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Abstract Region splicing is a simple and common digital
image tampering operation, where a chosen region from one
image is composited into another image with the aim to mod-
ify the original image’s content. In this paper, we describe
an effective method to expose region splicing by revealing
inconsistencies in local noise levels, based on the fact that
images of different origins may have different noise charac-
teristics introduced by the sensors or post-processing steps.
The basis of our region splicing detection method is a new
blind noise estimation algorithm, which exploits a particular
regular property of the kurtosis of nature images in band-pass
domains and the relationship between noise characteristics
and kurtosis. The estimation of noise statistics is formulated
as an optimization problem with closed-form solution, and
is further extended to an efficient estimation method of local
noise statistics. We demonstrate the efficacy of our blind
global and local noise estimation methods on natural images,
and evaluate the performances and robustness of the region
splicing detection method on forged images.
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1 Introduction

The past decade has produced stunning advances in digital
photography. High quality digital camera and digital image
processing techniques started in the past three decades are
now commonplace in personal electronics. Billions of digital
images are uploaded to photography portals like Flickr.com
and Instam on a daily basis, and our ability to editing digi-
tal images has improved dramatically, thanks to applications
such as Adobe Photoshop or GNU Gimp.

Despite the obvious benefits and conveniences these tech-
nologies brought to the users, there also comes an unpleasant
ramification—digital images have become more vulnerable
to malicious tampering, and the ease of digital image manip-
ulation has started to erode the long-held trustfulness of pho-
tographs as reliable records of events. Studies in cognitive
psychology (Garry and Gerrie 2005; Sacchi et al. 2007) have
suggested that doctored photographs can affect the memory
of past events, and we are facing with an increasing number
and level of sophistication of digitally manipulated images
with negative financial, legal, and/or political consequences.
This circumstance calls for the study of digital image foren-
sic (Farid 2009; Sencar and Memon 2012), a research field
aiming to find effective solutions to questions such as “how
to determine a digital image’s authenticity?” and “how to
expose tampering operations in a digital image?”.

In this work, we focus on the detection of a common and
simple manipulation of digital image, known as region splic-
ing, which creates a forged image by compositing regions
extracted from different source images.1 With carefully cho-
sen source images and the aid of sophisticated image edit-

1 If the regions are from the same image, the corresponding tampering
operation is known as region cloning, which will not be considered in
this work.
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ing tools, spliced regions can oftentimes easily evade casual
visual inspection.

Subsequently, we describe an effective method to detect
spliced regions in a digital image that is based on noise in dig-
ital images. Such noise is typically introduced during acqui-
sition or subsequent processing of an image. For an untam-
pered image, one can reasonably assume that the noise statis-
tics across different pixels differ only slightly. Thus, spliced
regions from an image with significantly different noise sta-
tistics can be exposed with the inconsistency of local noise
characteristics. As such, our region splicing detection method
is based on a simple method to estimate local noise statis-
tics from an image. Specifically, our blind noise estimation
method is motivated by an observed statistical regularity of
natural images known as projection kurtosis concentration—
the kurtosis of natural images in band-pass domains (e.g.,
obtained from the discrete cosine transform, wavelet decom-
position or randomly generated band-pass filters) tend to be
close to a positive constant (Bethge 2006; Lyu and Simoncelli
2009; Zoran and Weiss 2009).

The major contributions of this work are summarized as
follows:

1. We provide empirical evidence and theoretical justifica-
tion of the projection kurtosis concentration phenomenon;

2. Using this phenomenon, we formulate noise estimation as
the optimization of an objective function that is robust to
infrequent outlying projection kurtosis values and affords
a closed-form solution;

3. We further extend this method to estimate locally varying
noise levels that is accelerated with integral image;

4. We demonstrate the performances and robustness of our
method on several sets of forged images with spliced
regions, which compare favorably with those of several
state-of-the-art region splicing detection methods.

The rest of the paper is organized as follows. After review-
ing relevant work in Sect. 2, we describe the projection kurto-
sis concentration property of natural images in Sect. 3. Then
the blind global noise estimation algorithm based upon this
property is introduced in Sect. 4. This algorithm is further
extended to the estimation of locally varying noise levels
in Sect. 5. In Sect. 6, we elaborate on the splicing detec-
tion method using the blind local noise estimation method.
Section 7 concludes the paper with discussion and future
works. Some preliminary results of this work were reported
in Pan et al. (2012c).

2 Related Works

In this section, we briefly review relevant previous works on
blind noise estimation and region splicing detection.

2.1 Blind Noise Estimation

Noise can be attributed to numerous factors during the acqui-
sition, transmission and processing of digital images, includ-
ing thermal effects, sensor saturation, quantization and ran-
dom interference of the communication channels (Nakamura
2006). Effective estimation of noise statistics from a noise
corrupted image, known as blind noise estimation, is an
important task in image processing, and many further tasks
such as denoising and deblurring predicate on the knowl-
edge of the noise statistics.2 Blind noise estimation methods
differ in the choice of image and noise models. Most exist-
ing techniques assume a stationary noise model with spa-
tially invariant statistics, usually a zero-mean white Gaussian
process that is additive and independent of the image signal.
As such, most existing noise estimation methods focus on
the estimation of noise variances.

One commonly (though usually implicitly) used assump-
tion in blind noise estimation methods is that there are
“dead zones” in the noise-free images or their transforma-
tions where there is no image structure. As variations in such
regions are completely due to the noise, they can be used
to estimate parameters in the noise model. Early approaches
seek such regions in the frequency or multi-scale image rep-
resentations. For instance, the method of Meer et al. (1990)
estimates noise variance in the highest-frequency part of the
noisy image’s Fourier spectrum. Based on the observation
that there are less edges and contours with diagonal orien-
tations in natural images, noise variance is estimated in the
high-frequency diagonal subband of an orthonormal wavelet
decomposition using the median absolute deviation (MAD)
estimator (Donoho 1995). Another family of methods work
in the spatial domain to identify regions in the noisy image
corresponding to portions of the original image with near
constant values. Early approaches use simple thresholding
to find such regions (Olsen 1993; Rank et al. 1999). More
sophisticated approaches group regions in the noisy image
that have similar structures, and estimating noise from the
residuals after the common structures are removed (Konstan-
tinides and Natarajan 1997; Ponomarenko et al. 2003; Foi et
al. 2007; Danielyan and Foi 2009), or select patches that do
not have strong edges and contours (Bilcu and Vehvilainen
2005; Tai and Yang 2008; Liu et al. 2012).

