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Abstract. Techniques for information hiding have become increasingly
more sophisticated and widespread. With high-resolution digital images
as carriers, detecting hidden messages has become considerably more
difficult. This paper describes an approach to detecting hidden messages
in images that uses a wavelet-like decomposition to build higher-order
statistical models of natural images. Support vector machines are then
used to discriminate between untouched and adulterated images.

1 Introduction

Information hiding techniques (e.g., steganography and watermarking) have re-
cently received quite a bit of attention (see [12, 1, 10, 15] for general reviews).
With digital images as carriers, detecting the presence of hidden messages poses
significant challenges. Although the presence of embedded messages is often im-
perceptible to the human eye, it may nevertheless disturb the statistics of an
image. Previous approaches to detecting such deviations [11, 28, 17] typically
examine first-order statistical distributions of intensity or transform coefficients
(e.g., discrete cosine transform, DCT). The drawback of this analysis is that sim-
ple counter-measures that match first-order statistics are likely to foil detection.
In contrast, the approach taken here relies on building higher-order statisti-
cal models for natural images [13, 19,29, 14, 21] and looking for deviations from
these models. We show that, across a large number of natural images, there exist
strong higher-order statistical regularities within a wavelet-like decomposition,
see also [9]. The embedding of a message significantly alters these statistics and
thus becomes detectable. Support vector machines (linear and non-linear) are
employed to detect these statistical deviations.

2 Image Statistics

The decomposition of images using basis functions that are localized in spatial
position, orientation, and scale (e.g., wavelets) has proven extremely useful in a
range of applications (e.g., image compression, image coding, noise removal, and
texture synthesis). One reason is that such decompositions exhibit statistical



ωx

ωy

Fig. 1. An idealized multi-scale and orientation decomposition of frequency space.
Shown, from top to bottom, are levels 0, 1, and 2, and from left to right, are the
lowpass, vertical, horizontal, and diagonal subbands.

regularities that can be exploited (e.g., [20,18, 2]). Described below is one such
decomposition, and a set of statistics collected from this decomposition.

The decomposition employed here is based on separable quadrature mirror
filters (QMFs) [23, 26, 22]. As illustrated in Fig. 1, this decomposition splits the
frequency space into multiple scales and orientations. This is accomplished by
applying separable lowpass and highpass filters along the image axes generat-
ing a vertical, horizontal, diagonal and lowpass subband. Subsequent scales are
created by recursively filtering the lowpass subband. The vertical, horizontal,
and diagonal subbands at scale i = 1, ..., n are denoted as Vi(x, y), Hi(x, y), and
Di(x, y), respectively. Shown in Fig. 2 is a three-level decomposition of a “disc”
image.

Given this image decomposition, the statistical model is composed of the
mean, variance, skewness and kurtosis of the subband coefficients at each ori-
entation and at scales i = 1, ..., n − 1. These statistics characterize the basic
coefficient distributions. The second set of statistics is based on the errors in an
optimal linear predictor of coefficient magnitude. As described in [2], the sub-
band coefficients are correlated to their spatial, orientation and scale neighbors.
For purposes of illustration, consider first a vertical band, Vi(x, y), at scale i. A
linear predictor for the magnitude of these coefficients in a subset of all possible



Fig. 2. Shown are the absolute values of the subband coefficients at three scales and
three orientations for a “disc” image. The residual lowpass subband is shown in the
upper-left corner.

neighbors 1 is given by:

Vi(x, y) = w1Vi(x − 1, y) + w2Vi(x + 1, y)

+ w3Vi(x, y − 1) + w4Vi(x, y + 1)

+ w5Vi+1(x/2, y/2) + w6Di(x, y)

+ w7Di+1(x/2, y/2), (1)

where wk denotes scalar weighting values. This linear relationship is expressed
more compactly in matrix form as:

V = Qw, (2)

where the column vector w = (w1 . . . w7)
T
, the vector V contains the coef-

ficient magnitudes of Vi(x, y) strung out into a column vector, and the columns
of the matrix Q contain the neighboring coefficient magnitudes as specified in
Equation (1) also strung out into column vectors. The coefficients are determined
by minimizing the quadratic error function:

