
TRANSFERABLE ADVERSARIAL EXAMPLES FOR ANCHOR FREE OBJECT DETECTION

Quanyu Liao1, Xin Wang2† , Bin Kong2, Siwei Lyu3, Bin Zhu4, Youbing Yin2, Qi Song2, Xi Wu1†

1 Chengdu University of Information Technology, Chengdu, China
2 Keya Medical, Seattle, USA

3 University at Buffalo, State University of New York, USA
4 Microsoft Research Asia, Beijing, China

ABSTRACT

Deep neural networks have been demonstrated to be vulnera-
ble to adversarial attacks: subtle perturbations can completely
change prediction results. The vulnerability has led to a surge
of research in this direction, including adversarial attacks on
object detection networks. However, previous works are ded-
icated to attacking anchor-based object detection models. In
this work, we present the first adversarial attack on anchor-
free object detection models. It conducts category-wise, in-
stead of previously instance-wise, attacks on object detectors,
and leverages high-level semantic information to efficiently
generate transferable adversarial examples, which can also be
transferred to attack other object detectors, even anchor-based
detectors such as Faster R-CNN. Experimental results on two
benchmark datasets demonstrate that our method achieves the
state-of-the-art performance and transferability.

Index Terms— Category-wise attacks, adversarial at-
tacks, object detection, anchor-free object detection

1. INTRODUCTION

The development of deep neural network has significantly im-
proved the performance of many computer vision tasks. How-
ever, many recent works show that deep-learning-based algo-
rithms are vulnerable to adversarial attacks [1, 2, 3, 4, 5]. The
vulnerability of deep networks is observed in many different
problems [6, 7], including object detection, one of the most
fundamental tasks in computer vision.

Regarding the investigation of the vulnerability of deep
models in object detection, previous efforts mainly focus on
classical anchor-based networks such as Faster-RCNN [8].
However, the performance of these anchor-based networks is
limited by the choice of anchor boxes. Fewer anchors lead
to faster speed but lower accuracy. Thus, advanced anchor-
free models such as CornerNet [9] and CenterNet [10] are be-
coming increasingly popular, achieving competitive accuracy
with traditional anchor-based models yet with faster speed

† Corresponding authors: Xin Wang (xinw@keyamedna.com), Xi Wu
(xi.wu@cuit.edu.cn).

Overall Heatmap

Traffic LightPerson Car Stop SignTruck

Fig. 1. First row: The detected results (left) and the proposals
(right) of Faster R-CNN [8]. Second row: The detected results (left)
and the overall heatmap (right) of CenterNet [10]. Third row: Se-
lected target pixels (red) for each category by our method.

and stronger adaptability. However, to the best of our knowl-
edge, there is no published work on investigating the vulner-
ability of anchor-free networks.

Previous work DAG [11] implements high level white box
attack on the FasterRCNN, but DAG is hardly to complete an
effective black-box attack. DAG also has the disadvantages
of high time-consuming, these two shortcomings make DAG
difficult to be used in real scenes. These two shortcomings of
DAG principally because DAG only attacks one proposal in
each attack iteration. It will make the generated adversarial
perturbation only effective for one proposal, which leads to
bad transferring attack performance and consumes an amount
of iterations to attack all objects.

Meanwhile, attack an anchor-based detector is unlike to
attack an anchor-free detector, which select top proposals
from a set of anchors for the objects, anchor-free object de-
tectors detect objects by finding objects’ keypoints via the
heatmap mechanism (see Fig. 1), using them to generate cor-
responding bounding boxes, and selecting the most probable
keypoints to generate final detection results. This process
is completely different from anchor-based detectors, mak-
ing anchor-based adversarial attacks unable to directly attack

978-1-6654-3864-3/21/$31.00 ©2021 IEEE



anchor-free detectors.
To solve above two problems, we propose a novel algo-

rithm, Category-wise Attack (CW-Attack), to attack anchor-
free object detectors. It attacks all instances in a category
simultaneously by attacking a set of target pixels in an image,
as shown in Fig. 1. The target pixel set includes not only all
detected pixels, which are highly informative pixels as they
contain higher-level semantic information of the objects, but
also “runner-up locations pixels” that have a high probability
to become rightly detected pixels under small perturbations.
Our approach guarantees success of adversarial attacks. Our
CW-Attack is formulated as a general framework that mini-
mizes Lp of perturbations, where Lp can be L0, L1, L2, L∞,
etc., to flexibly generate different types of perturbations, such
as dense or sparse perturbations. Our experimental results
on two benchmark datasets [12, 13], show that our method
outperforms previous state-of-the-art methods and generates
robust adversarial examples with superior transferability.