The works in Benedict and Soong (1967), Matzner and
Engleberger (1994), Pauluzzi and Beaulieu (2000) represent
a different general methodology of noise estimation, which
exploits the relationship between noise variance and higher-
order statistics, especially kurtosis, of noise free images.

2 There are also methods that incorporate noise estimation into tasks
such as denoising (Portilla 2004) or deblurring (Schmidt et al. 2011).
We shall not discuss such methods subsequently as they are usually less
efficient when the purpose is to estimate noise statistics.
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However, these early methods are not truly blind, as they
assume the knowledge of the kurtosis of the noise free sig-
nal, or the availability of regions in the noisy signal where the
kurtosis of the noise free signal can be estimated. The first
blind noise estimation technique along this line of methods
is described in Zoran and Weiss (2009), which takes advan-
tage of the projection kurtosis concentration phenomenon (a
detailed comparison with our method will be given in Sect.
4.2).

There have also been noise estimation methods that use
more realistic noise models incorporating the sensor charac-
teristics and dependencies of noise statistics and pixel inten-
sities. In the work of For̈stner (1998), the noise variance
is estimated from the gradient of smooth or small textured
regions, assuming a signal-dependent noise model. In Ste-
fano et al. (2004), using training samples and the Laplacian
model for the marginal statistics of natural images in band-
pass filtered domains, a function is learned for estimating
noise variances. The method of Liu et al. (2008) uses a piece-
wise smooth image model and sensor-based noise model to
obtain an upper-bound of the noise variance.

Existing noise estimation methods typically assume a sta-
tionary noise model, where noise statistics are invariant to
spatial locations (though they may be dependent on the pixel
intensity values). When a stationary noise model cannot be
assumed, for instance for the digitally tampered images with
spliced regions, one needs a blind local noise estimation
method. Simply applying existing global noise estimation
methods to local patches surrounding each pixel location usu-
ally leads to inefficient algorithm. An important objective of
our work is to develop an efficient blind local noise estima-
tion method based on global blind noise estimation method.

2.2 Region Splicing Detection

Splicing regions in a digital image are usually detected by
exposing significant variations of intrinsic characteristics
that would be otherwise consistent in an untampered image.
Existing region splicing detection methods can be catego-
rized into two classes. Many existing methods focus on deter-
mining if an image contains spliced regions, without reveal-
ing the actual location of the spliced region. As such, they
are typically implemented with a classifier (commonly SVM
or boosting classifiers) learned from a training set of original
and forged images. Key to the classification based methods
is the choice of the feature vectors that are used by the clas-
sifier. Recent works have explored feature vectors obtained
from camera response functions (Hsu and Chang 2006, 2007;
Lin et al. 2005), photo response non-uniformity noise pattern
(Chen et al. 2008), consistency of region and object bound-
aries, (Chen et al. 2007; Qu et al. 2009; Shi et al. 2007),
JPEG compression (Wang et al. 2009) or general statistics of
natural images (Bayram et al. 2006; Fu et al. 2007; Ng and

Chang 2004). Note that though in principle, the classifica-
tion based methods can be used to locate spliced regions by
applying to sliding windows in an image or to any user spec-
ified regions, the resulting algorithm is usually inefficient for
practical needs.

On the other hand, location based methods provide the
extent and location of potential spliced regions. Currently,
the most effective splicing detection methods in this category
(He et al. 2006; Lin et al. 2009) are based on the quantiza-
tion artifacts due to the double JPEG compression. However,
the applicability of such methods is limited by a few factors
including (1) the tampered image must be in JPEG format,
(2) the image contributing the background must be in JPEG
format and must have a different quality factor from the tam-
pered image, and (3) the spliced region has to exhibit no
double JPEG artifact.

Local noise levels provide an alternative approach for
the detection of spliced regions, without limiting to specific
image file format.3 The method in Popescu and Farid (2004)
is based on an estimator of the noise variance from the kur-
tosis of the original image. The method in Mahdian and Saic
(2009) is based on the MAD noise variance estimator in the
high-pass band from an orthonormal wavelet decomposition.
The method of Chen et al. (2007) reveals region splicing
by detecting the presence of photo-response non-uniformity
noise (PRNU) in small regions. This method assumes that
either the camera that took the image is available to the ana-
lyst or at least some other non-tampered images taken by the
camera are available, and is therefore not a blind detection
method. In this work, we demonstrate that our blind local
noise estimation method leads to a general region splicing
detection method that achieves the state-of-the-art detection
performance.

3 Projection Kurtosis and Noise Variances

This section describes a statistical property of natural images
in band-pass domains, projection kurtosis concentration, and
its relation with the noise variances. These results are the
foundation of the blind noise estimation methods introduced
in subsequent sections.

3.1 Kurtosis and Projection Kurtosis

For a 1D random variable x , denoting E x { f } = ∫
x f (x)p(x)

dx as the expectation of a function f (·) with regards to its
distribution, the kurtosis (some works also referred to this as
the excessive kurtosis) (Feller 1968) is defined as

3 The image noise has also been used for in digital image forensics to
identify the source camera models or ensuring authenticity of an image
(Filler et al. 2008; Lukas et al. 2006; Lukás et al. 2006).
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Fig. 1 Kurtosis of three different distribution models with the zero
mean and unit variance

κ(x) = C4(x)

C2
2 (x)

, (1)

where C2(x) = Ex
{
(x − Ex {x})2

}
, which coincides with

the variance of x , and C4(x) = Ex
{
(x − Ex {x})4

}−3C2(x)

are the second and fourth order cumulants of x , respec-
tively (Feller 1968). Kurtosis is invariant to scaling, i.e.,
κ(sx) = κ(x) for any s > 0, and measures how “peaky” a
distribution is. In particular, a Gaussian distribution p(x) ∝
exp

(− 1
2 x2

)
has zero kurtosis, while a super-Gaussian dis-

tribution (distributions that are more concentrated around
the mean than Gaussian, such as the Laplacian distribution
p(x) ∝ exp(−|x |)) has positive kurtosis, and a sub-Gaussian
distribution (distributions that are flatter than Gaussian, such
as the uniform distribution) has negative kurtosis. Figure 1
compares the kurtosis of distributions from three different
parametric families (Laplacian, Gaussian and uniform). Each
has a mean zero and the parameters have been chosen to result
in a variance equal to 1.