E(w) = [V − Qw]2. (3)

This error function is minimized by differentiating with respect to w:

dE(w)/dw = 2QT [V − Qw], (4)

1 The particular choice of spatial, orientation and scale neighbors was motivated by
the observations of [2] and modified to include non-casual neighbors.



setting the result equal to zero, and solving for w to yield:

w = (QT Q)−1QT
V . (5)

The log error in the linear predictor is then given by:

E = log2(V ) − log2(|Qw|). (6)

It is from this error that additional statistics are collected, namely the mean,
variance, skewness, and kurtosis. This process is repeated for each vertical sub-
band at scales i = 1, ..., n − 1, where at each scale a new linear predictor is
estimated. A similar process is repeated for the horizontal and diagonal sub-
bands. The linear predictor for the horizontal subbands is of the form:

Hi(x, y) = w1Hi(x − 1, y) + w2Hi(x + 1, y)

+ w3Hi(x, y − 1) + w4Hi(x, y + 1)

+ w5Hi+1(x/2, y/2) + w6Di(x, y)

+ w7Di+1(x/2, y/2), (7)

and for the diagonal subbands:

Di(x, y) = w1Di(x − 1, y) + w2Di(x + 1, y)

+ w3Di(x, y − 1) + w4Di(x, y + 1)

+ w5Di+1(x/2, y/2) + w6Hi(x, y)

+ w7Vi(x, y). (8)

The same error metric, Equation (6), and error statistics computed for the verti-
cal subbands, are computed for the horizontal and diagonal bands, for a total of
12(n−1) error statistics. Combining these statistics with the 12(n−1) coefficient
statistics yields a total of 24(n − 1) statistics that form a feature vector which
is used to discriminate between images that contain hidden messages and those
that do not.

3 Classification

From the measured statistics of a training set of images with and without hidden
messages, the goal is to determine whether a test image contains a message. In
earlier work [6], we performed this classification using a Fisher linear discrimi-
nant (FLD) analysis [7, 5]. Here a more flexible support vector machine (SVM)
classifier is employed [24,25, 3]. We briefly describe, in increasing complexity,
three classes of SVMs. The first, linear separable case is mathematically the
most straight-forward. The second, linear non-separable case, contends with sit-
uations in which a solution cannot be found in the former case, and is most
similar to a FLD. The third, non-linear case, affords the most flexible classifi-
cation scheme and, in and our application, the best classification accuracy. For
simplicity a two-class SVM is described throughout.
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Fig. 3. Linear (a) separable and (b) non-separable support vector machines. Shown is
a toy example of a two-class discriminator (white and black dots) for data in R2.

3.1 Linear Separable SVM

Denote the tuple (xi, yi) , i = 1, ..., N as exemplars from a training set of images
with and without hidden messages. The column vector xi contains the measured
image statistics as outlined in the previous section, and yi = −1 for images with
a hidden message, and yi = 1 for images without a hidden message. The linear
separable SVM classifier amounts to a hyperplane that separates the positive
and negative exemplars, Fig. 3(a). Points which lie on the hyperplane satisfy the
constraint:

w
t
xi + b = 0, (9)

where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance
from the origin to the hyperplane, and || · || denotes the Euclidean norm. Define
now the margin for any given hyperplane to be the sum of the distances from
the hyperplane to the nearest positive and negative exemplar, Fig. 3(a). The
separating hyperplane is chosen so as to maximize the margin. If a hyperplane
exists that separates all the data then, within a scale factor:

w
t
xi + b ≥ 1, if yi = 1 (10)

w
t
xi + b ≤ −1, if yi = −1. (11)

These pair of constraints can be combined into a single set of inequalities:

(wt
xi + b) yi − 1 ≥ 0, i = 1, ..., N. (12)

For any given hyperplane that satisfies this constraint, the margin is 2/||w||. We
seek, therefore, to minimize ||w||2 subject to the constraints in Equation (12).

