
A Dynamic Bayesian Approach to Simultaneous
Estimation and Filtering in Grasp Acquisition

Li (Emma) Zhang*, Siwei Lyu**, and Jeff Trinkle*

*Department of Computer Science, Rensselaer Polytechnic Institute
**Department of Computer Science, University at Albany, SUNY

Abstract—In this work, we develop a general solution to a
broad class of grasping and manipulation problems, where the
robots need to accurately track the motions of the contacted bod-
ies and the locations of contacts, while simultaneously estimating
important system parameters, such as body dimensions, masses
and friction coefficients between contacting surfaces. We term
this problem as C-SLAM for contact simultaneous localization
and modeling. Our solution framework to the general C-SLAM
problem is based on a dynamic Bayesian inference framework,
which is referred to as Dynamic Bayesian C-SLAM (DBC-SLAM).
DBC-SLAM combines an NCP-based dynamic model with the
dynamic Bayesian network, and incorporates model parameter
estimation as an intrinsic part of the overall inference procedure.
We show two preliminary “proof-of-concept” examples that
demonstrate the use of DBC-SLAM in robotic contact tasks.

I. INTRODUCTION

A current weakness of robots is their inability to quickly and
reliably perform contact tasks. This is especially problematic
in unstructured environments, where the task might be to
push jars aside in a refrigerator to reach something behind
them or to catch an asteroid or free-floating tool in the
International Space Station. To execute contact tasks quickly
and reliably, robots need to accurately track the motions of
the contacted bodies and the locations of contacts, while
simultaneously estimating important system parameters, such
as body dimensions, masses and friction coefficients between
contacting surfaces.

One can view a broad class of grasping and manipulation
problems as analogous to the simultaneous localization and
mapping (SLAM) problem that has enjoyed great success
in mobile robotics. Here, however, the target application is
manipulation rather than mobility, so “localization” refers to
tracking the manipulated object relative to the hand. Further,
“mapping” is replaced by “modeling,” in the sense that sensor
data is used to estimate important uncertain parameters of the
system’s dynamic model, rather than constructing a map of
the environment. Henceforth, we will refer to such problems
as Contact-SLAM (C-SLAM) problems.

In this work, we develop a general solution to the C-SLAM
problem that we refer to as Dynamic Bayesian C-SLAM (DBC-
SLAM). What distinguishes DBC-SLAM from most previous
Bayesian-filtering-based perception methods in robotic contact
problems (e.g., [17, 16]) is the incorporation of frictional con-
tact dynamics. This is achieved in DBC-SLAM by combining
a nonlinear complementary program (NCP) formulation of a

multi-body dynamic model with a hybrid dynamic Bayesian
network (hDBN) [13] that has continuous and discrete state
variables corresponding to the motion and contact states,
respectively. The second distinguishing feature of the DBC-
SLAM framework is that time varying parameters in the dy-
namic models (e.g., friction coefficients) are estimated along
with motion and contact state tracking rather than assumed
invariant or provided to the system a priori.

II. BACKGROUNDS

A. Multi-body Dynamics

The motions of a dynamic system of bodies in contact
is completely determined by the Newton-Euler differential
equation and the kinematic relation:
M v̇(t) = G(t,q(t); β(t), γ) λ̃(t) + f̃(q(t), q̇(t)) + ũ(t)

q̇(t) = H(q(t)) v(t) (1)

where vectors of generalized coordinates q(t) and v(t) cor-
respond to the spatial configurations (e.g., position and ori-
entation coordinates of the moveable bodies and coordinates
defining body deformations) and velocities, respectively. q̇(t)
and v̇(t) are their time derivatives. λ̃(t) is the vector of contact
forces, β(t) corresponds to time-varying model parameters1,
such as friction coefficients, and γ corresponds to invariant
model parameters, such as body masses. M is the system in-
ertia matrix, G is the Jacobian matrix that maps contact forces
into body-fixed frames, and H is the Jacobian matrix that
maps the system velocities to the time rates of change of the
configuration variables. ũ(t) corresponds to the control forces
and torques applied by the robot’s actuators, and f̃(q(t), q̇(t))
denotes other external forces in the system such as gravity,
Coriolis, and those arising from flexibility.