The variance and kurtosis can also be expressed using the
raw (un-centered) moments, μm = Ex {xm}, as:

σ 2=μ2 − μ2
1 and κ=μ4 − 4μ3μ1 + 6μ2μ

2
1 − 3μ4

1

μ2
2 − 2μ2μ

2
1 + μ4

1

− 3.

(2)

Furthermore, Eq. (2) suggests practical estimations of vari-
ance and kurtosis from samples of x by approximating
the raw moments of first to fourth order with averages, as
μm ≈ 1

m

∑m
k=1 xm

k . This fact is important in deriving our
local noise estimation method in Sect. 5.

For a d-dimensional random vector x, we define the kur-
tosis of the 1D projection of x onto a unit vector w, κ(wT x),
as its projection kurtosis with regards to w. The projection
kurtosis provides an effective means to probe the statisti-
cal properties of high dimensional variables. For instance,
if x is a Gaussian vector, its projection over any w has

a 1D Gaussian distribution, so its projection kurtosis is
always zero. Indeed, several effective algorithms for blind
source separation (Cardoso 1999) and independent compo-
nent analysis (ICA) (Hyvärinen 1999) are based on finding
projection directions that maximize the projection kurtosis.
On large images, we can compute the projection kurtosis of
local pixel patches more efficiently by convolving the image
with the corresponding filters, and estimate the projection
kurtosis from the filter responses.4

3.2 Kurtosis and Noise Variances

Consider a random variable y = x + n as the sum of
a random variable x and a Gaussian variable n, the addi-
tivity of cumulants of independent variables (Feller 1968)
implies C4(y) = C4(x), or with Eq. (1), κ(y)(σ 2(y))2 =
κ(x)(σ 2(x))2. Replacing σ 2(y) with σ 2(y) = σ 2(x)+σ 2(n)

and rearranging terms yield a simple but fundamental relation
between kurtosis and variance, as:

κ(y) = κ(x) ·
(

σ 2(x)

σ 2(y)

)2

= κ(x) ·
(

σ 2(y) − σ 2(n)

σ 2(y)

)2

.

(3)

If we know the kurtosis of the original variable x , Eq. (3)
can be used to estimate the unknown variance of n, since
the kurtosis and variance of y can both be estimated from
samples. On the other hand, if κ(x) is unknown, this will not
work as Eq. (3) provides one constraint with two unknown
quantities.

A similar relation can be obtained for the projections of
high dimensional signals. Let z be a zero-mean i.i.d. white
Gaussian noise vector with covariance matrix σ 2 I and inde-
pendent of random vector x with covariance matrix �x. The
variances of the projections of the z, x and y = x + z on a
unit vector w are given by

σ 2(wT z) = wT Ez
{
zzT

}
w = σ 2wT w = σ 2

σ 2(wT x) = wT Ez
{
xxT

}
w = wT �xw

σ 2(wT y) = σ 2(wT x) + σ 2(wT z) = wT �xw + σ 2.

Correspondingly, Eq. (3) for the projections becomes

κ(wT y) = κ(wT x)

(
σ 2(wT x)

σ 2(wT y)

)2

= κ(wT x)

(
σ 2(wT y) − σ 2

σ 2(wT y)

)2

(4)

In practice, when x are patches from natural images and
the projection directions correspond to band-pass filters, we

4 The projection directions need to be reflected in both horizontal
and vertical directions, and the convolution is equivalent to projection
assuming proper boundary handling.
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Fig. 2 Histograms of uniform noise (top) and Laplacian noise (bottom) after convolving with band-pass DCT filters of different sizes (columns).
Also shown are the corresponding best fit Gaussian distributions (dashed lines)

can take advantage of regular statistical properties of nat-
ural images in band-pass domains (Simoncelli and Olshausen
2001).

We would like to point out another important property of
Eq. (4), that it is also approximately satisfied when z follows
a i.i.d. non-Gaussian model. To see this, first note that the pro-
jection of wT z = w1z1+· · · wd zd corresponds to a weighted
sum of independent variables z1, · · · , zd , which are with zero
mean and identical and finite variance σ 2. As such, the new
random variables w1z1, · · · , wd zd are zero mean and with
variances w2

1σ
2, · · · , w2

dσ 2, respectively, and correspond-
ingly the variance of w1z1 + · · ·wd zd is σ 2‖w‖2 > 0 and is
finite. Further assuming zi has a symmetric distribution, we
have Ezi

{
z3

i

} = 0 and

∑d
i=1 Ezi

{
(wi zi )

3
}

σ 3‖w‖3 =
∑d

i=1 w3
i Ezi

{
z3

i

}

σ 3‖w‖3 = 0,

Thus these variables satisfy the Lyapunov condition for
δ = 1, and the Lyanunov’s central limit theorem (Appendix
1.) (Feller 1968) applies, i.e., wT z asymptotically approaches
a Gaussian variable with zero mean and variance σ 2‖w‖2

as d → ∞. In practice, the convergence to the Gaussian
distribution is much faster, as illustrated in Fig. 2 where with
filter of size 3 × 3 the empirical distribution of the noise can
be well fit with the corresponding Gaussian distribution.

Evaluating Eq. (4) over unit projection directions w1, · · · ,

wK generates K equations with K + 1 unknowns, i.e., σ 2

and κ(wT
1 x), · · · , κ(wT

K x), given that projection kurtosis and
variances of the noise corrupted vector y are estimated from
the samples. As such, Eq. (4) alone cannot lead to a unique

solution to the noise variance, for which we need more infor-
mation about κ(wT

1 x), · · · , κ(wT
K x).

