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Abstract—Identifying global contrast enhancement in an image
is an important task in forensics estimation. Several previous
methods analyze the “peak-gap” fingerprints in graylevel his-
tograms. However, images in real scenarios are often stored in
the JPEG format with middle/low compression quality, resulting
in less obvious “peak-gap” effect and then unsatisfactory perfor-
mance. In this paper, we propose a novel deep Multi-Path Net-
work (MPNet) based approach to learn discriminative features
from graylevel histograms. Specifically, given the histograms,
their high-level peaks and gaps information can be exploited
effectively after several shared convolutional layers in the net-
work, even in middle/low quality compressed images. Moreover,
the proposed multi-path module is able to focus on dealing
with specific forensics operations for more robustness on image
compression. The experiments on three challenging datasets (i.e.,
Dresden, RAISE and UCID) demonstrate the effectiveness of the
proposed method compared to existing methods.

I. INTRODUCTION

With the rapid development of digital imaging devices,
it is important to verify the authenticity of digital images,
as they can be easily manipulated using graphics editing
software (e.g., Adobe Photoshop). Detecting global contrast
enhancement can provide important cues on the authenticity
of a digital image. Contrast enhancement is a nonlinear
function of pixel values that changes the overall distribution
of the pixel intensities in a image, such as gamma correction,
sigmoid stretching and histogram equalization. Global contrast
enhancement operations may not be the direct result of tam-
pering, but many image forgeries involve such operations to
hide the traces of other tampering operations such as region
splicing or cloning.

When a contrast enhancement operation is applied to an
image, its pixel values and histogram bins undergo a nonlinear
mapping that leaves a distinct “peak-gap” effect on the pixel
histograms. These peaks and gaps, an example can be seen in
Fig. 1(b) and (c), can be used as fingerprints to identify the
contrast enhancement operation [1]–[4]. These methods work
well for uncompressed images, but their performances are not
satisfactory when the digital images are in the JPEG format [5]
with middle/low compression quality. Particularly, low quality
JPEG compression corresponds to a smoothing of pixel values,
which weakens peak and gap bins in graylevel histograms
and make them smooth again (see Fig. 1(d) and (f)), resulting
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Fig. 1. Examples of global contrast enhancement operations.

in failures for existing global contrast enhancement detection
methods. Furthermore, as seen in Fig. 1(c) and (e), the multiple
source of forensics operations (e.g., gamma correction and
histogram equalization) usually has different kinds of peak-
gap distributions. It is also difficult to detect them effectively
with fixed rule based thresholds [3].

To solve these issues, in this paper, we propose a deep
Multi-Path Network (MPNet) based method to detect global
contrast enhancement operations. In contrast to existing meth-
ods, our network can exploit more discriminative features in
consecutive bins of graylevel histograms to represent peaks
and gaps, even when the original peak and gap features have
been diminished by JPEG compression. Moreover, to detect
different forensics operation effectively, we develop a multi-
path module in the network, in which each path is to learn
representations for a specific contrast enhancement operation.
Ahead of these paths, we use several shared convolutional



Fig. 2. Architecture of (a) VGG network and (b) the proposed multi-path network. The red and green path are used to learn features from gamma correction
and histogram equalization operation, respectively.

layers to capture common low-level features of histograms.
Notably, the back-propagation training algorithm does not
distinguish these paths from each other, and thus cannot
guarantee each path to learn specific representation for the
corresponding forensics operation. Therefore we employ a
multi-stage training method for the proposed network. First,
we train the shared layers using VGG network; then we train
the paths individually based on samples of corresponding
operation types; finally we combine the multiple paths and
output the label whether the image is altered. The contributions
of this paper are summarized below:

• We propose a novel deep Multi-Path Network (MPNet)
for global contrast enhancement detection, where each
path is used to learn specific forensics representation.

• We develop a multi-stage training method to enable each
path in the network to focus on one forensics operation.

• We perform extensive experiments on challenging
datasets to evaluate our global contrast enhancement de-
tection method against existing methods on JPEG images.

II. OUR METHOD

A. Multi-Path Network

The network structure we use is inspired from the VGG
model [6]. As shown in Fig. 2(a), the VGG network has five
feature extraction modules including two convolutional layers
followed by the max-pooling layer. Then, two fully connected
layers are added to the end of the network.

Different from the original VGG model that uses an image
as input, the input to our network receives the histogram of the
image with the size of 256×1. Since global contrast enhance-
ment affects through pixel histograms, the feature extracted
from the histogram can generally represent the manipulation
type. Moreover, it only requires fewer computation and storage

resources to process histograms than full images. As illustrated
in Fig. 2(b), the proposed network consists of three parts:

• Shared layers. The shared layers contain eight convolu-
tional layers (conv1 1-conv4 2), and are used to capture
shared low-level features of generic image contrast en-
hancement operation.