Since a robot performing manipulation tasks under uncer-
tainty will touch the environment and some of the moveable
bodies intermittently, it is important that the dynamic model
prevents (virtual) bodies from overlapping and allows contacts
to separate. Also, while contact exists between two bodies, the
model must also allow any current contact to switch between
sticking and sliding. These features can be enforced through a
collection of complementarity conditions [4, 15] that generally
take the following form [19]:

1Changes in values of such parameters can be related to the spatial locations
of the current system state, but usually presented as temporal variance when
the bodies are in motion.



0 ≤ Φ̃(t, q(t),v(t); β(t), γ) ⊥ z̃(t) ≥ 0 (2)

where function Φ̃(t, q(t),v(t); β(t), γ) ∈ <n computes dis-
tances between the bodies and relative tangential velocities
at the contacts, vector z̃ ∈ <n contains unknown constraint
forces and slide speeds, and the operator ⊥ implies orthog-
onality (i.e., Φ̃ · z̃ = 0). For example, if Φ̃i is the distance
between two bodies, then zi is the normal component of the
corresponding contact force. In this case, the complementarity
condition 0 ≤ Φ̃i ⊥ z̃i ≥ 0 ensures that the bodies do not
penetrate (Φ̃i ≥ 0) and the contact force between them is
compressive (z̃i ≥ 0). Through Φ̃i · z̃i = 0, the following
complementary constraints are enforced: when the bodies are
separated, the normal component of the contact force must
be zero, and conversely, when the contact force is active, the
distance between the bodies must be zero.

Let ∆t be the sampling time interval and ` = 0, 1, · · · L
be the index of the discrete time steps throughout the whole
contact task, a discrete-time dynamic model is obtained by
replacing q̇ and v̇ with discrete-time approximations (e.g.,
v̇(t) ≈ (v(t+ ∆t)− v(t))/∆t) in equations (1) and (2),
which yields:

M ` v`+1 = G`(q`;β`, γ) λ`+1 + f ` + u` (3)
q`+1 = q` + H` v`+1 ∆t

0 ≤ Φ`+1 ⊥ z`+1 ≥ 0. (4)

Equations (3) and (4) represent the discrete-time dynamic
model in the form of a nonlinear complementarity problem
(NCP) [15], the solution of which yields the continuous and
discrete states and the contact impulses at time ` + 1. The
superscript ` corresponds to the discrete time step. q` and
v` correspond to the discrete-time spatial configuration and
velocity, and λ` represents the contact impulse (the integral of
the instantaneous contact force λ̃(t) over one time step).

In the following, we will use a single vector x` =
(q`,v`, λ`) to concisely represent all continuous valued states
ensemble in equation (3), and a single vector σ` to denote the
collection of discrete contact state variables indicating out-
of-contact, in-contact sticking, or in-contact sliding. Note that
these discrete contact states are implicit in the NCP formu-
lation, as they correspond to the assignment of a zero value
to one element in every complementary pair in condition (4).
That is, for all i = 1, ..., n, either zi or Φi is set to zero, while
the other is constrained to be nonnegative. To simplify notation
in later sections, we also use vector i` = f ` + u` to denote
the sum of the input forces to the system in Equation (3).
In addition, we use vector o` for observations from all
available sensors (e.g., joint angle, force, vision, and tactile)
that reflect the values of the unobservable motion and contact
state variables (x`, σ`). The NCP model parameters include
any geometric dimensions and other physical quantities of the
robots, moveable objects, and environment that are relevant to
the contact task but not known with sufficient accuracy.

B. Contact Tasks under Uncertainty

Several filters have been developed that can estimate the val-
ues of continuous and discrete state variables simultaneously.

Hebert and Burdick consider the problem of a rectangular
block held in a finger-tip grasp [8]. As the arm is moved,
an extended Kalman filter estimates the pose of the object
relative to the hand and also determines a discrete variable that
identifies the pairings of fingertips with box faces, also known
as a contact formation [20]. The system inputs include stereo
images, readings from a wrist force/torque sensor, and finger
joint position sensors. However, in this work, no dynamic
model was used and the fingertips were assumed to stick to
the faces. Also, model parameters (e.g., dimensions of the
box) were not estimated. In very similar work in assembly,
Bruyninckx et al. develop a particle filter for executing a
series of compliant motions partitioned by changes in the
contact formation [3]. This method simultaneously estimates
the pose and velocity of a polyhedral object rigidly held by a
robot end effector while it is moved in contact with a known
environment. It estimates the gain/loss of contacts, but not the
state whether a contact is sticking or sliding. Furthermore, no
dynamic model is used, and the filter assumes that contact
formations are independent of the object pose and velocity,
which is mathematically convenient but physically nonviable.