For largely computational reasons, this optimization problem is reformulated
using Lagrange multipliers, yielding the following Lagrangian:

L(w, b, α1, ..., αN) =
1

2
||w||2 −

N
∑

i=1

αi (wt
xi + b) yi +

N
∑

i=1

αi, (13)



where αi are the positive Lagrange multipliers. This error function should be
minimized with respect to w and b, while requiring that the derivatives of L(·)
with respect to each αi is zero and constraining αi ≥ 0, for all i. Because this
is a convex quadratic programming problem, a solution to the dual problem
yields the same solution for w, b, and α1, ..., αN. In the dual problem, the same
error function L(·) is maximized with respect to αi, while requiring that the
derivatives of L(·) with respect to w and b are zero and the constraint that
αi ≥ 0. Differentiating with respect to w and b, and setting the results equal to
zero yields:

w =

N
∑

i=1

αixiyi (14)

N
∑

i=1

αiyi = 0. (15)

Substituting these equalities back into Equation (13) yields:

LD =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjx
t
ixjyiyj. (16)

Maximization of this error function may be realized using any of a number of
general purpose optimization packages that solve linearly constrained convex
quadratic problems (see e.g., [8]).

A solution to the linear separable classifier, if it exists, yields values of αi,
from which the normal to the hyperplane can be calculated as in Equation (14),
and from the Karush-Kuhn-Tucker [8] (KKT) condition:

b =
1

N

N
∑

i=1

(

yi − w
t
xi

)

, (17)

for all i, such that αi 6= 0. From the separating hyperplane, w and b, a novel
exemplar, z, can be classified by simply determining on which side of the hyper-
plane it lies. If the quantity w

t
z + b is greater than or equal to zero, then the

exemplar is classified as not having a hidden message, otherwise the exemplar is
classified as containing a hidden message.

3.2 Linear Non-Separable SVM

It is possible, and even likely, that the linear separable SVM will not yield a
solution when, for example, the training data do not uniformly lie on either
side of a separating hyperplane, as illustrated in Fig. 3(b). Such a situation
can be handled by softening the initial constraints of Equation (10) and (11).
Specifically, these constraints are modified with “slack” variables, ξi, as follows:

w
t
xi + b ≥ 1 − ξi, if yi = 1 (18)

w
t
xi + b ≤ −1 + ξi, if yi = −1, (19)



Fig. 4. Non-linear support vector machine, as compared with the linear support vector
machine of Fig. 3.

with ξi ≥ 0, i = 1, ..., N . A training exemplar which lies on the “wrong” side of
the separating hyperplane will have a value of ξi greater than unity. We seek a
hyperplane that minimizes the total training error,

∑

i ξi, while still maximizing
the margin. A simple error function to be minimized is ||w||2/2+C

∑

i ξi, where
C is a user selected scalar value, whose chosen value controls the relative penalty
for training errors. Minimization of this error is still a quadratic programming
problem. Following the same procedure as the previous section, the dual problem
is expressed as maximizing the error function:

LD =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjx
t
ixjyiyj, (20)

with the constraint that 0 ≤ αi ≤ C. Note that this is the same error function
as before, Equation (16) with the slightly different constraint that αi is bounded
above by C. Maximization of this error function and computation of the hyper-
plane parameters are accomplished as described in the previous section.

3.3 Non-Linear SVM

Fundamental to the SVMs outlined in the previous two sections is the limitation
that the classifier is constrained to a linear hyperplane. Shown in Fig. 4 is an
example of where a non-linear separating surface would greatly improve the
classification accuracy. Non-linear SVMs afford such a classifier by first mapping
the training exemplars into a higher (possibly infinite) dimensional Euclidean
space in which a linear SVM is then employed. Denote this mapping as:

Φ : L → H, (21)

which maps the original training data from L into H. Replacing xi with Φ(xi)
everywhere in the training portion of the linear separable or non-separable SVMs
of the previous sections yields an SVM in the higher-dimensional space H.