3.3 Projection Kurtosis Concentration: Empirical Evidence

To this end, we first perform an empirical study on the pro-
jection kurtosis of natural images in the band-pass domains.
Our experiment is based on 200 images chosen from the Van
Hateren database . These images are chosen for their low
intrinsic camera noise levels and balanced dynamic ranges
without significant over- or under-exposures.

Show in the left panel of Fig. 3 are the projection kurtosis,
sorted in a descending order, over bases obtained from dif-
ferent linear transforms. Specifically we use bases from the
2D discrete cosine transform (DCT), the principal compo-
nent analysis (PCA), the ICA (implemented with the FastICA
algorithm Hyvärinen 1999), 2D Haar wavelet (HAAR), and
random symmetric bases (RAND), respectively. All bases
used in this experiment are of size 8 × 8 pixels. The ran-
dom symmetric bases are obtained in the same manner as
in Bethge (2006) with symmetric orthogonalization. Specif-
ically, from a random matrix Ṽ whose elements are inde-
pendent Gaussian samples of zero-mean and unit variance,
random bases are obtained as columns of an orthonormal
matrix V , which is generated using as V = Ṽ (Ṽ T Ṽ )−1/2.
Note that orthogonality of the bases are not essential in these
results and similar results can be obtained with over-complete
oriented band-pass representations such as the steerable pyra-
mid (Simoncelli and Freeman 1995).
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Fig. 3 Left Projection kurtosis
sorted descendingly for
10, 000 8 × 8 patches from
natural images with projection
directions obtained from
different linear transforms.
Right Linear relation between
the projection kurtosis of noise
corruption of the same set of
data (vertical axis) and the
squared ratio between variances
of projected original signal and
its noisy corruption (horizontal
axis). See text for details

As these results show, the projection kurtosis obtained
from all types of linear transforms are positive (in compar-
ison, Gaussian noise will have projection kurtosis zero as
projection of Gaussian variables are still Gaussian), reflecting
the leptokurtic statistics of natural images in these domains
(Burt and Adelson 1981; Field 1987). Furthermore, the pro-
jection kurtosis obtained with PCA, ICA, DCT and wavelet
exhibit relatively large ranges of values. These extreme pro-
jection kurtosis values are mainly due to the fact that these
representations are designed to better reveal atypical charac-
teristics of natural images. For instance, the top bases from
PCA and ICA maximize variance and kurtosis, respectively,
and bases in DCT and wavelet have preference over regu-
lar spatial frequencies, orientations and scales. Yet, extreme
projection kurtosis are relatively rare, with the majority of
the projection kurtosis concentrated near to a constant value,
indicated by the consistent large stretches of relatively flat
regions in the plot. In contrast to the deterministic bases, the
projection kurtosis from random bases are more homoge-
neous. This phenomenon, which in our recent works Pan et
al. (2012c) is referred to as projection kurtosis concentration,
have also been observed in several previous studies (Bethge
2006; Lyu and Simoncelli 2009; Zoran and Weiss 2009).

The concentration tendency of projection kurtosis of nat-
ural images can be further corroborated with another experi-
ment, showing that adding Gaussian noise to natural images
introduces variations in the projection kurtosis that are depen-
dent on the projection directions. According to Eq. (4), if the
noise free signal x has constant projection kurtosis, there is
a linear relation between the projection kurtosis of the noisy
signal and the squared ratio of the projection variances of
the noise free signal and the noisy signal (the slope in the
linear model given by the constant projection kurtosis of the
noise free signal). The experimental result shown in the right
panel of Fig. 3 is consistent with this prediction. Specifically,
this experiment is based on the same image set from the Van
Hateren database, with each image corrupted with additive
white Gaussian noise (σ = 5) and analyzed using 300 dif-
ferent random bases. The horizontal coordinates of the blue
dots in the plot correspond to the squared ratio of projec-

tion variances,
(

σ 2(wT x)

σ 2(wT y)

)2
, and the vertical coordinates are

the corresponding projection kurtosis, κ(wT y). The red dash
line is the linear model obtained with a least squares fitting.
The correlation coefficient of these data is 0.87, suggesting
a strong positive linear dependency. Furthermore, the slope
of the fitted linear model is very close to the mean projection
kurtosis of the noise free image across random bases.

3.4 Projection Kurtosis Concentration: Theoretical
Justification

A theoretical justification of the projection kurtosis con-
centration phenomenon can be obtained from the Gaussian
scale mixture (GSM) model of natural images in band-pass
domains. Formally, a GSM vector x ∈ Rd with zero mean
(Wainwright and Simoncelli 2000) has density function

p(x)=
∫ ∞

0

1
√

(2π z)d |det(�x)|
exp

(

−xT �−1
x x

2z

)

pz(z)dz.

(5)

where �x is a symmetric and positive definite matrix, and z is
a positive random variable (known as the latent scaling factor)
with density pz(z) (Andrews and Mallows 1974). Note that
p(x) can be viewed as an infinite mixture of Gaussians with
scaled covariance matrices, or equivalently, x can be under-
stood as the product of two mutually independent random
variables as x = u · √

z, where u is a d-dimensional zero-
mean Gaussian vector with covariance matrix �x. GSM-
based image models have recently received a lot of attention
and led to the state-of-the-art performance in image denois-
ing (Portilla et al. 2003).

In the relevance of this work, we present a simple property
of the GSM variables that their projection kurtosis is invariant
with regards to the projection direction w, which we prove
in Appendix 2

Claim 1 For a GSM random vector x with density function
given in Eq. (5) and a unit vector w, we have κ(wT x) =
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3varz{z}
Ez{z}2 , where Ez {z} and varz {z} are the mean and variance

of latent variable z, respectively.

The projection kurtosis concentration of natural sensory
signals can thus be explained based on the corresponding
GSM models, which have constant projection kurtosis (see
Claim 1). As the GSM model accounts for the general statis-
tical properties of natural sensory signals, their similarities
could be better brought forth by band-pass representations
with no bias or preference on any particular signal structures
or characteristics, which explains the more pronounced con-
centration of projection kurtosis of the random band-pass
filter responses.