In a recent work, Zhang and Trinkle [21] design a particle
filter to study grasp acquisition in the plane. The filter uses the
simulator dVC2d [2] for its dynamic model. It estimates the
continuous motion states, several parameters of the dynamic
model, and three binary contact states. The main problems
with this method are that it uses particles to represent the
joint probability distribution over the state space and the
filter is designed to use dynamic simulation as a black box.
The simulation solves a complementarity problem that grows
roughly linearly with the number of contacts and the solution
time grows worse than quadratically with the size of the
complementarity problem. Therefore the filter is not scalable.

III. METHOD

The central task of C-SLAM is an on-line simultaneous
estimation of motion and contact states (x`, σ`) and model
parameters (β`, γ), given all system inputs and observables
up to the current time step (i0:`,o0:`)2. However, in actual
robotic manipulation tasks, we do not have accurate accounts
to many aspects in C-SLAM. For instance, physical sensors
have limited resolution and measurement inaccuracies due
to cost considerations, design deficiencies and manufacturing
defects. Similarly, motion and contact states predicted from the
discrete-time multi-body dynamic models are imprecise due to
the discrepancy between the simplifying model assumptions
and actual physical motion. As a result, the C-SLAM algo-
rithm has to explicitly handle such intrinsic uncertainties in
sensor observations and dynamic model predictions.

A comprehensive description of the stochastic relationship
among all up-to-date motion and contact states, model param-
eters, input forces and sensor data can be obtained in the form
of a joint probability distribution p(x0:`, σ0:`, β0:`, γ|o0:`, i0:`).

2In the following, for simplicity, we focus on the estimation of the
temporally varying parameters and assume that γ is known.
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Fig. 1. Graphical structure of DBC-SLAM. For simplicity, we only
show models with time/space-varying parameters.
However, the high dimensionality of these variables prohibits
any brute-force specification of this distribution. Instead, we
introduce conditional independence relations to factorize this
joint distribution to low-dimensional components. The result-
ing probabilistic model is an example of hybrid dynamic
Bayesian network (hDBN) [13], and as it is applied to C-
SLAM, we henceforth name it DBC-SLAM.

Formally, in DBC-SLAM, the aforementioned joint distribu-
tion is defined as the product of the following factors:

p(x0:`, σ0:`, β0:`, γ|o0:`, i0:`) = p(β0)p(σ0)p(x0)p(γ)×∏`
`′=1 p(σ

`′ ,x`
′ |x`′−1, σ`

′−1, β`
′
, γ, i`

′
)× (5)∏`

`′=1 p(o
`′ |x`′ , σ`′)×

∏`
`′=1 p(β

`′ , γ|o1:`′−1, i0:`
′−1).

p(β0), p(γ), p(σ0), and p(x0) represent the initial uncertainty
on the starting motion and contact states and model parame-
ters. The three sets of conditional distributions correspond to
three aspects of C-SLAM, i.e., the multi-body dynamics, the
relation between system states and sensor observations, and
the temporal updating of model parameters.

A. Stochastic Dynamic Model

The evolution of motion and contact states of a C-SLAM
problem is represented by a stochastic discrete-time multi-
body dynamic model, which is defined within the conditional
distribution p(σ`

′
,x`

′ |x`′−1, σ`
′−1, β`

′
, γ, i`

′
) in the joint dis-

tribution given in Eq.(5). This is equivalent to the assumption
that these states are determined from a first-order Markov pro-
cess, i.e., motion and contact states of the past and the future
time steps, (x`−1, σ`−1) and (x`+1, σ`+1), are independent if
one knows the current motion and contact states (x`, σ`) and
model parameters (β`, γ). In DBC-SLAM, we further simplify
the model by assuming

p(σ`,x`|x`−1, σ`−1, β`, γ, i`) =

p(σ`|x`−1, σ`−1, β`, γ, i`)× p(x`|x`−1, σ`, β`, γ, i`), (6)

where we further decouple the dependency between the con-
tact states and motion states at current time step.