It can, unfortunately, be quite inconvenient to work in the space H as this
space can be considerably larger than the original L, or even infinite. Note,
however, that the error function of Equation (20) to be maximized depends only
on the inner products of the training exemplars, x

t
ixj. Given a “kernel” function

such that:

K(xi, xj) = Φ(xi)
tΦ(xj), (22)

an explicit computation of Φ can be completely avoided. There are several choices
for the form of the kernel function, for example, radial basis functions or poly-
nomials. Replacing the inner products Φ(xi)

tΦ(xj) with the kernel function
K(xi, xj) yields an SVM in the space H with minimal computational impact
over working in the original space L.

With the training stage complete, recall that a novel exemplar, z, is classified
by determining on which side of the separating hyperplane (specified by w and b)
it lies. Specifically, if the quantity w

tΦ(z)+b is greater than or equal to zero, then
the exemplar is classified as not having a hidden message, otherwise the exemplar
is classified as containing a hidden message. The normal to the hyperplane, w,
of course now lives in the space H, making this testing impractical. As in the
training stage, the classification can again be performed via inner products. From
Equation (14):

w
tΦ(z) + b =

N
∑

i=1

αiΦ(xi)
tΦ(z)yi + b

=

N
∑

i=1

αiK(xi, z)yi + b. (23)

Thus both the training and classification can be performed in the higher-dimensional
space, affording a more flexible separating hyperplane and hence better classi-
fication accuracy. We next show the performance of a linear non-separable and
non-linear SVM in the detection of hidden messages. The SVMs classify images
based on the 72-dimensional feature vector as described in Section 2.

4 Results

Shown in Fig. 5 are several examples taken from a database of natural images 2.
These images span decades of digital and traditional photography and consist of
a broad range of intdoor and outdoor scenes. Each 8-bit per channel RGB image
is cropped to a central 640×480 pixel area. Statistics from 1,800 such images are
collected as follows. Each image is first converted from RGB to gray-scale (gray
= 0.299R + 0.587G + 0.114B). A four-level, three-orientation QMF pyramid is
constructed for each image, from which a 72-length feature vector of coefficient

2 Images were downloaded from: philip.greenspun.com and reproduced here with
permission from Philip Greeenspun.



Fig. 5. Sample images.

and error statistics is collected, Section 2. To reduce sensitivity to noise in the
linear predictor, only coefficient magnitudes greater than 1.0 are considered.
The training set of “no-steg” statistics comes from either 1,800 JPEG images
(quality ≈ 75), 1,800 GIF images (LZW compression), or 1,800 TIFF images
(no compression). The GIF and TIFF images are converted from their original
JPEG format.

Messages are embedded into JPEG images using either Jsteg3 or OutGuess4

(run with (+) and without (−) statistical correction). Jsteg and OutGuess are
transform-based systems that embed messages by modulating the DCT coef-
ficients. Unique to OutGuess is a technique for embedding into only one-half
of the redundant bits and then using the remaining redundant bits to preserve
the first-order distribution of DCT coefficients [16]. Messages are embedded into
GIF images using EzStego5 which modulates the least significant bits of the
sorted color palette index. Messages are embedded into the TIFF images using
a generic LSB embedding that modulates the least-significant bit of a random
subset of the pixel intensities. In each case, a message consists of a n × n pixel
(n ∈ [32, 256]) central portion of a random image chosen from the same im-
age database. After the message is embedded into the cover image, the same
transformation, decomposition, and collection of statistics as described above
is performed. In all cases the embedded message consists of only the raw pixel
intensities (i.e., no image headers).

Shown in Fig. 6 is an example cover and message image, and the result of
embedding the message into the cover image. In this example, the mean of the
absolute value of the difference between the cover and steg image is 3.1 intensity
values with a standard deviation of 3.2. For display purposes the difference image
is renormalized into the range [0, 255].