Our CW-Attack disables object detection by driving fea-
ture pixels of objects into wrong categories. This behavior is
similar to but the essence is completely different from attack-
ing semantic segmentation approaches [11]. First, they have
different targets to optimize: the goal is to change the cate-
gory of an object’s bounding box in our attack and a detected
pixel’s category in attacking semantic segmentation. Second,
they have different relationships to attack success: once pix-
els have changed their categories, the attack is successful for
attacking semantic segmentation but not yet for our attack. As
we will see in Fig. 3, objects can still be detected even when
all heatmap pixels have been driven into wrong categories.

This paper has the following major contributions: (i) We
propose the first adversarial attack on anchor-free object de-
tection. It attacks all objects in a category simultaneously
instead of only one object at a time, which avoids perturba-
tion over-fitting on one object and increases transferability of
generated perturbations. (ii) Our CW-Attack is designed as a
general Lp norm optimization framework. When minimizing
perturbation’s L0 norm (see Sec. 2), it generates sparse adver-
sarial samples by only modifying less than 1% pixels. While
minimizing its L∞ norm (detail in supplement materials), it
can attack all objects of all categories simultaneously, which
further improves the attacking efficiency. (iii) Our method
generates more transferable and robust adversarial examples
than previous attacks. It achieves the state-of-the-art attack
performance for both white-box and black-box attacks on two
public benchmark datasets, MS-COCO and PascalVOC.

2. OUR CATEGORY-WISE ATTACK

In this section, we first define the optimization problem of
attacking anchor-free detectors and then provide a detailed
description of our Category-Wise Attack (CW-Attack).
Problem Formulation. Suppose there exist k object cate-
gories, {C1, C2, ..., Ck}, with detected object instances. We

C
h

ai
r

Target Pixel Selection

Attack 

result

C
en

te
rN

et

…

Attack 

Success?

False

True

P
er

so
n

T
ab

le

Detection Result

Heatmap SCA/DCA

Attack

P
er

tu
rb

at
io

n

SCA

DCA

Fig. 2. CW-Attack overview. Target pixel sets {S1, S2, ..., Sk} are
first extracted from the heatmap for all object categories. SCA or
DCA is then used to generates perturbations, depending on mini-
mizing perturbation’s L0 or L∞ norm. Finally, we check whether
the attack is successful. If not, a new perturbation is generated from
the current adversarial example in the next iteration.

use Starget to denote the target pixel set of category Ctarget
whose detected object instances will be attacked, leading to
k target pixel sets: {S1, S2, ..., Sk}. The category-wise at-
tack for anchor-free detectors is formulated as the following
constrained optimization problem:

minimize
r

‖r‖p

s.t. ∀k, s ∈ Starget ∈ {S1, S2, ..., Sk}
argmaxn{fn(x+ r, s)} 6= Ctarget

(1)

where r is an adversarial perturbation, ‖·‖p is the Lp norm,
p ∈ {0, 1, 2,∞}, x is a clean input image, x+r is an adversar-
ial example, f(x + r, s) is the classification score vector (lo-
gistic) and fn(x + r, s) is its nth value, argmaxn{fn(x +
r, s)}) denotes the predicted object category on a target pixel
s ∈ Starget of adversarial example x+ r.

The overview of the proposed CA-Attack is shown in Fig.
2. In the following description of our method, we assume the
task is a non-target multi-class attack. If the task is a target
attack, our method can be described in a similar manner.
Category-wise Target Pixel Set Selection. In solving our
optimization problem (1), it is natural to use all detected
pixels of category Ctarget as target pixel set Starget. The
detected pixels are selected from the heatmap of category
Ctarget generated by an anchor-free detector such as Center-
Net [10] with their probability scores higher than the detec-
tor’s preset visual threshold and being detected as right ob-
jects. Unfortunately, it does not work. After attacking all de-
tected pixels into wrong categories, we expect that the detec-
tor should not detect any correct object, yet our experiments
with CenterNet turn out that it still can.