However, the introduction of discrete contact states makes
a complete specification of the dynamic model challeng-
ing, as a system with an n-dimensional contact state vari-
able leads to O(3n) individual conditional models for

p(x`|x`−1, σ`, β`, i`)3. One significant drawback of the NCP-
based dynamic model is that solving the NCP scales poorly
with the number of current and potential contacts, which
makes it not suitable for real-time tracking and parameter
estimation in the C-SLAM problem [21]. Furthermore, unlike
in planning and simulation, the high prediction accuracy of
the NCP solution is not necessary in DBC-SLAM. Sensor
observations provide an alternative source of information to
correct/reduce errors in the predictions of a less detailed
dynamic model. In addition, the probabilistic nature of DBC-
SLAM also means that accurate updates of motion and contact
states of low probability are wasteful, since they will have
little effect in the subsequent computation.

For these reasons, in DBC-SLAM, we adopt a simpler
stochastic dynamic model based on the deterministic NCP-
based dynamic model. First, p(σ`|x`−1, σ`−1, β`, i`) is eval-
uated by softening the hard constraint checking step in
the NCP formulation, for instance, the probability of two
objects in contact is obtained by converting the output of
Φ(x`−1, σ`−1, β`, i`), which is defined in the NCP constraints
(4), to probability using a sigmoid function. Furthermore, we
also incorporate the spatial and temporal correlations among
the contact states in the definition of p(σ`|x`−1, σ`−1, β`, i`).
Consider the spatial configuration where a convex polyhedral
body with n facets interacts with a planar wall, even though
each vertex can be in any one of the three discrete contact
states, they are not independent – if vertex A is in-contact
with the wall, then only vertices sharing a face with A can
also be. Furthermore, the contact states at time ` have a high
probability to be the same as those at time step `−1 for most
practical scenarios with sufficiently small time step.

The predicted contact states are then applied to the NCP
equations, (3) and (4), by specifying strictly positive values
in the complementary constraints in the NCP. This yields a
simpler dynamic system of linear equations (corresponding to
the complementary quantities that must now be equal to zero)
and inequalities (corresponding to the positive quantities), the
solution of which is used to update the continuous motion
states. To reflect the inaccurate nature of the predictions made
from the reduced system, we inject noise to the updates to
construct probability distribution p(x`|x`−1, σ`, β`, i`). Note
that the updated motion states may violate constraints in the
NCP such as non-penetration between rigid bodies, due to
the inaccurate prediction and random effect. However, such
violations will normally be eliminated over time, as they
are usually associated with low prediction probabilities and
will further fail to reach sufficient likelihood when validated
against the sensor observations.

B. Sensor Observations

The conditional distribution p(o`|x`, σ`) represents the
stochastic relation between the actual motion and contact
states from their corresponding sensor observations. In an

3This corresponds to the three contact states as “not in-contact”, “in-contact
sticking” and “in-contact sliding.”



actual system, p(o`|x`, σ`) may encode direct correspondence
between sensor readings to motion states (e.g., measurement
of location and velocity, and readings from tactile sensors), or
more complex mappings (e.g., collection of image features
to identifiable locations on the surface of the manipulated
objects). It also indicates that in DBC-SLAM, we assume that
sensor readings across different time steps are independent
given the current motion state x`.

C. Modeling Temporally Varying Parameters

Conventional dynamic Bayesian modeling usually requires
a priori knowledge of the model parameters. However, this is
not the case for C-SLAM, where a robot could be deployed
in a novel environment, and it is essential for the robot to
estimate model parameters as it explores.

Many previous works in dynamic Bayesian modeling deal-
ing with the issue of unknown model parameters (e.g., [7,
9, 12, 18]) usually assume the parameters to be invariant
temporally, whose estimation can be obtained without request-
ing the robot to interact with the object. While plausible
for parameters such as the geometric dimensions of rigid
bodies, there are important types of parameters that defy these
assumptions. A case in point would be the effective friction
coefficients between contacting bodies.

There exist two simple ways to explicitly estimate tem-
porally varying parameters in a dynamic system. One is to
assume parameters of different time to be statistically inde-
pendent, which simplifies the dynamic estimation of model
parameters as they can be performed independently for each
time step. However, the complete independence assumption
usually leads to sub-optimal estimation, as it ignores de-
pendencies in parameter values of adjacent time steps (e.g.,
friction coefficients usually change slowly across time, as the
underlying materials of contact surfaces tend to be homoge-
neous within a small spatial area). Another approach handling
temporally varying model parameters introduces an “artificial”
dynamic to the parameters across time steps, typically in the
form of a simple diffusion process [14] as β`+1 = β` + η,
where η corresponds to independent samples from some
distribution models (usually Gaussian). The parameter can
then be treated similarly as the motion and contact states,
where its corresponding artificial dynamics becomes part of
the augmented system dynamic model, and the same Bayesian
dynamic inference procedure can be applied to both. The
drawback, however, is that the diffusion dynamic usually
only accounts for smooth temporal changes in parameters.
However, abrupt changes in model parameters abound in
cases when there are complex interactions between model
parameters and the motion and contact states of the system.
Consider again effective friction coefficients, whose temporal
values are determined by the physical characteristics of the
two contact bodies at their current contact locations, and could
change nondeterministically with the spatial locations.