This result also suggests that when noise is added to a GSM
variable, or the local image patches it represents, the projec-
tion kurtosis may become deviated from the constant value.
let z be a zero-mean Gaussian noise vector with covariance
matrix σ 2 I that is independent of x, the projection kurtosis
of their sum, y = x + z, according to Eq. (4), is given by

κ(wT y) = κ(wT x)

(
σ 2(wT x)

σ 2(wT y)

)2

=
(

3 · varz {z}
Ez {z}

)

·
(

wT �xw
wT �xw + σ 2

)2

. (6)

In particular, the last factor in the righthand side of Eq. (6)
is invariant to w only when �x is multiples of the identity
matrix, in other words, x is whitened. Under more general
circumstances, κ(wT y) will be different for different w.

The constant projection kurtosis of a GSM variable and
its violation with additive Gaussian noise are illustrated for
the 2D case in Fig. 4. In the plot, the projection kurtosis of
a two-dimensional GSM variable x with regards to different
projection directions as 2D unit vectors parameterized by
their angles are shown as the solid curve. The dashed curve
corresponds to the projection kurtosis of y = x+z, where z is

Fig. 4 Plot of projection kurtosis as a function of 2D projection direc-
tions (angles) for a GSM vector x (theoretical value as solid curve and
sample estimates as open circles) and y = x + z, where z is a white
Gaussian noise (theoretical value as dashed curve and sample estimates
as filled circles). See texts for more details

a white Gaussian noise. Also shown are the projection kurto-
sis estimated from 1,000 samples of x and y for the same set
of projection directions as open and closed circles, respec-
tively. As the results show, for both the theoretical value as
calculated in Claim 1 and the estimates from random sam-
ples, the projection kurtosis of the 2D GSM variable over 100
uniformly spaced 2D rotation angles between [0, 2π) resem-
ble a circle, indicating their invariance to different projection
directions. On the other hand, the shape of the curve corre-
sponding to the values of the projection kurtosis of the noisy
signal suggests that they change with projection directions.

4 Blind Global Noise Estimation

We now describe a noise estimation method based on pro-
jection kurtosis concentration property. We first describe our
method under the Gaussian noise model (Sect. 4.1), and dis-
cuss its difference with the work of Zoran and Weiss (2009)
(Sect. 4.2). This method is then extended to non-Gaussian
and multiplicative noise in Sect. 4.3 and experimental eval-
uations are reported in Sect. 4.4.

4.1 Estimating Additive Gaussian Noises

Formally, denote y = x + z as the result of contaminating
a natural image x with white Gaussian noise z of zero mean
and unknown variance σ 2, our goal is to estimate σ 2 from the
noise corrupted image y, as it is the sole parameter specifying
the Gaussian model of z.

To take advantage of projection kurtosis concentration,
we project y into K band-pass channels using K different
filters of unit �2 norm, and denote the kurtosis and variance
of the responses of the original and the noisy image in the
kth channel as κk and κ̃k , respectively. We further denote the
variances of the responses of the original and the noisy image
in the kth channel as σ 2

k and σ̃ 2
k , respectively. According to

Eq. (4), these statistics are related as:

κ̃k = κk

(
σ̃ 2

k − σ 2

σ̃ 2
k

)2

. (7)

Due to projection kurtosis concentration, we can approxi-
mate the projection kurtosis of the noise-free natural image
x across the K band-pass channels with a constant, or

κ̃k ≈ κ

(
σ̃ 2

k − σ 2

σ̃ 2
k

)2

. (8)

We further note that (1) the band-pass filter responses of
natural images tend to have super-Gaussian marginal distrib-
utions (Burt and Adelson 1981) with positive kurtosis values
(i.e., κ > 0), and (2) σ 2

k = σ̃ 2
k − σ 2 > 0. Therefore, we can

take square root on both sides of Eq. (7), to obtain
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√
κ̃k ≈ √

κ

(
σ̃ 2

k − σ 2

σ̃ 2
k

)

. (9)

Equation (9) implies a simple scheme to estimate σ 2: with
two different projection directions, wi and w j , one can cancel
out the common factor involving

√
κ , to obtain

√
κ̃i√
κ̃ j

= σ̃ 2
j

σ̃ 2
i

(
σ̃ 2

i − σ 2

σ̃ 2
j − σ 2

)

or σ 2 = σ̃ 2
i σ̃ 2

j (
√

κ̃i − √
κ̃ j )

σ̃ 2
i

√
κ̃i − σ̃ 2

j

√
κ̃ j

.

However, projection kurtosis across different band-pass
channels are usually not strictly constant in real natural sen-
sory signals, and the estimations of κ̃k and σ̃ 2

k fluctuate due
to the sampling effect. These factors can result in no solution
to σ 2 and κ that satisfy all constraints in Eq. (8), and hence
the simple method cannot be used to reliably estimate σ 2.

On the other hand, we can formulate variance estimation as
an optimization problem to minimize the squared difference
between the two sides of Eq. (8), as:

L
(√

κ, σ 2
)

=
K∑

k=1

(
√

κ̃k − √
κ

(
σ̃ 2

k − σ 2

σ̃ 2
k

))2

. (10)

It turns out that the optimal solution minimizing L
(√

κ, σ 2
)

is unique, and affords a closed-form solution, which, if we
denote the average over the K band-pass channels as 〈·〉k and
(x)+ = max(x, 0), has the following form:

√
κ =

〈√
κ̃k
〉
k

〈
1

(σ̃ 2
k )2

〉

k
−
〈√

κ̃k
σ̃ 2

k

〉

k

〈
1
σ̃ 2

k

〉

k
〈

1
(σ̃ 2

k )2

〉

k
−
〈

1
σ̃ 2

k

〉2

k

,

σ 2 = 1
〈

1
σ̃ 2

k

〉

k

(

1 −
〈√

κ̃k
〉
k√

κ

)

+
. (11)

The non-negativity of the estimated
√

κ is ensured by the
Cauchy-Schwartz inequality. Note that σ 2 is estimated from
the harmonic mean of the projection variances of the noisy
signal, modulated by a factor determined by the projection
kurtosis. Compared to the arithmetic mean, the harmonic
mean can mitigate the influence of large outliers and increase
the influence of small values, and can improve the robustness
of the estimator in the presence of large outliers. A detailed
derivation of Eq. (11) can be found in Appendix 3

The choice of the front-end linear band-pass filters in
implementing Eq. (11) is important to the estimation per-
formance, as we would like to use a representation where
the resulting projection kurtosis are more likely to exhibit
strong concentration behaviors. In the preliminary version
of our work (Pan et al. 2012c), we have tested using the 2D
DCT AC filters. However, as have been shown in Sect. 3.3,
it seems that the projection kurtosis of natural images show
a much stronger tendency to concentrate around a constant

when analyzed in channels from random band-pass filters.
The advantage of using random band-pass filters with the
solution given in Eq. (11) will be demonstrated experimen-
tally in Sect. 4.4.

