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Abstract
Recent years have seen great interest in using
deep architectures for feature learning from data.
One drawback of the commonly used unsupervised
deep feature learning methods is that for super-
vised or semi-supervised learning tasks, the in-
formation in the target variables are not used un-
til the final stage when the classifier or regressor
are built on the learned features. This could lead
to over-generalized features that are not competi-
tive on the specific supervised or semi-supervised
learning tasks. In this work, we describe a new
learning method that combines deep feature learn-
ing on mixed labeled and unlabeled data sets in
a weakly supervised learning framework. Specif-
ically, we describe a weakly supervised learning
method of a prior supervised convolutional stacked
auto-encoders (PCSA), of which information in the
target variables is represented probabilistically us-
ing a Gaussian Bernoulli restricted Boltzmann ma-
chine (RBM). We apply this method to the decod-
ing problem of a BCI system. Our experimental re-
sults show that PCSA achieves significant improve-
ment in decoding performance on benchmark data
sets compared to the unsupervised feature learning
as well as to the current state-of-the-art algorithms
that are based on manually crafted features.

1 Introduction
Recently, feature learning using deep hierarchal structures
has emerged as an effective methodology in machine learn-
ing to automatically extract features from data. Successful
applications of deep feature learning algorithms can be found
in recent literature across a variety of domains such as ob-
ject recognition [Nair and Hinton, 2009], acoustic and speech
processing [Mohamed et al., 2011], and video analysis [Le et
al., 2011]. However, many current deep feature learning al-
gorithms are unsupervised in nature, which use the fidelity in
reconstruction of the unlabeled training data set as the opti-
mization criterion. When applying these algorithms to super-
vised or semi-supervised learning tasks, the effect of the tar-
get variables (e.g., class labels or regression targets) usually
appear after the low-level features have been learned. While

it has been argued that the postponed introduction of target
variables is to better regularize the feature learning, general
statistical characteristics in the target variables can still pro-
vide information to extract features that are more effective for
the specific task. This is particularly the case when the target
variables are of high dimensionality and complex structures.

The main objective of this work is to incorporate informa-
tion in the target variables in a supervised learning task into
the deep feature learning algorithms without causing overfit-
ting, which keeps a good balance between feature generality
and task specificity. To this end, we develop a new deep fea-
ture learning method that we term as prior supervised convo-
lutional stacked auto-encoder (PCSA). PCSA is the stacked
auto-encoder [Bengio et al., 2007], the parameters of which
are organized in a convolutional manner to reduce parame-
ter dimensionality [Lecun et al., 1998]. What distinguishes
PCSA from the unsupervised deep feature learning methods
is that in training it incorporates a probabilistic model of the
target variable in the learning task (known as target priors).
The main function of the target prior is to weakly supervise
the feature learning by enforcing the predictions of targets
from the learned features to be consistent with the general
statistical characteristics of the target variables. Thus it serves
as a bottleneck that funnels relevant aspects of the target vari-
ables into the feature learning process.

The target prior and the unsupervised learning objective
balance the generality of the features learned from the un-
labeled data and the specificity of the supervised learning
task. The use of uncorresponded target variables has a fur-
ther advantage that it relieves the burden of collecting a large
set of labeled data in typical supervised learning tasks. We
demonstrate the effectiveness of PCSA in the application of
decoding task of an ECoG based Brain Computer Interface
(BCI) system. BCI systems interpret brain signals into con-
trol commands to output devices, and provide a promising
means to restoring mobility for patients with physical disabil-
ities [McFarland and Wolpaw, 2008]. Recent studies in neu-
robiology have suggested that Electrocorticography (ECoG)
signals have strong correlations with limb motions [Liang and
Bougrain, 2009; Kubánek et al., 2009; Wang et al., 2012a;
Wang et al., 2010], and provide a good signal source to build
effective BCI systems. The decoding problem in ECoG BCI
system concerns transforming the time series corresponding
to the lively recorded ECoG signals into the time series of



kinematic parameters of the target motor component (e.g.,
limb or finger position and joint angles).

The raw ECoG signals are not suitable for direct decod-
ing because of their high dimensionality and the presence of
background noise. More usually, low dimensional features
robust to noise and relevant to the decoding task are extracted
from the ECoG signals and used in the subsequent decoding
tasks. So far the most effective ECoG features are based on
the power spectrum density [Kubánek et al., 2009] or phys-
ical power [Bougrain and Liang, 2009] of a few fixed fre-
quency subbands. These features are justified on empirical
observations that certain frequency subbands seem to have
strong correlation with the motion intents of the subject that
map to motor controls of various brain areas.