In DBC-SLAM, we take a different approach that the tem-
porally varying model parameters are modeled with the con-
ditional distribution p(β`|o0:`−1, i1:`) in equation (5), corre-

sponding to the directed edges from observation nodes to
the parameter nodes in the graphical representation of DBC-
SLAM, figure 1. The underlying justification is that without
a precise probabilistic model for these parameters, we only
make the minimum assumption that they are conditionally
independent from each other given the observation and input
history (o1:`, i1:`). The three different models of parameter de-
pendencies are illustrated in figure 2 for a simplified dynamic
system with only motion states x` and their corresponding
sensor observations o`.

Statistical dependencies among parameters in DBC-
SLAM are represented by the relation between the con-
secutive posterior distributions over p(β`+1|o0:`, i1:`) and
p(β`|o0:`, i1:`). Specifically, if we view p(β`|o0:`, i1:`) and
p(β0) as functions of parameter values and denote them as
f `(β`) and f0(β0), respectively, p(β`+1|o0:`, i1:`) may be
specified in one of the following ways:

p(β`+1|o0:`, i1:`) = f `(β`+1),

p(β`+1|o0:`, i1:`) = w`f `(β`+1) + (1− w`)f0(β`+1),

p(β`+1|o0:`, i1:`) ∝ f0(β`+1)w`f `(β`+1)(1−w`),

(7)

where w` ∈ [0, 1] is the mixing weight in the last two
cases. Specifically, in the first case, the functional form of
p(β`|o0:`, i1:`) is reused for p(β`+1|o0:`, i1:`). In the second
and third cases, the prior distribution of the parameters in-
dependent of any sensor observations is combined with the
current posterior to form the next step predictive distribution.
The mixing weight w` takes values between 0 and 1, which
is related with the discrete contact state to reflect whether the
parameter distribution should be updated. For instance, for β`

being friction coefficient between two surfaces, w` will be set
to 0 if the two surfaces are not in contact, and subsequently
the posterior distribution of β`+1 becomes the “uninformative”
prior distribution.

D. Dynamic Bayesian Inference with Particle Filters

With the joint probabilistic generative model in DBC-SLAM,
equation (5), dynamic Bayesian inference of motion and
contact states and model parameters are formulated as updates
of their posterior distributions at each time step given the
history of input forces and sensor observations, as:

p(x`+1, σ`+1|o0:`+1, i0:`+1) ∝ p(o`+1|x`+1)×∫
β`+1

∫
x`

p(β`+1|o0:`+1, i0:`+1)
∑
σ`

p(σ`+1|x`, σ`, β`+1, i`+1)

p(x`+1|x`, σ`+1, β`+1, i`+1)p(x`, σ`|o0:`, i0:`)dβ`+1dx`.

Note that the update step is recursive, in that it relies on
the posterior distribution of motion and contact states of the
previous time step, p(x`, σ`|o0:`, i0:`)4. Furthermore, it uses
the stochastic dynamic model, the sensor observation model,
and the posterior distribution of the model parameters, the last
of which is also dynamically updated, as:

4Due to the space limit, we omit the detailed derivation of this and the
subsequent results, which will be included in an extended version of the
current work.
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Fig. 2. Illustrations of three different assumptions on the dependencies of parameters for a simplified dynamic system that only has motion
states x` and the corresponding sensor observations o`.

p(β`+1|o0:`+1, i0:`+1) ∝ p(o`+1|β`+1)p(β`+1|o0:`, i0:`).
(8)

The first term in equation (8), which measures the likelihood
of a particular model parameter value generating the sensor
observation, is computed using the posterior distributions of
the motion and contact states of previous time step, as:

p(o`+1|β`+1) =
∑
σ`+1

∫
x`+1

dx`+1p(o`+1|x`+1)∑
σ`

p(σ`+1|x`, σ`, β`+1, i`+1)∫
x`

dx`p(x`+1|x`, σ`+1, β`+1, i`+1)p(x`, σ`|o0:`, i0:`).