4.2 Comparison with Method of Zoran and Weiss (2009)

Based on the empirically observed projection kurtosis con-
centration in the DCT domain, Zoran and Weiss (2009) esti-
mated the noise variance by minimizing a different objective
function corresponding to the squared difference of the two
sides of Eq. (8), as:

LZ&W

(√
κ, σ 2

)
=

K∑

k=1

⎡

⎣κ̃k − κ

(
σ̃ 2

k − σ 2

σ̃ 2
k

)2
⎤

⎦

2

. (12)

They showed that numerically minimizing this objective
function leads to significant improvements over the state-of-
the-art methods. We would like to point out three significant
differences between this and that of Zoran and Weiss (2009):

1. Projection kurtosis concentration was described as an
empirical observation in Zoran and Weiss (2009), while
in our work, we provide an extensive empirical study
(Sect. 3.3) and a theoretical justification (Sect. 3.4). Our
analyses also suggest that random band-pass linear trans-
formations can lead to better projection kurtosis concen-
tration than deterministic representations based on DCT.

2. The objective function Eq. (12) does not seem to have a
closed-form—the optimal solution requires solving two
cubic equations simultaneously, and in practice has to be
optimized numerically. In contrast, the closed-form solu-
tion of our method makes it more efficient and facilitates
its extension to blind local noise estimation (Sect. 5).

3. Projection kurtosis concentration does not exclude the
possibility of outlying projection kurtosis values that are
significantly different from their mean value across dif-
ferent band-pass filtered channels (c.f. Sect. 3.3 and the
left plot in Fig. 3). These outliers can have a more signif-
icant effect on Eq. (12) than Eq. (10). This can be better
seen if we denote the two sides of Eq. (8) as a and b,
we have L

(√
κ, σ 2

) = (
√

a − √
b)2 ≤ |a − b| for any

a, b ≥ 0, showing that L
(√

κ, σ 2
)

is dominated by the
�1 loss, which is more robust to large outliers than the �2

loss used in LZ&W
(√

κ, σ 2
) = (a − b)2.

4.3 Non-Gaussian and Multiplicative Noises

Because our method operates in the band-pass domains, the
Gaussian assumption on the noise in the pixel domain can be
significantly relaxed, because any type of i.i.d. noise in the
pixel domain will be similar to Gaussian noise after being
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linearly mixed by the filters, a direct result of the central
limit theorem (Feller 1968). Therefore, the algorithms based
on Eq. (11) can also be used to estimate the variance of addi-
tive non-Gaussian i.i.d. noise in the pixel domain, and if the
parameters in the non-Gaussian noise model can be derived
from the variance, it can be determined with our algorithm.
For instance, if the noise has a zero-mean Laplacian model,
p(z) ∝ e−| z

s |, determined with the scale parameter s, it can
be estimated using the relation that s = √

σ 2.
Furthermore, this method can also be used to estimate

certain multiplicative noise, under which the i.i.d. noise z is
multiplied by (not added to) the original image x to generate
a noise corrupted image as

y = x ◦ z, (13)

where ◦ is the point-wise multiplication (Dirac product),
assuming positivity of components of x and z. Multiplicative
noise models are more appropriate for realistic image noises
in certain signal-to-noise ratio range (Withagen et al. 2005;
Liu et al. 2008), and special purpose imaging systems such
as ultrasound, radar, sonar (SAS), and laser imaging (Rudin
et al. 2003). A common model of multiplicative noise is the
Gamma law (Farebrother 1990),

p(z) = βα


(α)
zα−1e−βz, for z > 0, (14)

where α > 0 and β > 0 are the the shape and rate parame-
ters, respectively, and 
(·) is the standard Gamma function.
Given an image, the scale of multiplicative noise is under-
determined, so it is conventionally assumed without loss of
generality that Ez {log z} = 0.

To estimate multiplicative i.i.d. Gamma noise, we first
convert it to an additive model by taking logarithm of Eq.
(13) to obtain

log y
︸︷︷︸

ỹ

= log x
︸︷︷︸

x̃

+ log z
︸︷︷︸

z̃

. (15)

The resulting noise process z̃ are still i.i.d., and log trans-
formed natural images also have the projection kurtosis con-
centration property (Bethge 2006). We can then proceed with
the algorithm given in Eq. (11) to estimate the variance of
z̃, σ 2, from which, we can further determine α and β using
Farebrother (1990):

Ez̃ {z̃} = Ez {log z} = Ψ (α) − log β

var z̃ {z̃} = Ez

{
(log z)2

}
= Ψ1(α), (16)

where Ψ (x) = d
dx 
(x) and Ψ1(x) = d2

dx2 
(x) are the
digamma function trigamma functions, respectively. With the
assumption that Ez̃ {z̃} = 0, we further have α = Ψ −1

1 (σ 2)

and β = eΨ (α), where both the digamma function and the
inverse trigamma function are evaluated numerically.

4.4 Experimental Evaluations

We test the performance of the blind global noise variance
estimation method using three sets of grayscale images in
uncompressed PNG or TIFF formats:

1. 25 8-bit images of the Kodak database (Franzen 1999)
(KD),

2. 200 8-bit images chosen from the UCID image set
(Schaefer and Stich 2004) (UD),

3. 200 16-bit images chosen from the Van Hateren image
set (van Hateren and van der Schaaf 1998) (VH).