• Operation-specific layers. Operation-specific layers con-
sists of several paths, each of which is constructed by
two convolutional layers and one fully connected layer
(conv5 1-conv5 2, fc1). Different contrast enhancement
operation denotes different path without shared weights.

• Aggregation layers. The aggregation layers learn to com-
bine the outputs of preceding paths into a discriminative
feature representation using a concatenation layer and a
fully-connected layer (fc2). Then the binary classification
between altered and unaltered images is conducted by
a softmax loss. Specifically, we minimize the average
loss E between the true class labels (i.e., unaltered and
altered). The network outputs using the following loss
function is defined as

E =
1

N

N∑
i=1

c∑
k=1

`ki log(y
k
i ) +

λ

2
||ω||2, (1)

where the first term is the cross entropy loss, and the
second term is the L2 regularization to prevent over-fitting
of aggregation layers. `ki and yki are the true label and the
network output of the i-th image at the k-th class with
N training images and c neurons in the fully-connected
layer, respectively. Parameter λ is the balancing factor
and ω is the vectored weights of the fc2 layer.



Fig. 3. Data augmentation.

B. Data Augmentation

We first briefly describe the way we generate training data.
In this work, the positive samples are defined as the manip-
ulated images, while the negative samples are the unaltered
images. For data augmentation, we randomly select the content
of each raw image to generate 5 cropped images as the positive
examples. Let W be the width and H be the height of the
raw image. As shown in Fig. 3, we first set (x, y) as the
coordinate of the left top point of the cropped image, in which
x is randomly chosen between 1 and W/4, and y is randomly
chosen between 1 and H/4. We randomly choose the width
of the cropped image w between 50 and W − x. To ensure
the aspect ratios of the cropped images, we randomly choose
the height of the cropped region between 0.7w and 1.3w.

We generate negative examples based on positive examples.
We first randomly choose the image enhancement operation
type, in this work we consider the gamma correction and
the histogram equalization. The histogram equalization has
no parameters. The parameter of the gamma correction is
randomly chosen between 0.4 and 2.1 with the step 0.1, i.e.,
[0.4, 0.5, · · · , 2.1]. Then the processed images are stored in
the JPEG format with compression quality 95. All the above
parameters are set empirically.

C. Multi-stage Training

The back-propagation training algorithm in deep learning
does not distinguish the operation-specific layers from each
other, which is hard to learn specific representations for the
corresponding forensics operation in each path. Therefore,
we develop a three-stage training method to deal with this
problem. The overall training process is summarized in Algo-
rithm 1.
Stage 1: training shared layers. The first eight convolutional
layers (i.e., conv1 1-conv4 2 in Fig. 2(b)) are used to capture
shared information of histogram under different forensics
operations. To determine the weights, we add the rest part of
VGG model in Fig. 2(a) to construct a one-path network and
train it using back-propagation strategy. After several epoches,
the shared convolutional layers are determined.
Stage 2: training operation-specific layers. Once the shared
layers are trained, we propose to train two paths individually.

Algorithm 1 Multi-stage training method.
Input: altered and unaltered samples
Output: multi-path network

1: Given all kinds of altered and unaltered samples, we train the
VGG model in Fig. 2(a) and fix the bottom layers (conv1 1-
conv4 2);

2: for each contrast enhancement operation do
3: We remove the other paths of operation-specific layers and

initialize the weights of the current path (conv5 1-conv5 2,
fc1) using MPNet in Fig. 2(b);

4: Given each kind of altered and unaltered samples, we train the
operation-specific layers using MPNet in Fig. 2(b);

5: end for
6: We enable all the operation-specific layers in MPNet in Fig. 2(b);
7: Fixing the previous layers (conv1 1-fc1), we train the aggregation

layers (fc2) using MFNet in Fig. 2(b).

First, with fixed shared layers, we train each operation-specific
layer by removing the other counterparts. Thus the multi-
path network degenerates into one-path network, namely VGG
network in Fig. 2(a). Then, the operation-specific layer is ini-
tialized with random weights. Finally, the network is updated
based on a mini-batch that consists of the training samples
from positive samples under each forensics and negative
samples. The procedure is not finished until the network is
converged.
Stage 3: training aggregation layers. After obtaining the
operation-specific layers, we combine them to learn a dis-
criminative feature representation. As shown in Fig. 2(b), we
concatenate the operation-specific paths and learn their ag-
gregation weights by fully-connected layer (i.e., fc2). The last
softmax layer is used for altered/unaltered image classification
using the loss in (1).