We apply the PCSA framework to extract more effective
features automatically from a large set of ECoG recordings.
In particular, we take advantage of the rich structural regu-
larities in the target variables (in this case, the time series
of the kinematic parameters). Such regular patterns come
from the commonality of the kinematic parameter time se-
ries in performing the same task, notwithstanding the differ-
ence across the cortical structure of the subjects. In this work,
such common statistical patterns in the target time series are
captured with a Gaussian Bernoulli restricted Boltzmann ma-
chine (RBM) [Hinton and Salakhutdinov, 2006], which is
used as the target prior model. When applied to the decoding
task of the ECoG signals, our method demonstrates promis-
ing performance improvement compared to the state-of-the-
art manually selected features.

The rest of this paper is organized as follows. Section 2
briefly discusses related work of the proposed model. Sec-
tion 3 introduces the PCSA model. Its learning is discussed
in section 3.3 in which the target prior constraint will be in-
troduced. The experiment is presented in section 4, where we
demonstrate that the proposed model can learn more effective
features by comparing the decoding performance with that of
using the existing features. Section 5 summaries the paper
and presents our plan for future work.

2 Related Work
Our work is related to several recent works that incorpo-
rate prior knowledge of target variables [Lefort et al., 2010;
Schapire et al., 2002; Zhu, 2006; Mann and McCallum, 2007;
Mann and Mccallum, 2008; Chang et al., 2007]. In learn-
ing with uncertain labels [Lefort et al., 2010], distribution
over class labels for each data example is used in place of
corresponding pairs of data/target variables to reduce the re-
liance on labeled training data set. A similar idea was used
in semi-supervised learning that uses the proportion of differ-
ent classes [Schapire et al., 2002; Zhu, 2006] to predict the
class labels on the uncorresponded training data examples. In
generalized expectation(GE), the knowledge about class pro-
portions conditioned on a subset of input features are used
as additional information to regularize the classifier [Mann
and McCallum, 2007; Mann and Mccallum, 2008]. Several
previous works also utilize constraints on the target variables
from the domain knowledge. For instance, inspired by the
knowledge of language, constraint driven learning (CODL)

[Chang et al., 2007] enforces task specific constraints on the
target labels by appending a penalty term in the objective
function. CODL can be seen as a special case of posterior
regularization [Ganchev et al., 2010] with MAP approxima-
tion, which directly imposes regularization on the posterior
of the latent target variables. A further generalization of these
works that incorporates prior information as measurements in
the Bayesian framework is proposed in [Liang et al., 2009]. It
should be noted that all aforementioned works are for classifi-
cation problems corresponding to simple discrete target vari-
ables (i.e., the class labels). In contrast, our work studies tar-
get variables with more complex structures.

Unsupervised pretraining of deep belief network was first
described in [Hinton, 2000]. This is further extended to
a convolutional deep belief network (CDBN) [Lee et al.,
2009], of which the number of parameters is independent
from the data dimension and the training is more efficient.
Stacked auto-encoder [Bengio et al., 2007] is an alternative
to the probabilistic deep models such as DBN or CDBN,
and its major advantage is simple training algorithm. Deep
learning has been adopted as a viable approach to unsuper-
vised feature learning in several applications [Le et al., 2011;
Poon and Domingos, 2011]. However, most emphasis in deep
feature learning is on efficient implementations from large
unlabeled data sets [Le et al., 2012], with a few exceptions on
incorporating domain knowledge in the learning, e.g., [Rifai
et al., 2011]. While deep structures are most commonly pre-
trained with unsupervised learning, the partially supervised
pre-training [Bengio et al., 2007] has shown to be particu-
larly important for regression problem. However, it requires
labeled samples, which are difficult to obtain in many cases.
More importantly, training with labeled data make the fea-
tures less generalizable. In contrast, our work incorporates
generic prior knowledge about target variables instead of full
labels into deep feature learning to achieve optimal tradeoff
between the fidelity of data reconstruction and task predic-
tion.

Deep learning has also been applied to BCI in several pre-
vious works. In [Freudenburg et al., 2011], patterns learned
from DBN are compared with those learned with PCA, and
shown to have more correlations to the neuron patterns. The
work of [Wulsin et al., 2011] shows that DBN applied to clas-
sify the clinical EEG waveforms achieves comparable perfor-
mance with the state-of-the-art based on SVM or kNN. Fur-
ther, features learned by DBNs with raw brain signals as input
are shown to have similar performance with hand crafted fea-
tures in classifying sleeping state [Langkvist et al., 2012].