These images have low intrinsic noise levels and bal-
anced dynamic ranges. To further reduce the effect of intrin-
sic noise, we perform gentle low-pass filtering to the these
images to generate the test images.5

4.4.1 Gaussian Noise

In the first set of experiments, we create noisy images by
adding white Gaussian noise of different variances to the test
images. To accommodate the different value ranges of the
test images, we use the peak-signal-to-noise ratio (PSNR),

which is defined as 10 log10

(
I 2
max
σ 2

)
(in the unit of dB), where

Imax is the maximum pixel value (255 for 8-bit images and
65,536 for 16-bit images), and σ 2 is the estimated noise vari-
ance. Shown in Table 1 are the estimation performances of
our algorithm, shown as the mean estimated PSNRs with
the standard deviations (in parenthesis). These results are
obtained with 63 random band-pass filters of size 8 × 8 cre-
ated a priori.

By way of comparison, we also include performances of
three state-of-the-art noise estimation methods applied to the
same set of noisy images,

1. the method of Liu et al. (2012), which is based on iden-
tifying local patches with no significant image structures
to collectively estimate the variance of Gaussian noise
(corresponding to rows labeled as LTO),

2. the method of Zoran and Weiss (2009), which uses
projection kurtosis from the 2D DCT decomposition
and objective function Eq. (12) (corresponding to rows
labeled as Z&W),

3. the widely used method based on the MAD estimator
in the highest frequency diagonal subband of a 2D Haar

5 We evaluated the noise levels of the raw images from the three image
sets using our method, though there is no ground truth to compare.
Images from the Van Hateren database have significantly lower noise
levels (averaged noise standard deviation 0.25) due to its higher bit-
depth and quality, while images from UCID and Kodak data bases have
average estimated noise levels around 0.44 and 0.78, respectively.
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Table 1 Comparison of noise
estimation performances for
additive Gaussian noises as the
average PSNRs (standard
deviations shown in parenthesis)

Bold faces correspond to mean
performances closest to the
ground truth

PSNR 50 dB 40 dB 30 dB 25 dB 20 dB

KD Ours 49.61 (0.82) 40.08 (0.61) 30.16 (0.53) 25.14 (0.24) 20.07 (0.12)

LTO 47.33 (1.22) 39.26 (0.73) 30.33 (0.58) 25.04 (0.24) 20.03 (0.12)

Z&W 45.64 (2.01) 37.53 (1.22) 30.54 (0.95) 25.38 (0.55) 20.29 (0.32)

MAD 39.70 (1.24) 36.08 (0.97) 28.97 (0.72) 24.55 (0.36) 19.83 (0.15)

UD Ours 49.53 (1.68) 39.76 (1.43) 30.14 (0.41) 25.12 (0.11) 20.02 (0.03)

LTO 49.64 (1.97) 39.55 (1.94) 30.02 (0.37) 25.01 (0.09) 20.00 (0.05)

Z&W 46.45 (2.04) 39.11 (2.31) 30.32 (0.61) 25.24 (0.28) 20.07 (0.09)

MAD 45.34 (1.92) 38.44 (1.19) 29.35 (0.47) 25.76 (0.89) 19.99 (0.01)

VH Ours 49.70 (1.07) 40.46 (0.96) 30.10 (0.21) 25.05 (0.09) 20.03 (0.04)

LTO 48.53 (2.08) 40.85 (1.34) 30.01 (0.17) 25.00 (0.07) 20.00 (0.04)

Z&W 45.91 (2.20) 39.17 (1.31) 30.19 (0.48) 25.12 (0.33) 20.10 (0.22)

MAD 45.13 (1.84) 38.75 (0.80) 29.73 (0.26) 24.89 (0.12) 19.96 (0.05)

wavelet decomposition Donoho (1995) (corresponding
to rows labeled as MAD).

These results that on estimating Gaussian noises, the
performances of our method are comparable with those of
Liu et al. (2012), the current state-of-the-art. We note that
the method of Liu et al. (2012) relies more on a station-
ary Gaussian noise model, in contrast, our method can be
extended to non-Gaussian and non-stationary noise mod-
els as shall be shown in the following. Compared with
the method of Zoran and Weiss (2009), the improvement
achieved with our method is significant, particularly for low
noise levels (corresponding to high PSNRs). This is likely
due to the difference in the objective functions as discussed
in Sect. 4.2.

In terms of running time, for an 800 × 600 image, our
method and the method of Liu et al. (2012) take on aver-
age about 3 s, the method of Zoran and Weiss (2009) takes
about 10 s, whereas it takes the MAD estimator about 0.5 s.6

Yet, it should also be pointed out that most running time of
our method is spent on the convolutions with the 63 filters,
where the MAD estimator essentially uses only two filters.
However, when reduced to two random band-pass filters, the
proposed blind noise variance estimation method achieves
comparable running time and a slightly better performance
over the MAD estimator.

We also study the effect of different choice of linear band-
pass filters in our noise estimation method. We compare

6 All results are based on unoptimized MATLAB code running on a
machine of 2.4 GHz and 4 GB RAM. This improves on our early results
(Pan et al. 2012c), as we use separable random filters, and can be imple-
mented as two consecutive 1D convolutions. This gives it an advantage
in running time compared to the 2D random filters that have to be imple-
mented as one 2D convolution step.

results obtained with 63 random symmetric random band-
pass filters of size 8 × 8 and 63 AC filters from the 2D DCT
decomposition of the same size. Shown in Table 2 are the
performances of using random band-pass filters (row RND)
and DCT filters (row DCT) on the Van Hateren image set for
additive Gaussian noises. These results suggest that using
random band-pass filters can lead to better average perfor-
mances over the deterministic DCT filters, albeit with higher
variations in the estimations.

4.4.2 Non-Gaussian and Multiplicative Noise

In the next set of experiments, we test our method to esti-
mate statistics of (1) additive zero mean Laplacian noise
(determined by the scale parameter s) and (2) multiplicative
Gamma noise specified with parameter α.7 Random noises of
the two types are applied to 100 images from the Van Hateren
set, to which our method is applied to estimate the noise para-
meters. For the Laplacian noise, estimation of s is obtained
using the square root of the estimated noise variance. For
the Gamma noise, estimations of α and β are obtained from
the estimated noise variance of the logarithm transformed
image using Eq. (16) with numerical evaluation of the di-
gamma and tri-gamma functions, see Sect. 4.3. We present
the experimental results in Tables 3 and 4.