III. EXPERIMENTS

To evaluate the effectiveness of the proposed method, exten-
sive experiments are performed and we compare our method
to state-of-the-art Stamm et al.’s method [2]1. Besides, we
train two SVM models [7] (including linear and RBF kernel,
denoted as SVM Linear and SVM RBF) as baselines.
Datasets. The Dresden dataset2 [8] is used to evaluate the
above methods. It consists of nature images, dark/flatfield
frames and JPEG scene captured in various indoor and outdoor
scenes. We randomly select 16, 000 nature images for training,
401 nature images for validation and 1, 851 JPEG scene
images for testing. We do not select dark/flatfield frames in
the experiment because they include no semantic objects. To
demonstrate the generalization ability of the method, we also
use the RAISE dataset [9] and the Uncompressed Colour
Image Database (UCID) [10] for testing. The RAISE dataset3

contains 5, 999 uncompressed high-resolution images, which
are guaranteed to be camera-native. The UCID dataset4 in-

1We do not compare with Cao et al.’s method [3] because it is failed to
detect gap numbers based on the altered image after JPEG compression.

2http://forensics.inf.tu-dresden.de/ddimgdb/publications/ddimgdb
3http://mmlab.science.unitn.it/RAISE/download.html
4http://jasoncantarella.com/downloads/ucid.v2.tar.gz



cludes 886 available uncompressed images on various top-
ics such as natural scenes, man-made objects, indoors and
outdoors. Using the raw images, we generate contrast en-
hanced images as described previously. The images are first
transformed using contrast enhancement operations and then
compressed with a quality factor QF .
Metric. To evaluate the global contrast enhancement detection
methods, each test image is classified by determining if it is
contrast-enhanced or not using a series of decision thresholds.
We evaluate them by measuring the true positive rate and
the false positive rate. The Receiver Operating Characteristic
(ROC) curves are also generated to calculate the Area Under
the ROC Curve (AUC) score for ranking them. Moreover, we
calculate the probabilities of detection (Pd) and false alarm
(Pfa) determined by thresholds (i.e., 0.01, 0.05, 0.1) as the
percentage of the enhanced images correctly classified and that
of the unaltered images incorrectly classified, respectively.
Implementation Details. Similar to [2], the green channel
of each testing image for training and testing. We compress
images by applying the Python function imwrite in the cv2
toolbox at different quality factors. When training our CNN,
we set the batch size equal to 256 and optimize the parameters
of the network with the Adadelta strategy [11]. We use Xavier
algorithm [12] for weight initialization. We shuffle the training
set between epochs, and use the early stopping strategy during
the training process. The balancing factor in (1) is set as
λ = 0.01. The learning rate is initially set as 0.4, and decays
when the accuracy of the validation set is converged. We train
shared layers in 20 epochs. The network is implemented using
Tensorflow5 on a machine with a 3.50 GHz Intel i7 5930K
processor and 48 GB memory and a NVIDIA GTX 1080
Graphical Card.

A. Performance Comparison

As shown in Fig. 4, we present the performance of dif-
ferent contrast enhancement (i.e., histogram equalization and
gamma correction) detection of our MPNet method and other
compared methods on the Dresden-test, RAISE and UCID
datasets. MPNet achieves the best AUC scores in identifying
JPEG compression with QF = 95 compared to existing
methods in three datasets. Moreover, our algorithm achieves
higher detection rate Pd > 0.6 even under low Pfa = 0.01.
This is attributed to the ability of our network to exploit
relations among several consecutive bins in histogram. On
the other hand, the SVM models with histogram input fail to
consider such relations, leading to inferior performance. Be-
sides, Stamm et al.’s method [2] detects contrast enhancement
without training, so that it is hard to extract discriminative
features from histograms in noisy situations.

B. Discussion

We further perform experiments to study the influence of
various important factors of MPNet on the performance.

5We make the source codes of our method and the experimental results
available on our website: https://sites.google.com/site/daviddo0323/.

TABLE I
COMPARISON BETWEEN HISTOGRAM-BASED AND IMAGE-BASED VGG

MODELS IN UCID DATASET WITH QF = 95.