3 Prior Supervised Convolutional Stacked
Auto-Encoders (PCSA)

We describe the prior supervised convolutional stacked auto-
encoder (PCSA) model in this section. PCSA is a deep learn-
ing model that combines convolutional stacked auto-encoders
with the target prior, see Figure 1. The prediction of target
variables from learned features are enforced to be consistent
with the target prior. In this way, the target prior works as a
weak supervisor for the feature learning. We first introduce
Convolutional Stacked Auto-encoders (CSA) an its learning,
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Figure 1: The schematic structure of PCSA

then discuss learning CSA by incorporating the target prior
model.

3.1 Convolutional Stacked Auto-encoders
The convolutional stacked auto-encoder [Hadsell et al., 2009]
is a deep architecture with convolutional auto-encoder as the
building block. In CSA, model parameters are shared among
units in a convolution manner, which decouples the number
of parameters in a deep model from data dimension and sig-
nificantly improves the running efficiency [Lee et al., 2009].
The general structure of CSA is shown schematically in Fig-
ure 1. Let us denote X to be the M dimensional time series,
and the latent vector hk represents the kth feature map. Given
the input X, hk is computed as:

hk(t) = σ(

M∑
m=1

Xm ∗Wmk(t) + bk), (1)

where σ(t) = 1/(1 + e−t) is the sigmoid function, ∗ denotes
the convolution operation and k is the index of feature map.
The parameters to be estimated in one layer convolutional
stacked auto-encoder (CSA) are Wmk = (w1, · · · , wL), the
convolution filter with length L, and bk ∈ R, the bias for
the kth feature map. CSA has a multi-layer structure, which
takes the single layer described above as building blocks and
stacks these layers together with the output of a layer serving
as the input of the layer above, figure 1. In testing, given raw
input X, the latent variable h are calculated recursively for
each layer and h from the top layer is used to predict outputs
by applying a linear regressor.

3.2 Learning CSA
An auto-encoder is trained so that it encodes the input X into
another representation h and at the same time, the input X
could be reconstructed from the representation h. When the
dimension of h is lower than that of X, the latent layer h
works as a code of the input X, which is expected to capture
important property of X. The reconstruction step in CSA is
given by

X̂m =
∑
k∈K

hk ∗ W̃mk + cm, (2)

where cm ∈ R is the bias. W̃mk = (wL, wL−1, · · · , w1) is
the flip version of Wmk.

We train CSA in a layer-wise manner as in [Hinton, 2000].
For the sake of notational simplicity, we drop the superscripts

indicating different layers of the model. The objective func-
tion corresponds to minimizing the mean square error be-
tween the input X and the reconstruction X̂ with regards to
parameter θ = {W, b, c}, as:

E =
1

2MN

M∑
m=1

N−1∑
i=0

(X̂m
i −Xm

i )2, (3)

where N is the size of training data.
The reconstruction error alone is usually not sufficient to

guarantee unique and non-trivial solution if no further re-
quirement is used for the auto-encoder, as the identity func-
tion becomes a trivial solution with zero reconstruction error.
Therefore, the reconstruction accuracy is combined with sev-
eral other terms to form the CSA learning objective.

3.3 Learning CSA with Target Prior
While the conventional CSA learning ensures fidelity in data
reconstruction, such learnt features may not perform well on
a specific task. To address this issue, we propose to incorpo-
rate target prior into feature learning. In many applications,
the target (output) variable under different inputs follows a
common spatial and temporal pattern. For example, while
people may walk differently, there are still certain common
spatial and temporal pattern of the body pose that underpin
all the walks and that differentiates walking from running.
We intend to capture such common pattern probabilistically
through the target prior and regularize the feature learning by
making the prediction of the target variable consistent with
the target prior [Wang et al., 2012b]. In previous work [Wang
et al., 2011b; Wang et al., 2011a], prior knowledge has effec-
tively improved the performance of BCI decoders. As shown
in Figure 1, compared with the standard CSA, the learning of
PCSA is additionally regularized by the target prior p(y). We
explain the details about target prior and its learning in the
following.