In the first set of results linear non-separable SVMs, implemented using the
freely available package LIBSVM [4], were separately trained to classify the

3 Jsteg V4, by Derek Upham, is available at ftp.funet.fi
4 OutGuess, by Niels Provos, is available at www.outguess.org
5 EZStego, by Romana Machado, is available at www.stego.com



cover message steg=cover+message |cover - steg|

Fig. 6. Shown is a cover image and a steg image containing an embedded message.
Also shown is the the 256 × 256 message (at scale), and the absolute value of the
difference between the cover and steg image (renormalized into the range [0,255] for
display purposes).

JPEG, GIF and TIFF embeddings. In each case, the training set consists of the
1,800 “no-steg” images, and a random subset of 1,800 “steg” images embedded
either with OutGuess+ , EzStego or LSB, and with varying message sizes. 6 The
SVM parameters were chosen to yield a 1.0% false-positive rate. The trained
SVM is then used to classify all of the remaining previously unseen steg images
of the same format, Table 1. In this table, the columns correspond to separate
classification results for JPEG, GIF and TIFF format images. Note that the
JPEG classifier generalizes to the different embedding programs not previously
seen by the classifier. Also shown in this table are results from classification em-
ploying a Fisher linear discriminant analysis used in our earlier work [6]. Both the
FLD and SVM classifiers employ a linear separating hyperplane for classification
so, as expected, performance is similar across these different classifiers.

Shown in Table 2 are classification results for a non-linear SVM (using a
radial basis kernel function), also implemented using LIBSVM [4]. In this table
results are shown for a 1.0% and 0.0% false positive rate. Note the significant
improvement over the linear classifiers of Table 1. Shown in Fig. 7 is a graphical
comparison of all of these results.

Lastly, we also tested detection accuracy under the F5 embedding algo-
rithm [27]. Detection, as described above, was just slightly above chance. Signif-
icantly better detection rates were achieved by collecting statistics from within
and across all three color channels (as opposed to analyzing only a grayscale
converted image). In this case basic coefficient statistics are collected from all
three RGB color channels, and the linear predictor incorporates color as well

6 OutGuess is run with unlimited iterations to find the best embedding. OutGuess
imposes limits on the message size, so not all images were able to be used for cover.
This is significant only for message sizes of 256×256, where less than 300 steg images
were generated.



FLD SVM
Embedding Messsage JPEG GIF TIFF JPEG GIF TIFF

Jsteg 256 × 256 94.0 - - 92.8 - -
Jsteg 128 × 128 95.7 - - 94.3 - -
Jsteg 64 × 64 95.3 - - 94.3 - -
Jsteg 32 × 32 51.7 - - 52.2 - -

OutGuess− 256 × 256 92.8 - - 92.8 - -
OutGuess− 128 × 128 63.4 - - 63.2 - -
OutGuess− 64 × 64 27.7 - - 28.6 - -
OutGuess− 32 × 32 5.9 - - 6.9 - -

OutGuess+ 256 × 256 74.4 - - 78.4 - -
OutGuess+ 128 × 128 41.4 - - 40.7 - -
OutGuess+ 64 × 64 14.0 - - 14.8 - -
OutGuess+ 32 × 32 4.1 - - 3.7 - -

EzStego 194 × 194 - 45.2 - - 44.5 -
EzStego 128 × 128 - 13.8 - - 14.3 -
EzStego 64 × 64 - 2.9 - - 2.5 -
EzStego 32 × 32 - 1.6 - - 1.5 -

LSB 194 × 194 - - 42.3 - - 42.7
LSB 128 × 128 - - 16.8 - - 17.2
LSB 64 × 64 - - 2.8 - - 2.2
LSB 32 × 32 - - 1.3 - - 1.3

Table 1. Classification accuracy (percent) with 1.0% false positives for varying message
sizes (the maximum message size for EzStego and LSB is 194 × 194). Classification is
from an earlier Fisher Linear discriminant (FLD) analysis [6] and a linear non-separable
SVM, Section 3.2. As expected, the classification accuracy is comparable. See also
Fig. 7.

as scale, orientation, and spatial neighbors. The resulting feature vector is of
size 216 (3 × 72). With a 0.0% false positive rate, a non-linear SVM is able to
correctly detect messages sizes of 160 × 160, 128 × 128, 64 × 64, and 32 × 32
with an accuracy of 90.2%, 83.1%, 57.0%, and 42.2%, respectively.