Further investigation reveals two explanations: (1) Neigh-
boring background pixels of the heatmap not attacked can be-
come detected pixels with the correct category. Since their
detected box is close to the old detected object, CenterNet
can still detect the object even though all the previously de-
tected pixels are detected into wrong categories. An example

2



After

Attack

Previous 

Detected Object

New Detected 

Object

After

Attack

(a) (b)Previous 

Detected Object

New Detected 

Objects

Fig. 3. Blue points denote originally detected keypoints before the
attack. Red points denote newly detected keypoint after the attack.
(a)-Left & (b)-Left: A detected object and a detected keypoint at
the center of the person. (a)-Right: Result of attacking only de-
tected pixels. After attacking all detected pixels, a neighboring pixel
of the previously detected keypoint is detected as the correct object
during the attack. (b)-Right: Result of attacking only detected pix-
els. After attacking all detected pixels, the centers of the top half and
the bottom half of the person appear as newly detected keypoints still
detected as a person. mAP is barely reduced in both cases.

is shown in Fig. 3-(a). (2) CenterNet regards center pixels of
an object as keypoints. After attacking detected pixels located
around the center of an object, newly detected pixels may ap-
pear in other positions of the object, making the detector still
be able to detect multiple local parts of the correct object with
barely reduced mAP. An example is shown in Fig. 3-(b).

Pixels that can produce one of the above two changes are
referred to as runner-up locations pixels. We find that al-
most all runner-up locations pixels have a common character-
istic: their probability scores are only a little below the visual
threshold. Based on this characteristic, our category-wise at-
tack sets an attacking threshold, tattack, lower than the visual
threshold, and then selects all the pixels from the heatmap
whose probability score is above tattack into Sk. This makes
Sk include all detected pixels and runner-up locations pixels.
Perturbations generated in this way can also improve robust-
ness and transferable attacking performance.
Sparse Category-wise Attack. The goal of the sparse attack
is to fool the detector while perturbing a minimum number of
pixels in the input image. It is equivalent to setting p = 0
in our optimization problem (1) i.e. minimizing ‖r‖0 accord-
ing to Starget. Unfortunately, this is an NP-hard problem.
To solve this problem, SparseFool [14] relaxes this NP-hard
problem by iteratively approximating the classifier as a local
linear function in generating sparse adversarial perturbations
for image classification.

Motivated by the success of SparseFool on image clas-
sification, we propose Sparse Category-wise Attack (SCA) to
generate sparse perturbations for anchor-free object detectors.
It is an iterative process. In each iteration, one target pixel set
is selected from category-wise target pixel sets to attack.

More specifically, given an input image x and current
category-wise target pixel sets {S1, S2, ..., Sk}, SCA selects
the pixel set that has the highest probability score from
{S1, S2, ..., Sk} as target pixel set Starget and use Category-

𝑥0

𝑥1

𝑥𝑖
𝛽0

𝛽1

𝑥0
𝐵

𝑥1
𝐵

𝑤0

𝑤1

Fig. 4. Illustration of SCA with the ‘Car’ category of Fig. 1. The
black solid line denotes the real decision boundary of the object de-
tector. Blue points denote adversarial examples that have not at-
tacked all objects successfully. Red points denote adversarial exam-
ples that have already attacked all objects successfully. This figure
illustrates two iterations of the attack, x0 → x1 and x1 → xi. Take
x0 → x1 for example, SCA first generates dense adversarial exam-
ple xB0 (yellow points) by CW-DF and approximated linear decision
boundary β0 (green dash lines). Then it uses LinearSolver (purple
dash lines) to add a sparse perturbation to support x0 to approximate
decision boundary β by satisfying β = {x : wT (x − xB) = 0}
until a validate sparse adversarial example x1 is obtained. The two
images are the visualization of the normal vectorw, the yellow boxes
indicates the weights for the ’Car’ object are reduced.

Wise DeepFool (CW-DF)1 to generate dense adversarial ex-
ample xB by computing perturbations on Starget. The CW-
DF adapts Deepfool [15] to become a category-wise attack
algorithm for anchor-free object detection.

