting effect, and the result is comparable with
that uses information of the source camera and lens. We ob-
served that its ability to estimate the vignetting center is par-
ticularly important for performance for test images that have
been cropped off-center. On the other hand, restored images
with our method tend to be over-exposed closed to the image
boundary. This is especially severe for images with complex
texture regions (e.g.,middle panel of Fig.3).

5. CONCLUSION

We have presented a new model based single image vignetting
correction method using the regular statistical properties of
natural images. We start by log transforming the vignetted
image and then working in the discrete derivative domains.
Based on properties of the mean discrete derivative responses
of natural images with no vignetting effect, we reformulate vi-
gnetting correction as maximum likelihood estimation of the
vignetting function parameters. Compared to previous sin-
gle image vignetting correction methods [13, 14], our method
does not require image segmentation or the vignetting func-

tion to be centered at the image center, and it also works
when the vignetting function has an elliptical shape. Empiri-
cal evaluations of the proposed method using synthesized and
real vignetted images show significant gain in both perfor-
mance and running efficiency. On the other hand, our method
uses parametric model for the vignetting function and we are
working to extend this methodology to nonparametric estima-
tion. Also, as the vignetting function are specific for different
lenses, we are currently investigating if we can use the esti-
mated vignetting functions to identify stock lenses.
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