(9)

The second term in equation (8) can be computed using the
approaches represented by equation (7).

Implementing the dynamic Bayesian inference steps in
DBC-SLAM presents some special challenges, mainly due to
the non-smoothness of the dynamic model, the very high-
dimensional state space, and the unknown spatially varying
parameters in the dynamic model. In particular, the dynamic
model in DBC-SLAM has intrinsic non-smoothness manifested
as impulsive contact forces and discontinuous velocities due
to gain or loss of contact and transitions between sticking and
sliding at sustained contacts. Such a dynamic model precludes
the use of Bayesian filtering methods assuming simple linear
dynamic models (e.g., Kalman filters [11]) or differentiable
nonlinear dynamic models (e.g., extended Kalman filters [10]),
and renders particle filters [1] a more effective approach. For
a particular DBC-SLAM setting, the dimensionality of joint
motion and contact state space could be further reduced by
identifying a part of the state space whose distributions can
be represented in closed form, and Rao-Blackwellization can
be applied to reduce the number of variables requiring particle
approximations [6].

Implementation of the dynamic estimation of the temporally
varying parameters can usually be further simplified. On the
one hand, we can still use particles to represent their posterior
distributions. On the other hand, in many practical cases,
such model parameters may be well described with a low-
dimensional probability model that affords dense sampling.
For instance, value ranges of effective friction coefficients
corresponding to different materials can be obtained off line
to form the prior model f0(β). Such models can then be
represented by dense samples in the parameter space, and
their updating steps implemented as a grid method – in the
updating step, particles corresponding to the parameters are

not regenerated each time step, but only their weights are
recalculated based on equations (9) and (7) using the particle
representations of the motion and contact state variables.
Furthermore, in special cases when we only need to choose
between individual values of the parameters, the estimation of
parameters can be implemented precisely, where the probabil-
ities in equations (9) and (7) are updated directly.

IV. EXPERIMENTS

In this section, we demonstrate two “proof-of-concept”
applications of the DBC-SLAM framework.

A. Point-mass Moving on Planar Surface

Imagine a scenario in which a robot is to refinish a table-
top (see Figure 3(a)), where some portions of the surface
(corresponding to the smoother regions in the figure) have
a low effective friction coefficient (µ2 = 0.3) and the other
portions have a high effective friction coefficient (µ1 = 0.9).
The robot’s main task is to identify rough regions by sliding
its hand along the surface to estimate the effective friction
coefficients, so that later on it can apply extra sanding only
where needed.

We can abstract the robot’s end effector as a point mass
driven by a time-varying force u`, with motion restricted
(probably) to a half-space with a linear boundary. The essential
task of the robot to determine the effective friction coefficients
(choosing between µ1 and µ2) at all positions along the linear
edge is a C-SLAM problem, as the correspondence between
spatial locations and friction coefficients can only be obtained
if the robot can estimate both while exploring the environment.
Here, we use this simple problem as a testbed of the DBC-
SLAMsolution framework.

We generated actual trajectories of the point mass using
an NCP-based physics simulation engine dVC2d [2]. These
trajectories represent different modes of the motion of the
point mass – the point mass would lose contact near both
ends of the edge, and while in contact with the edge, would
slide to a halt in the rough region and then, as tangential
forces increased, would transition back to sliding. We then
simulated the noisy observations from an attached location
sensor on the robot by injecting white Gaussian noise to the
actual trajectories. One example of the actual trajectory and its
corresponding noisy observations are shown in Figure 3(c) as
dashed blue curves and green dots, respectively. The shaded
area is the vertical projection of the portion of the linear edge
with high friction coefficient.
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Fig. 3. Experiments of DBC-SLAM for a table polishing task. (a) Set-up of the contact problem. (b) Estimation of the probability that the
effective friction coefficients is 0.3 using DBC-SLAM, indicating contact in the smooth regions. The shaded area corresponds to the rough
region, where the friction coefficient is 0.9. (d,e) Estimation of motion trajectories using DBC-SLAM in (x,y) and (x,t) coordinates, respectively.
The red line is the estimated trajectory of the end effector. The shaded area in (c) corresponds to the high friction region, and the shaded
areas in (d) correspond to when there are stockings in the actual trajectory. (e,f) Estimation of probability of contact with the surface and
sliding on the surface, respectively. The shaded area in (e) corresponds to when there is contact in the actual trajectory, and those in (f)
correspond to when there are stockings in the actual trajectory (same as in (d)).