Then, SCA uses the ApproxBoundary to approximate the
decision boundary, which is locally approximated with a hy-
perplane β passing through xB :

β
4
= {x : wT (x− xB) = 0}, (2)

where w is the normal vector of hyperplane β and approxi-
mated with the following equation [14]:

w := ∇
n∑
i=1

fargmaxnfn(xB ,s)(x
B , s)

−∇
n∑
i=1

fargmaxnfn(x,s)(x
B , s).

(3)

A sparser adversarial perturbation can then be computed via
the LinearSolver process [14]. The process of generating per-
turbations through the ApproxBoundary and the LinearSolver
of SCA is illustrated in Fig. 4.

After attacking Starget, SCA uses RemovePixels to update
Starget by removing the pixels that are no longer detected.
Specifically, it takes xi,j , xi,j+1, and Starget as input. Re-
movePixels first generates a new heatmap for perturbed image
xi,j+1 with the detector. Then, it checks whether the proba-
bility score of each pixel in Starget is still higher than tattack

1See supplement material for the detail of the CW-DF, ApproxBoundary,
LinearSolver and RemovePixels.

3



Algorithm 1 Sparse Category-wise Attack (SCA)
Input: image x, target pixel set {S1, S2, ..., Sk},

available categories {C1, C2, ..., Ck}
Output: perturbation r

Initialize: x1 ← x, i← 1, j ← 1, S0 ← S

while {S1, S2, ..., Sk} 6∈ ∅ do
target = argmaxk

∑
s∈Sk

softmaxCk
f(xi, s)

Starget,1 ← Starget

xi,j ← xi

while j ≤Ms or Starget,j ∈ ∅ do
xBj = CW-DF (xi,j)

wj = ApproxBoundary (xBj , Starget,j)

xi,j+1 = LinearSolver (xi,j , wj , xBj )

Starget = RemovePixels (xi,j , xi,j+1, Starget)

j = j + 1

end while
xi+1 ← xi,j

i = i+ 1

end while
return r = xi − x1

on the new heatmap. The pixels whose probability score is
lower than tattack are removed from Starget, while the re-
maining pixels are retained in Starget. Target pixel set Starget
is thus updated. If {S1, S2, ..., Sk} ∈ ∅, which indicates that
no original object can be detected after the attack, the attack
for all objects of x is successful and we output the generated
adversarial example.

The SCA algorithm is summarized in Alg. 1. Note that
SCA will not fall into an endless loop. In an iteration, if SCA
fails to attack any pixels of Starget in the inner loop, SCA
will attack the same Starget in the next iteration. During this
process, SCA keeps accumulating perturbations on these pix-
els, with the probability score of each pixel in S keeping re-
ducing, until the probability score of every pixel in Starget is
lower than tattack. By then, Starget is attacked successfully.
Dense Category-wise Attack. It is interesting to investigat-
ing our optimization problem (1) for p =∞. FGSM and PGD
are two most widely used attacking approaches by minimiz-
ing L∞.

As we mentioned before, PGD iteratively takes smaller
steps in the direction of the gradient. It achieves a higher
attack performance and generates smaller L∞ perturbations
than FGSM. Our adversarial perturbation generation proce-
dure is base on PGD and is named as Dense Category-wise At-
tack (DCA) since it generates dense perturbations compared
to SCA.

Method Network Clean Attack ASR (%) Time (s)

Pa
sc

al
V

O
C

DAG FR 0.70 0.050 0.92 9.8
UEA FR 0.70 0.050 0.93 –
SCA R18 0.67 0.060 0.91 20.1
SCA DLA34 0.77 0.110 0.86 91.5
DCA R18 0.67 0.070 0.90 0.3
DCA DLA34 0.77 0.050 0.94 0.7

M
S-

C
O

C
O SCA R18 0.29 0.027 0.91 50.4

SCA DLA34 0.37 0.030 0.92 216.0
DCA R18 0.29 0.002 0.99 1.5
DCA DLA34 0.37 0.002 0.99 2.4

Table 1. White-box performance comparison. The top row denotes
the metrics. Clean and Attack denote the mAP of clean input and
adversarial examples, respectively. Time is the average time to gen-
erate an adversarial example.

Given an input image x and category-wise target pixel sets
{S1, S2, ..., Sk}, DCA2 applies two iterative loops to generate
adversariabl perturbations: each inner loop iteration j com-
putes the local gradient for each category Sj and generates a
total gradient for all existing categories; while each outer loop
iteration i uses the total gradient generated in the inner loop
iteration to generate a perturbation for all the objects of all
existing categories.