Target Prior
We assume that the target variable y is predicted from the
input variable h through a linear regression. Specifically:

yi =

K∑
k=1

Vkf(hki ) + d, (4)

where V ∈ RK×1 and d ∈ R are parameters of the regressor.
The function f(h) may vary with application. For example,
in signal processing f(h) may be power of h.

We assume the target variable y follows a prior proba-
bility distribution p(y), which we propose to capture using
the Gaussian-Bernoulli restricted Boltzmann machine (GB-
RBM) [Hinton and Salakhutdinov, 2006]. We chose to use
GB-RBM because of its ability to capture global spatial and
temporal patterns. According to GB-RBM, the target prior
can be formulated as: pη(y) = 1

Z

∑
h̄ e
−Eη(y,h̄), where Z

is the normalizing constant, and h̄ ∈ {0, 1}H̄ are the hidden
variables. The energy function over y and h̄ is defined, as:

Eη(y, h̄) =

Y∑
i=1

(yi − ci)
2

2
−

Y,H̄∑
i=1,j=1

Uijyih̄j −
H̄∑
j=1

bjh̄j .

(5)



where Uij is the interaction strength between the hidden node
h̄i and visible node yj . c and b are the bias for the visible
layer and hidden layer, respectively. The target variable y
is normalized to have zero mean and unit standard variance.
The parameters in this model, (U, c,b), are collectively rep-
resented with η. Direct maximum likelihood training of GB-
RBM is intractable for high dimensional models due to the
normalizing factor Z, so we use contrastive divergence [Hin-
ton, 2000] to estimate η from data.

Learning with Target Prior
After the parameters η in the GB-RBM target prior are
learned from data, we use the corresponding target prior
model to learn the CSA model parameters θ, as well as the
parameters in the regressor V and d. The basis methodology
is to enforce the regressor output to follow the target prior, as
they reconstruct the inputs. After η is fixed, the normalizing
factor Z is a constant, so we drop it off from the objective
function. Thus, we set the target prior constraint as

C1 = log p̃η(y), (6)

where p̃η(y) = log
∑

h̄ e
−Eη(y,h̄). p̃η(y) can be easily cal-

culated by noticing that the summation over hidden nodes h̄
can be factorized as the summation over each hidden node
h̄j :

log p̃η(y) = −1

2

∑
i

(yi − ci)
2

+ log
∑
h̄

e

∑
i,j

yiUi,j h̄j+
∑

j
bj h̄j

= −1

2

∑
i

(yi − ci)
2 +

∑
j

log(1 + ebj+
∑

i
yiUi,j ).

The derivative of log p̃η(y) over y is given by

∂ log p̃η(y)

∂y
= −(y − c) +

∑
j

U·,j

1 + e−bj−
∑

i
Ui,jyi

, (7)

where U·,j represents the jth column of U. The deriva-
tive of C1 over parameter θ is obtained by ∂ log p̃η(y)

∂θ =
∂ log p̃η(y)

∂y
∂y
∂θ .

Additional Constraints
We also require that the extracted features change slowly,
which is inspired by the work of slow feature analysis
[Wiskott and Sejnowski, 2002]. Specifically, we require that
the extracted features vary slowly over time by minimizing
the magnitude of the temporal gradient:

C2 =

√√√√ 1

2(N − 1)

K∑
k=1

N−2∑
i=0

[f(hki+1)− f(hki )]2.

To further ensure that the filters W1, ...,WK are less cor-
related and correspond to distinct features, we also minimize:

C3 =

√√√√ 1

4M(K2 −K)

M∑
m=1

∑
i6=j

[(Wmi)TWmj ]2. (8)

Figure 2: Experiment setup for this study. The subject flexes
fingers according to visual cues on the screen. The finger
trace is recorded through a data glove and the ECoG is col-
lected through electrode grid placed over the fronto-parietal-
temporal region.

Last, to reduce overfitting we apply `2 constraint to the filters
to normalize their magnitudes:

C4 =
1

2

M∑
m=1

K∑
i=1

(Wmi)TWmi. (9)

Optimal parameters are learned by minimizing the recon-
struction error with regards to these constraints (C1, C2, C3
and C4). Mathematically, this is equivalent to the minimiza-
tion of the Lagrangian formed with the objective function and
constraints, as:

F = E + αC1 + βC2 + γC3 + δC4 (10)

where α, β, γ and δ are the regularization hyperparameters.
These hyperparameters are estimated using grid search (de-
tails are discussed in section 4.2). The objective function is
minimized numerically with conjugate gradient descent.