We applied DBC-SLAM to the observed trajectory to simul-
taneously estimate the spatial locations (x- and y- coordinates)
and the corresponding friction coefficient. In this problem,
the dynamic Bayesian inference in DBC-SLAM is implemented
with a Rao-Blackwellized particle filter, where the posterior
distribution over discrete contact states and the two possible
friction coefficients are represented in closed-form and pre-
cisely. The posterior distribution over parameters given the
history of input forces and sensor observations are updated as
a weighted mixture of the prior distribution and the posterior
of the last time step, corresponding to the second equation
in (7).

Figure 3(b) shows the estimated probabilities of effective
friction coefficient taking the value µ2 = 0.3 at the corre-
sponding estimated x coordinate. Figure 3(c) shows the DBC-
SLAM estimated point mass trajectory (x- and y-coordinates
as the solid red curve) along with the actual trajectory and
its noisy sensor observations. In Figure 3(d) we show the x-
coordinates of the filtered trajectory with respect to time steps
and the ground-truth sticking states in the actual trajectory.
Figure 3(e) shows the instantaneous probabilities of the point
mass being in the in- or out-of-contact state with the edge, and
Figure 3(f) shows the instantaneous probabilities of sticking
or sliding of the point mass.

We would like to highlight several points on these results.
First, notice that despite large observation noise, DBC-SLAM
tracks the simulated motion and the corresponding discrete

contact and sliding/sticking states well, though not perfectly
due to the noisy sensor data. However, what cannot be deduced
from the plots is that tracking performance is quite poor if the
filter does not simultaneously estimate the friction coefficient.
Indeed, if we assume the friction coefficient is constant over
the edge, then soon after the contact moves into a region with
different friction coefficient, the filter diverges. Second, as one
might expect, estimation of the friction coefficient is more
reliable when the point mass is in contact with the surface. In
particular, when the point mass slides into the coarse region
and switches to a sticking state, the probability that the friction
coefficient is the smaller value (i.e., µ = 0.3) is significantly
lower than a random guess (0.5), which is predominantly the
case in the central portion of the rough region. Last, poor
estimation can happen when the momentum of the point mass
is large in comparison to the friction impulses acting to stop
it, which is often the case in this example. This is evidenced
by the blue points indicating high probability that µ = 0.3 in
the left and right ends of the rough region of Figure 3(b).

B. Parallel-jaw Gripper

In our second test, we use DBC-SLAM to model the task of
a parallel-jaw gripper (one may be found in automatic man-
ufacturing or collecting samples for the International Space
Station) grasping a triangularly shaped object on a supporting
horizontal surface(top left and top center image of Figure 4
show the gripper and the triangular object.) For the purpose of



modeling, we abstract the parallel jaws of the gripper as two
position-controlled planar half-spaces. Additionally, a time-
varying force and moment are applied to the triangle, so that
as the jaws close, the triangle experiences multiple intermittent
contacts and switches between sticking and slipping contact.
We assume that the object’s mass is known and uniformly
distributed so that its center of mass coincides with its geomet-
ric center. Furthermore, the dimension of the triangle is also
known to the gripper’s controller. There is friction between
the object and the gripper, with the coefficient assumed to be
time- and space-invariant (µ = 0.4). The gripper’s controller
knows only that the friction value is one of the following three
(µ ∈ {0.1, 0.4, 0.7}). For simplicity, we assume that there is
no friction between the object and the supporting plane.

As in the previous example, we synthesize the actual
trajectory of the triangle’s center using dVC2d [2], and provide
noise-corrupted trajectories of the triangle to our DBC-SLAM
filter. As the jaws were closed, time-varying force and moment
functions were applied to the triangle. These caused it to
approach the lower jaw first, while rotating and moving in
the positive x-direction. Contact at a single vertex was formed
initially and then the triangle formed edge contact with that
jaw while continuing to slide. The applied force and moment
were purposely designed to make the triangle “rattle around”
between the jaws before the grasp was secure. There were
multiple periods of vertex-jaw and edge-jaw contacts and
sticking-slip transition before the jaws closed completely on
the triangle.