Specifically, in each inner loop iteration j, DCA computes
the gradient for every pixel in Sj to attack all instances in Cj
as follows: DCA first computes the total loss of all pixels in
target pixel set Sj corresponding to each category Cj :

losssum =
∑
sn∈Sj

CrossEntropy (f(xi, sn), Cj), (4)

and then computes local adversarial gradient rj of Sj on
losssum and normalizes it with L∞, yielding r′j :

rj =5xi losssum, r′j =
rj
‖rj‖∞

. (5)

After that, DCA adds up all r′j to generate total adver-
sarial gradient G. Finally, in the outer loop iteration i, DCA
computes perturbation perti by applying sign operation to
the total adversarial gradient G [16]:

perti =
εD
MD

· sign(G), (6)

where MD denotes the maximum number of cycles of the
outer loop, term εD

MD
is optimal max-norm constrained weight

to constraint the amplitude of perti [17]. At the end of the
outer loop, DCA uses RemoveP ixels to remove the target
pixels that have already been attacked successfully on xi+1

from of {S1, S2, ..., Sk}.
Since an adversarial perturbation in DCA is generated

from normalized adversarial gradients of all categories’ ob-
jects, DCA attacks all object instances of all the categories
simultaneously. It is more efficient than SCA.

2DCA is summarized in Alg. 5 in the supplement materials. A figure
(Fig. 1 in the supplement materials) that shows the perturbation generation
process of DCA is also included in the supplement materials

4



Fig. 5. Qualitative comparison between DAG and our methods. Each row is an example. Column 1: Detection results of clean inputs
on CenterNet. Column 2&3: DAG perturbations and DAG attacked results on Faster-RCNN. Column 4&5: DCA perturbations and DCA
attacked results on CenterNet. Column 6&7: SCA perturbations and SCA attacked results on CenterNet. Note that in Column 6, the
percentage of the changed pixels for the SCA perturbation is 3.4% and 3.51% from top to bottom. We can see that the perturbations of DCA
and SCA are smaller than the DAG’s. Notably, the proposed SCA changes only a few percentage of pixels. To better show perturbations, we
have multiplied the intensity of all perturbation images by 10.

From
To Resdcn18 DLA34 Resdcn101 Faster-RCNN SSD300

mAP ATR mAP ATR mAP ATR mAP ATR mAP ATR
Clean 0.67 – 0.77 – 0.76 – 0.71 – 0.77 –
DAG [11] 0.65 0.19 0.75 0.16 0.74 0.16 0.60 1.00 0.76 0.08
R18-DCA 0.10 1.00 0.62 0.23 0.65 0.17 0.61 0.17 0.72 0.08
DLA34-DCA 0.50 0.28 0.07 1.00 0.62 0.2 0.53 0.28 0.67 0.14
R18-SCA 0.31 1.00 0.62 0.36 0.61 0.37 0.55 0.42 0.70 0.17
DLA34-SCA 0.42 0.90 0.41 1.00 0.53 0.65 0.44 0.82 0.62 0.42

Table 2. Black-box attack results on the PascalVOC dataset. From
in the leftmost column denotes the models where adversarial exam-
ples are generated from. To in the top row means the attacked models
that adversarial examples transfer to.

From
To Resdcn18 DLA34 Resdcn101 CornerNet

mAP ATR mAP ATR mAP ATR mAP ATR
Clean 0.29 – 0.37 – 0.37 – 0.43 –
R18-DCA 0.01 1.00 0.29 0.21 0.28 0.25 0.38 0.12
DLA34-DCA 0.10 0.67 0.01 1.00 0.12 0.69 0.13 0.72
R18-SCA 0.11 1.00 0.27 0.41 0.24 0.57 0.35 0.30
DLA34-SCA 0.07 0.92 0.06 1.00 0.09 0.92 0.12 0.88

Table 3. Black-box attack results on the MS-COCO dataset. From
in the leftmost column denotes the models where adversarial exam-
ples are generated from. To in the top row means the attacked models
that adversarial examples transfer to.