AUC score Speed # of Param. memory
VGG-Hist 93.50 2.03s 3.11M 0.70 MB

VGG-Image 94.14 2.60s 9.73M 59.27 MB

Effectiveness of histogram input. To confirm the assumption
that the histogram can represent the significant information
of the image, we separately use the histogram and the im-
age samples to train the VGG network. In terms of image-
based VGG, we crop the image samples with the size of
224× 224 randomly based on the resized image with the size
of 256 × 256. According to the results in Table I, the two
models achieve comparable performance, but histogram-based
VGG obtains considerable improvement on time and memory
expenses per sample.
Influence of JPEG quality. We explore the performance
of the proposed method with different JPEG quality. In the
experiment, we use the trained images with QF = 95 and
test the images with QF = 90, 70, 50, 30. For comprehensive
evaluation, the ROC curves on different forensics operations
and QFs are presented in Fig. 5. With the compression degree
deeper, the result still shows this method can be instructional.
For the middle/low quality factor (QF ≤ 50), our method
keeps stable and outperforms other methods in a large mar-
gin. Stamm et al.’s method [2] achieves less than 50 AUC
score because of failures in detecting peak-gap features when
QF ≤ 50. These results show MPNet performs well on the
detection of the global contrast enhancement operation even
when the image is stored in the JPEG format with middle/low
quality.
Effectiveness of multi-path network. To demonstrate the
effectiveness of multi-path network, we implement several
VGG models with different output labels, namely VGG-2,
VGG-2D, VGG-3 and VGG-3D. Specifically, VGG-2 and
VGG-3 correspond to the network with the output label
being altered/unaltered and gamma/histogram/unaltered, re-
spectively. VGG-2D and VGG-3D indicate the number of
weights from conv5 1 to fc1 is doubled to compare with the
two paths in our method. As shown in Table II, the multi-
path network improves the accuracy moderately. Moreover,
our method provides higher detection rate with the same
number of false alarms. Besides, the performance comparison
between VGG-2 and VGG-3 indicates that it is hard to learn
efficient discriminative representation of different forensics
operation by just multi-label output configuration. Meanwhile,
increasing the number of parameters of the network brings
a little performance improvement. To sum up, the proposed
multi-path scheme is able to accurately detect several types
of single contrast enhancement operations using the same
network architecture and number of parameters.
Effectiveness of aggregation layers. The aggregation layers
are used to combine the multi-path representation. We remove



Fig. 4. ROC curves of compared methods on Dresden-test, RAISE and UCID datasets with QF = 95. We present the AUC score in the legend.

Fig. 5. ROC curves of compared methods on the (a) Dresden-test, (b) RAISE and (c) UCID datasets with different quality factors (QF = 90, 70, 50, 30).
We present the AUC score in the legend.

the fully-connected layer and output the label based on the
mean softmax score among all the paths, denoted as MPNet-
mean. From the results in Table II, the aggregation layers can
learn the discriminative feature integrated from multiple paths
to detect contrast enhancement effectively.

IV. CONCLUSION

In this paper, we propose a new method to detect global
contrast enhancement based on a deep multi-path network.
The network can exploit more discriminative features in con-
secutive bins to represent peaks and gaps, even when the
original peak and gap features have been diminished by JPEG
compression. Moreover, the multi-path module can further
improve the accuracy of forensics detection in different com-

pression quality. Experimental results on the Dresden, RAISE
and UCID datasets show the proposed deep model works well
for contrast enhancement detection, especially when the image
undergos JPEG compression with middle/low quality. In the
future work, there are several directions for research. First, we
plan to explore the performance of our method against anti-
forensic techniques [13], [14]. Second, we would expand our
method to detect local contrast enhancement.
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TABLE II
THE PERFORMANCE COMPARISON ON THE DRESDEN-TEST, RAISE AND UCID DATASETS FOR DIFFEREN QUALITY FACTORS (i.e., QF = 90, 70, 50, 30).

THE BEST PERFORMER IS HIGHLIGHTED IN BOLD FONT.

JPEG QF = 90 JPEG QF = 70

Dresden-test MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D Dresden-test MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D

AUC score 93.35 88.03 93.83 94.24 92.54 93.75 AUC score 88.37 80.96 85.53 85.25 84.74 83.02

Pd(Pfa = 0.01) 0.6283 0.2141 0.5815 0.7176 0.5436 0.6797 Pd(Pfa = 0.01) 0.4358 0.1192 0.2919 0.4777 0.2901 0.3588

Pd(Pfa = 0.05) 0.7210 0.6138 0.7388 0.7712 0.7338 0.7662 Pd(Pfa = 0.05) 0.5977 0.4314 0.5073 0.5547 0.5122 0.4911

Pd(Pfa = 0.1) 0.8326 0.7227 0.8281 0.8326 0.8002 0.8186 Pd(Pfa = 0.1) 0.7333 0.5910 0.6350 0.6317 0.6066 0.5943

RAISE MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D RAISE MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D

AUC score 81.67 76.08 81.17 79.57 79.49 80.12 AUC score 78.13 73.34 75.56 73.43 75.25 74.85