4 Experiments
We apply PCSA to the task of predicting finger flexion traces
from ECoG signals in BCI, as illustrated in Figure 2. During
the experiment, the subjects were asked to repeatedly flex and
extend specific individual fingers according to visual cues that
were given on a video screen. The ECoG signals and finger
flexion traces are recorded simultaneously. Data used in our
study are collected from five subjects, identified as subjects
A, B, C, D and E.

We compare the features learned with PCSA with the band
power features in terms of decoding performance. The band
power features is state of the art features for finger move-
ment decoding in BCI. It is used by the winner of the BCI
competition IV [Bougrain and Liang, 2009]. This feature is
manually chosen for predicting finger movement from ECoG
signals. To be able to quantitatively evaluate the performance,
we use the data set with corresponded ECoG signals and fin-
ger movement traces. However, during the training of PCSA,
we intentionally leave out the labels (the corresponded finger
traces). Thus, PCSA also has the potential to be applied to
most real BCI applications, in which subjects imagine with-
out actual body movements. Note that the experiment set-
ting for PCSA is a little different from that in [Bougrain and



Liang, 2009]. To simply the prior model training, here we
consider the moving traces only composed of flexion and ex-
tension as in Fig. 3(A), and the rest part is not included. This
simplified model is still practically useful since we can first
classify the trace into movement state or rest state and then
apply the corresponding regressor for each state [Flamary and
Rakotomamonjy, 2009].

4.1 Learning Target Prior Model
The target prior model pη(y) for each subject is learned from
the finger traces of other subjects. To effectively capture the
trace patterns with limited training data and reduce model pa-
rameters, the model is trained on the trace that is down sam-
pled from the original trace by a factor of 25. The down
sampled trace still keeps the original finger movement pat-
terns. Accordingly, the target prior constraint will be applied
to a subset of the inputs. Under this setting, each subject
has around 2400 samples. We model the finger movement
trace using the GB-RBM with 64 hidden nodes and 16 vis-
ible nodes, which is approximately the length of one round
extension and flexion. Then, all segments from 16 successive
samples in the data are used to train the prior model.

The GB-RBM is trained with stochastic gradient decent
with a mini-batch size of 25 sub-sequences. We run 100
epochs with a fixed learning rate 0.001. We first validate the
prior model by drawing samples from the learned GB-RBM.
Figure 3(B) shows the 4 samples, which seem to capture some
important properties of the temporal dynamics of the finger
trace.
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Figure 3: (A) Examples of training trace sub-sequences; (B)4
trace samples from GB-RBM. Each sample is a segment of
length 16 data samples.

4.2 Results
The experiment are done on the thumb of five subjects. For
each subject, the dataset consists of about 60,000 samples. In
the following experiments, we will use five fold cross vali-
dation for the training and testing. The parameters W, b, c,
V and d in the model are randomly initialized. The length
of each filter is set as L = 64 (samples). The input ECoG
signals are normalized to zero mean and unit variance for
each dimension, and the output of each layer are also nor-
malized in the same manner to serve as the input of the layer
above. Here we assume y is predicted from the physical
power [Bougrain and Liang, 2009] of latent variable h. Thus,
we set f(hki ) = (hki −ak)2 in Eq.4, where ak = 1

N

∑N−1
j=0 hkj

is the mean or bias of the kth feature map. For the PCSA
model, if we take all 48-64 channels as the input, the resulting
model will have a large number of parameters that makes its
training very inefficient. So we choose five most informative
channels decided by linear regression as the input of PCSA.

The five channels are selected in a incremental manner so that
the combination can achieve the best performance. The band
power features are tested based on both all the channels and
the same five channels used by PCSA model. Also, to bal-
ance the decoding accuracy and computational load, in each
layer we use 3 filters for each input dimension. It takes two
to three minutes to get the parameter trained.

In eq.(10), the hyperparameters α, β, γ and δ are identified
through a grid search. For each set of hyperparameters, we
evaluate the model performance by training the model param-
eters with the hyperparameters fixed. The model is trained
with two fold cross validation on the validation data, that is,
during the tuning of hyperparameters half the training data
are used for training and the remaining are used for valida-
tion. These hyperparameters are fixed for testing. To speed
up the grid search, the conjugate gradient optimization stops
when the number of iterations reach 10. The initial search is
in the range [0, 10] with the step 2 for each hyperparameter.
Then it is followed by a fine search around the chosen hy-
perparameters with the step size 0.2 within the range of 1 for
each hyperparameter. It takes two to three hours to get the
hyperparameters tuned.
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Figure 4: Comparison among PCSA and band power fea-
tures(averaged across five folds).