3. EXPERIMENTAL EVALUATION

Dataset. Our method is evaluated on two object detection
benchmarks: PascalVOC [12] and MS-COCO [13].
Evaluation Metrics. i) Attack Success Rate (ASR): ASR =
1−mAPattack/mAPclean, wheremAPattack andmAPclean
are the mAP of the adversarial example and the clean input,
respectively. ii) Attack Transfer Ratio (ATR): It is evaluated as
follows: ATR = ASRtarget/ASRorigin, where ASRtarget
is the ASR of the target detector to be black-box attacked,
and ASRorigin is the ASR of the detector that generates the
adversarial example. iii) Perceptibility: The perceptibility of
an adversarial perturbation is quantified by its PL2

and PL0

norm. i) PL2
: Formally, PL2

=
√
1/k

∑
r2k, where the k is

the number of the pixels. We normalize the PL2
from [0, 255]

to [0, 1]. ii) PL0
: PL0

computed by measuring the proportion
of changed pixels after attack.
White-Box Attack3. We conducted white-box attacks on two

3More experimental results and hyperparameters analysis of DCA and
SCA are also shown in the supplement material.

Network PL2 PL0

DAG 2.8× 10−3 ≥ 99.0%
R18-Pascal 5.1× 10−3 (DCA) 0.22% (SCA)
DLA34-Pascal 5.1× 10−3 (DCA) 0.27% (SCA)
R18-COCO 4.8× 10−3 (DCA) 0.39% (SCA)
DLA34-COCO 5.2× 10−3 (DCA) 0.65% (SCA)

Table 4. Perceptibility of the perturbation.

popular object detection methods. Both use CenterNet but
with different backbones: one, denoted as R18, with Res-
dcn18 [18] and the other, DLA34 [19], with Hourglass [20].

Table 1 shows the white-box attack results on both Pas-
calVOC and MS-COCO. For comparison, it also contains the
reported attack results of DAG and UEA attacking Faster-
RCNN with VGG16 [21] backbone, denoted as FR, on Pas-
calVOC. There is no reported attack performance on MS-
COCO for DAG and UEA. UEA’s average attack time in
Table 1 is marked as “–” (unavailable) because, as a GAN-
based apporach, UEA’s average attack time should include
GAN’s training time, which is unavailable. Compare with
optimization-based attack methods [11], a GAN-based attack
method consumes a lot of time for training and needs to re-
train a new weight to attack another task. Thus a GAN-based
attack method sacrifices attack flexibility, and it can not be
used in some scenarios with high flexibility requirements.

The top half of Table 1 shows the attack performance on
PascalVOC. We can find that: (1) DCA achieves higher ASR
than DAG and UEA, and SCA achieves the best ASR per-
formance. (2) DCA is 14 times faster than DAG. We cannot
compare with UEA since its attack time is unavailable. Qual-
itative comparison between DAG and our methods in shown
in Fig. 5. The bottom half of Table 1 shows the attack per-
formance of our methods on MS-COCO. SCA’s ASR on both
R18 and DLA34 is in the same ballpark as the ASR of DAG
and UEA on PascalVOC, while DCA achieves the highest
ASR, 99.0%. We conclude that both DCA and SCA achieve
the state-of-the-art attack performance.
Black-Box Attack and Transferability. Black-box attacks
can be classified into two categories: cross-backbone and
cross-network. For cross-backbone attacks, we evaluate the
transferability with Resdcn101 [18] on PascalVOC and MS-

5



COCO. For cross-network attacks, we evaluate with not only
anchor-free object detector CornerNet [9], but also two-stage
anchor-based detectors, Faster-RCNN [8] and SSD300 [22].
Faster-RCNN and SSD300 are tested on PascalVOC. Corner-
Net is tested on MS-COCO with backbone Hourglass [20].

To simulate a real-world attack transferring scenario, we
generate adversarial examples on the CenterNet and save
them in the JPEG format, which may cause them to lose the
ability to attack target models [23] as some key detailed in-
formation may get lost due to the lossy JPEG compression.
Then, we reload them to attack target models and compute
mAP . This process has a more strict demand on adversarial
examples but should improve their transferability.