Pd(Pfa = 0.01) 0.4146 0.3328 0.2924 0.0101 0.2178 0.3225 Pd(Pfa = 0.01) 0.2285 0.2812 0.1289 0.0098 0.1104 0.1055

Pd(Pfa = 0.05) 0.5145 0.4615 0.4849 0.1268 0.4682 0.4833 Pd(Pfa = 0.05) 0.4023 0.4062 0.3555 0.0605 0.3398 0.3301

Pd(Pfa = 0.1) 0.5848 0.5179 0.5709 0.3268 0.5625 0.5631 Pd(Pfa = 0.1) 0.5176 0.4395 0.4805 0.1816 0.4707 0.4648

UCID MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D UCID MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D

AUC score 83.63 81.17 81.55 81.27 80.30 81.23 AUC score 84.13 81.63 80.95 77.55 79.92 80.53

Pd(Pfa = 0.01) 0.5417 0.5221 0.4896 0.0238 0.4596 0.4831 Pd(Pfa = 0.01) 0.5039 0.4974 0.4323 0.0077 0.3646 0.3737

Pd(Pfa = 0.05) 0.6003 0.5807 0.5859 0.1190 0.5859 0.5820 Pd(Pfa = 0.05) 0.5885 0.5898 0.5573 0.0913 0.5885 0.5352

Pd(Pfa = 0.1) 0.6419 0.6341 0.6289 0.2751 0.6549 0.6367 Pd(Pfa = 0.1) 0.6536 0.6445 0.6042 0.1992 0.6328 0.5977

JPEG QF = 50 JPEG QF = 30

Dresden-test MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D Dresden-test MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D

AUC score 84.88 77.33 76.17 75.23 75.24 74.63 AUC score 92.35 85.16 88.48 89.03 88.59 87.64

Pd(Pfa = 0.01) 0.2444 0.0444 0.1083 0.3477 0.1074 0.2556 Pd(Pfa = 0.01) 0.4135 0.0856 0.3114 0.4860 0.3357 0.4007

Pd(Pfa = 0.05) 0.4453 0.2684 0.2796 0.4118 0.3052 0.3956 Pd(Pfa = 0.05) 0.6200 0.3689 0.5273 0.5820 0.5709 0.5530

Pd(Pfa = 0.1) 0.6490 0.4939 0.4364 0.4916 0.4375 0.4749 Pd(Pfa = 0.1) 0.8013 0.6283 0.6819 0.7026 0.7081 0.6685

RAISE MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D RAISE MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D

AUC score 73.68 69.28 66.07 64.13 65.94 63.89 AUC score 82.31 74.95 78.23 74.96 78.93 74.96

Pd(Pfa = 0.01) 0.1602 0.1248 0.0858 0.0037 0.0822 0.0948 Pd(Pfa = 0.01) 0.3145 0.2128 0.2843 0.0066 0.2572 0.0066

Pd(Pfa = 0.05) 0.3789 0.2977 0.2441 0.0229 0.2420 0.2824 Pd(Pfa = 0.05) 0.4963 0.3825 0.4531 0.0387 0.4480 0.0387

Pd(Pfa = 0.1) 0.4635 0.3956 0.3412 0.0798 0.3599 0.3645 Pd(Pfa = 0.1) 0.5895 0.4701 0.5372 0.1424 0.5712 0.1424

UCID MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D UCID MPNet MPNet-mean VGG-2 VGG-3 VGG-2D VGG-3D

AUC score 85.80 83.49 82.36 80.38 80.67 81.78 AUC score 92.07 85.17 89.46 86.88 90.02 88.67

Pd(Pfa = 0.01) 0.5273 0.5365 0.3711 0.0078 0.3841 0.3060 Pd(Pfa = 0.01) 0.5977 0.5547 0.5013 0.0119 0.5391 0.4297

Pd(Pfa = 0.05) 0.6302 0.6328 0.5781 0.0727 0.5638 0.5273 Pd(Pfa = 0.05) 0.7396 0.6862 0.6706 0.1675 0.7057 0.6484

Pd(Pfa = 0.1) 0.6849 0.6927 0.6484 0.2701 0.6302 0.6237 Pd(Pfa = 0.1) 0.8060 0.7578 0.7487 0.5198 0.7956 0.7370
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[5] T. Pevný and J. J. Fridrich, “Detection of double-compression in JPEG
images for applications in steganography,” TIFS, vol. 3, no. 2, pp. 247–
258, 2008.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[7] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal
estimated sub-gradient solver for SVM,” Math. Program., vol. 127, no. 1,
pp. 3–30, 2011.
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