As introduced in Section III-A, DBC-SLAM takes advantage
of the compact representation of the NCP formulation to
obviate the need for explicit specification of the multitude
of dynamic models. Yet, compared with the first experiment,
the main challenge here is the enlarged number of contact
modes and corresponding dynamic models as a result of the
shape of the manipulated object and the two parallel jaws. In
particular, when the vertices of the triangle are in contact with
the jaws, each vertex may be in four different contact states
relative to the two jaws of the gripper: out-of-contact, sticking,
sliding left, or sliding right. Each vertex has 4 contact modes
on each gripper. Therefore there are 83 = 512 modes. Some
of these can be excluded by geometric constraints (e.g., it is
not possible for all three vertexes to be in contact with the
same jaw at the same time), but there is still a substantial
number of contact states and corresponding dynamic models
at each time step that the DBC-SLAM filter has to consider. In
implementation, this problem is alleviated by considering only
contact states with probability over a preset threshold. Because
at each time step, a large fraction of the discrete contact states
have small likelihood, in practice, the DBC-SLAM filter needs
only to deal with a significantly reduced set of contact modes.

The plots in Figure 4 show the DBC-SLAM tracking results
for this task as red solid curves. The left plot shows the
motion of the triangle’s center of mass. The center plot shows
triangle’s orientation versus time. Overall, as demonstrated
in both plots, the DBC-SLAM filter gives reliable estimations
of the triangle’s motion despite significant noise in the ob-

servations. Also importantly, note that critical contact state
transitions (indicated by non-smooth points on the trajectories)
are properly predicted by the DBC-SLAM filter. Last, the plot
on the right shows the probability that the friction parameter is
0.4. By the end of the simulation, the filter is essentially sure
that the value of the parameter is 0.4 (which is the value used
in the dynamic model in dVC2d). The relatively slow and non-
monotonic convergence to the correct value can be partially
explained by switches between sticking and sliding. Sliding
gives more useful information about the value of the friction
coefficient. This can be seen when the triangle formed sliding
contact with one jaw, the probability of the correct parameter
value gets closer to one near the end of the trajectory. Finally,
DBC-SLAM also achieves improved run times compared to a
straightforward incorporation of NCP-based models. With the
same number of particles, the former is about four times faster
than the latter with an unoptimized MATLAB implementation.

V. DISCUSSION

In this paper, we described a general solution to a broad
class of grasping and manipulation problems, which we termed
as contact simultaneous localization and modeling (C-SLAM)
problems. In these problems, the robot needs to accurately
track the motions of the contacted bodies and the locations
of contacts, while simultaneously estimating important system
parameters, such as body dimensions, masses and friction
coefficients between contacting surfaces. Our solution frame-
work is based on a dynamic Bayesian inference framework
and hence, is referred to as Dynamic Bayesian C-SLAM
(DBC-SLAM). DBC-SLAM combines an NCP-based dynamic
model with a dynamic Bayesian network, and incorporates
model parameter estimation as an intrinsic part of the overall
inference procedure. We showed two preliminary “proof-of-
concept” examples that demonstrated the potential value of
DBC-SLAM in robotic contact tasks.

There are several directions in which we would like to
extend the current work. In particular, we are interested in
designing fast reactive grasp acquisition strategies that use the
output of DBC-SLAM. These new strategies will be compared
to grasp strategies based on less sophisticated task models,
for example, Srinivasa’s quasi-static push-grasping [5]. Our
hypothesis (to be tested) is that the improved state information
will allow faster push-grasping and will also extend the capture
envelop for slow quasi-static push-grasps. We would also like
to improve the basic DBC-SLAM framework based on experi-
mental results, and extend it to handle approximate geometric
models obtained directly from CAD data or constructed from
sensor data (e.g., the tactile sensors of the Barrett Hand
or a Kinect). Last, we would like to analyze human-robot
collaborative assembly tasks requiring the use of secure multi-
handed grasps of large objects by a robot hand and one or
more human hands. This analysis could be done off-line after
the task is complete. The estimated motion, contact state, and
model parameters could be used for improved task models
for others to use and for automatic “coding” of the task into
qualitative segments such as grasp, pick-up, release, and insert.
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Fig. 4. (top left) A real parallel-jaw gripper and its simplification to the experiment of grasping a triangular object in the plane (top center).
(bottom) Estimation results using a prototype implementation of DBC-SLAM. (a) Estimation of motion trajectories of the object’s center of
mass. (b) Estimation of orientation trajectory. (c) Estimation of the probabilities that the effective friction coefficient takes on its true values
of 0.4.
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