i) Attack transferability on PascalVOC. Adversarial ex-
amples are generated on CenterNet with Resdcn18 and
DLA34 backbones for both SCA and DCA. For compari-
son, DAG is also used to generate adversarial examples on
Faster-RCNN. These adversarial examples are then used to
attack the other four models. All the five models are trained
on PascalVOC. Table 2 shows the experimental results. We
can see from the table that adversarial examples generated by
our method can successfully transfer to not only CenterNet
with different backbones but also completely different types
of object detectors, Faster-RCNN and SSD. We can also see
that DCA is more robust to the JPEG compression than SCA,
while SCA achieves higher ATR than DCA in the black-box
test. Table 2 indicates that DAG is sensitive to the JPEG com-
pression, especially when its adversarial examples are used to
attack Faster-RCNN, and has a very poor transferability in at-
tacking CenterNet and SSD300. We conclude that both DCA
and SCA perform better than DAG on both transferability and
robustness to the JPEG compression.

ii) Attack Transferability on MS-COCO. Similar to the
above experiments, adversarial examples are generated on
Centernet with Resdcn18 and DLA34 backbones and then
used to attack other object detection models. The experimen-
tal results are summarized in Table 3. The table indicates that
generated adversarial examples can attack not only CenterNet
with different backbones but also CornerNet.
Perceptibility. The perceptibility results of adversarial per-
turbations of DCA and SCA are shown on Table 4. We can
see from Table 4 that PL0 of SCA is lower than 1%, meaning
that SCA can fool the detectors by changing only a few num-
ber of pixels. Although DCA has a higher PL2

than DAG,
perturbations generated by DCA are still hard to be distin-
guished by humans. We also provide qualitative examples for
comparison in Fig. 5.

4. CONCLUSION

In this paper, we propose a category-wise attack to attack
anchor-free object detectors. It manifests in two forms, SCA
and DCA, when minimizing the L0 and L∞ norms, respec-
tively. Both SCA and DCA focus on global and high-level

semantic information to generate adversarial perturbations.
Our experiments with CenterNet on two public object detec-
tion benchmarks indicate that both SCA and DCA achieve the
state-of-the-art attack performance and transferability.

5. REFERENCES

[1] Nicholas Carlini and etc. Wagner, “Towards evaluating the robustness
of neural networks,” in IEEE SP, 2017.

[2] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xi-
aolin Hu, and Jianguo Li, “Boosting adversarial attacks with momen-
tum,” in CVPR, 2018.

[3] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang,
Zhou Ren, and Alan L Yuille, “Improving transferability of adversarial
examples with input diversity,” in CVPR, 2019.

[4] Francesco Croce and Matthias Hein, “Minimally distorted adversarial
examples with a fast adaptive boundary attack,” in ICML, 2020.

[5] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu, “Evading defenses
to transferable adversarial examples by translation-invariant attacks,” in
CVPR, 2019.

[6] Avishek Joey Bose and Parham Aarabi, “Adversarial attacks on face
detectors using neural net based constrained optimization,” in MMSP.

[7] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Chau,
“Robust physical adversarial attack on faster r-cnn object detector,” in
ECMLKDD, 2018.

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster r-cnn:
Towards real-time object detection with region proposal networks,” in
NIPS, 2015.

[9] Hei Law and Jia Deng, “Cornernet: Detecting objects as paired key-
points,” IJCV, 2019.

[10] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl, “Objects as
points,” CVPR, 2019.

[11] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan Yuille, “Adversarial examples for semantic segmentation and
object detection,” in ICCV, 2017.

[12] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman, “The pascal visual ob-
ject classes challenge: A retrospective,” IJCV, vol. 111, no. 1, 2015.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, “Microsoft
coco: Common objects in context,” in ECCV. Springer, 2014.

[14] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard, “Sparsefool: a few pixels make a big difference,” in CVPR.

[15] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard, “Deepfool: a simple and accurate method to fool deep neural
networks,” in CVPR, 2016.

[16] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu, “Towards deep learning models resistant
to adversarial attacks.,” ICLR, 2018.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining
and harnessing adversarial examples,” 2015.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in CVPR, 2016.

[19] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell, “Deep
layer aggregation,” in CVPR, 2018.

[20] Alejandro Newell, Kaiyu Yang, and Jia Deng, “Stacked hourglass net-
works for human pose estimation,” in ECCV. Springer, 2016.

[21] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” ICLR, 2014.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg, “Ssd: Single shot multi-
box detector,” in ECCV. Springer, 2016.

[23] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy,
“A study of the effect of jpg compression on adversarial images,” 2016.

6