For the PCSA model, both the filters and linear regression
parameters (as the variable V and d in eq.4) are learned si-
multaneously. For the band power features, we also use lin-
ear regression to predict the finger movement. Linear regres-
sion has been commonly used for such tasks in BCI though
PCSA can also work with nonlinear regression methods. We
measure the performance with correlation coefficient, which
has been used in the previous work [Kubánek et al., 2009;
Bougrain and Liang, 2009]. The features are extracted from
the third layer of PCSA model. The comparison results are
shown in figure 4. For each subject, we show the averaged
performance over five folds. The results show that the learned
features by PCSA significantly outperform the band power
features (p < 0.05, paired t-test on the correlation coeffi-
cient for all fingers and subjects and between PCSA and band
power features). It comes as an initial surprise that PCSA
does not work well on subject E. After examining the data,
we found that subject E moves fingers much slower than
other subjects, on which the prior model is trained, and thus
its properties cannot be captured well with the target prior
model. This suggests that the quality of prior model has an
important influence on the performance of the final regres-
sion.. Figure 5 gives an intuitive comparison for the sample
traces predicted by two sets of features on the thumb of sub-
ject A. The results show that the ground truth can be better
fitted with the trace predicted by learned features than those
obtained with the band power features.
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Figure 5: The sample trace predicted by PCSA and band
power features. (A) ground truth; (B) prediction by PCSA
(correlation coefficient 0.44); (C) prediction by band power
features (correlation coefficient 0.30)

4.3 Comparison with Partially Supervised CSA
In the setting of partially supervised learning [Bengio et al.,
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Figure 6: Performance comparison between PCSA and par-
tially supervised CSA
2007], the model is learned in the way that not only mini-
mizes the reconstruction error but also minimizes the predic-
tion error. Actually partially supervised learning replaces the
target prior constraint of PCSA in Eq. 6 with a loss function
which measures the deviation of the regression outputs from
the ground truth. Here we adopt the loss function in the form
of mean square error (MSE), i.e., 1

2N

∑N−1
i=0 [yi− zi]2, where

z is the ground truth. As expected with stronger information
the results of partially supervised learning in Figure 6 outper-
form the PCSA. Although PCSA does not perform as well as
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Figure 7: The comparison of generalization across subjects
between PCSA and partially supervised CSA
partially partially supervised CSA when trained and tested on
the same subject, it tends to have better generalization across
subjects. Figure 7 gives the results of PCSA and partially su-
pervised CSA when trained on subject A and tested on sub-
jects B, C, D and E. Clearly PCSA has better performance,
and the results are similar when trained on other subject and
tested on the remaining subjects. We believe that the better
generalization of PCSA results from the learning with more
generalizable prior information instead of exact labels.

4.4 Effects of the Target Prior Constraint
We consider the effect of the target prior constraint by drop-
ping it from the objective function and see how the overall
performance changes. Without the target prior constraint, the
remaining parts form an unsupervised feature learning model.
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Figure 8: Performance evaluation of PCSA with and without
the target prior constraint
Figure 8 shows the results. We can see that without the target
prior constraint, the performance reduces dramatically. Thus,
the target prior constraint has a significant contribution to the
PCSA performance.
5 Conclusion
In this paper, we describe a new deep feature learning
method, which we term as prior supervised convolutional
stacked auto-encoders (PCSA), that combines the learning
with target prior with deep feature learning. In PCSA, the
statistical properties in the target variables are captured with
a probabilistic target prior model. The target prior is then used
to regularize the unsupervised learning objective function to
produce features that are general to represent input raw data
and at the same time effective for the supervised learning task.
We apply the method to the BCI problem of decoding finger
flexion from ECoG signals. The results show that the features
learned by PCSA achieved better performance than state of
the art hand features obtained based on heuristics. We further
show that PCSA has better generalization that partially super-
vised CSA, and the target prior has a significant effect in the
feature learning of this task.

We will extend the current work in several directions. First,
in current work we use a simple target prior model in the
form of GB-RBM. More flexible probabilistic models, such
as Markov random fields and dynamic Bayesian network,
can better represent statistical properties in the target vari-
ables. Therefore, we would like to incorporate such models
into deep learning to further improve performance. Second,
We are also interested in extending this framework to feature
learning over other high dimensional signals such as images
and videos.
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