5 Discussion

Messages can be embedded into digital images in ways that are imperceptible to
the human eye, and yet, these manipulations can fundamentally alter the under-
lying statistics of an image. To detect the presence of hidden messages we have
employed a model based on statistics taken from a multi-scale decomposition.
This model includes basic coefficient statistics as well as error statistics from an
optimal linear predictor of coefficient magnitude. These higher-order statistics
appear to capture certain properties of “natural” images, and more importantly,
these statistics are significantly altered when a message is embedded within an
image. This makes it possible to detect, with a reasonable degree of accuracy,



SVM(1.0%) SVM(0.0%)
Embedding Messsage JPEG GIF TIFF JPEG GIF TIFF

Jsteg 256 × 256 99.0 - - 98.5 - -
Jsteg 128 × 128 99.3 - - 99.0 - -
Jsteg 64 × 64 99.1 - - 98.7 - -
Jsteg 32 × 32 86.0 - - 74.5 - -

OutGuess− 256 × 256 98.9 - - 97.1 - -
OutGuess− 128 × 128 93.8 - - 85.8 - -
OutGuess− 64 × 64 72.6 - - 53.1 - -
OutGuess− 32 × 32 33.2 - - 14.4 - -

OutGuess+ 256 × 256 95.6 - - 89.5 - -
OutGuess+ 128 × 128 82.2 - - 63.7 - -
OutGuess+ 64 × 64 54.7 - - 32.1 - -
OutGuess+ 32 × 32 21.4 - - 7.2 - -

EzStego 194 × 194 - 77.2 - - 76.9 -
EzStego 128 × 128 - 39.2 - - 36.6 -
EzStego 64 × 64 - 6.5 - - 4.6 -
EzStego 32 × 32 - 2.7 - - 1.5 -

LSB 194 × 194 - - 78.0 - - 77.0
LSB 128 × 128 - - 44.7 - - 40.5
LSB 64 × 64 - - 6.2 - - 4.2
LSB 32 × 32 - - 1.9 - - 1.3

Table 2. Classification accuracy (percent) with 1.0% or 0.0% false positives and for
varying message sizes (the maximum message size for EzStego and LSB is 194 × 194).
Classification is from a non-linear SVM, Section 3.3. Note the significant improvement
in accuracy as compared to a linear classifier, Table 1. See also Fig. 7.

the presence of hidden messages in digital images. This detection is achieved
with either linear or non-linear pattern classification techniques, with the latter
providing significantly better performance. To avoid detection, of course, one
need only embed a small enough message that does not significantly disturb the
image statistics.

Although not tested here, it is likely that the presence of digital watermarks
could also be detected. Since one of the goals of watermarking is robustness to
attack and not necessarily concealment, watermarks typically alter the image
in a more substantial way. As such, it is likely that the underlying statistics
will be more significantly disrupted. Although only tested on images, there is
no inherent reason why the approaches described here would not work for audio
signals or video sequences.

The techniques described here would almost certainly benefit from several
extensions: (1) the higher-order statistical model should incorporate correlations
within and between all three color channels; (2) the classifier should be trained
separately on different classes of images (e.g., indoor vs. outdoor); and (3) the
classifier should be trained separately on images with varying compression rates.
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Fig. 7. Classification accuracy for (a) Fisher linear discriminant with 1.0% false posi-
tives; (b) linear non-separable SVM with 1.0% false positives; (c) non-linear SVM with
1.0% false positives; and (d) non-linear SVM with 0.0% false positive rates. The values
along the horizontal axis denote the size of the embedded message. See also Tables 1
and 2.

One benefit of the higher-order models employed here is that they are not
as vulnerable to counter-attacks that match first-order statistical distributions
of pixel intensity or transform coefficients. It is possible, however, that counter-
measures will be developed that can foil the detection scheme outlined here. The
development of such techniques will in turn lead to better detection schemes, and
so on.
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