We also applied the three other methods as comparisons. In
both cases, estimation methods that have a stronger reliance
on the Gaussian noise model, i.e., Liu et al. (2012) and
Donoho (1995), perform worse compared to the kurtosis
based methods, with our method outperforming the method
of Zoran and Weiss (2009) in general.

7 β can be computed from α assuming the log noise has mean zero, c.f.
Eq. (16).
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Table 2 Comparison of noise
estimation performances using
random band-pass filters (RND)
and deterministic DCT filters
(DCT)

PSNR 50 dB 40 dB 30 dB 25 dB 20 dB

RND 49.70 (1.07) 40.46 (0.96) 30.10 (0.21) 25.05 (0.09) 20.03 (0.04)

DCT 49.64 (0.84) 40.98 (0.38) 30.12 (0.08) 25.06 (0.03) 20.04 (0.01)

Table 3 Comparison of noise estimation performances for additive
Laplacian noises as the average estimation of scale parameter (standard
deviations shown in parenthesis)

s = 1 s = 5 s = 10 s = 25

Ours 1.07 (0.72) 5.12 (1.38) 10.29 (1.42) 25.44 (3.24)

LTO 2.44 (1.23) 3.42 (2.61) 9.03 (2.82) 23.15 (1.21)

Z&W 1.94 (1.02) 5.42 (1.68) 10.86 (1.75) 26.95 (1.21)

MAD 3.68 (0.92) 7.84 (1.94) 14.62 (2.63) 21.35 (4.58)

Bold faces correspond to mean performances closest to the ground truth

Table 4 Comparison of noise estimation performances for multiplica-
tive Gamma noises as the average estimation of parameter α (standard
deviations shown in parenthesis)

α = 1 α = 5 α = 10 α = 25

Ours 1.45 (1.32) 6.16 (2.04) 11.97 (3.21) 28.44 (4.52)

LTO 5.21 (3.19) 8.32 (2.89) 18.37 (7.06) 30.22 (8.23)

Z&W 2.22 (1.08) 7.03 (3.25) 13.88 (6.39) 29.72 (5.77)

MAD 5.49 (4.25) 8.28 (4.70) 19.38 (4.46) 30.32 (3.48)

Bold faces correspond to mean performances closest to the ground truth

5 Local Noise Variance Estimation

In this section, we describe an efficient blind local noise esti-
mation method based on the estimator developed in the pre-
vious section. The goal is to obtain noise variance σ 2(i, j) at
each pixel location (i, j) using statistics collected from cor-
responding rectangular windows in the K band-pass chan-
nels, �k

(i, j). The size of the window controls the trade-off
between the precision and variance of the estimation. In gen-
eral, smaller window sizes lead to finer spatial resolution,
but the estimated statistics may suffer from higher variance
due to the smaller number of samples. Estimations based on
larger window sizes are more stable, but rapid changes in the
underlying statistics will not be captured precisely.

Though in principle any global noise estimation method
can be used by simp lying applying it locally, we take advan-
tage of the closed-form estimator developed in the previous
section for a more efficient non-iterative solution. Note that
both variance and kurtosis can be computed from the raw
(un-centered) moments, Eq. (2), which is estimated in the
local window with sample averages, as:

μm

(
�k

(i, j)

)
≈ 1

|�k
(i, j)|

∑

(i ′, j ′)∈�k
(i, j)

x(i ′, j ′, k)m,

where we denote x(i ′, j ′, k) the response at (i ′, j ′) in the kth
band-pass channel. A straightforward implementation then
uses the estimated local statistics to compute kurtosis and
variance and then evaluate Eq. (11) for each local window
�k

(i, j). This leads to an overall running time of O(M N K ),
where N and M are the sizes of the image and local windows,
respectively, and K is the number of band-pass channel used.
We will show that this implementation can be accelerated to
a running time of O(N K ) using integral image (Viola and
Jones 2002).

Integral image (also known as sum area table Crow 1984)
is a data structure for efficient computation of sum values in
rectangular regions in an image (or in our case, one channel
in a band-pass filtered domain). In particular, denote the inte-
gral image constructed from an image x as I(x), each pixel
of I(x) corresponds to the sum of all pixels of x in the rec-
tangular region defined by [1, i]× [1, j]. The integral image
can be efficiently constructed in linear time of the dimension
of x (Viola and Jones 2002). Summation in any rectangular
window specified with [i, i + I ] × [ j, j + J ] in x can then
be evaluated with just three addition/subtraction operations
on the corresponding integral image, as:

I(x)i+I, j+J − I(x)i, j+J − I(x)i+I, j + I(x)i, j .

In particular, the mth order raw moment of the rectangular
window [i, i + I ] × [ j, j + J ] can be computed as

1

I J

[

I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i+I, j+J − I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i, j+J

−I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i+I, j + I(x ◦ · · · ◦ x︸ ︷︷ ︸
m times

)i, j

]

, (17)

where◦ is the point-wise multiplication (Dirac product). Sub-
sequently, the local statistics of all overlapping windows in
a subbband can be computed in time that is agnostic to the
local window sizes, which also facilitates efficient selection
of the size of local windows for an optimal tradeoff of estima-
tion precision (large windows) and location accuracy (small
windows).

We summarize the basic steps of our local noise estimation
algorithm as the follows.

1. Decompose the image into K band-pass filtered channels
using AC filters from the DCT decomposition;
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Fig. 5 Local noise variance estimation for three images with different additive white Gaussian noise patterns

2. Compute the integral images of the first to the fourth order
raw moments in each of the K band-pass filtered channels
with Eq. (17);

3. Compute variance and kurtosis for each local window in
each band-pass filtered channel with Eq. (2);

4. Estimate noise variance by evaluating Eq. (11) for each
local window across all band-pass filtered channels.

5.1 Experimental Evaluation

The performances of the local noise variance estimator are
evaluated on a set of noisy images generated from the Kodak
image set, on each of which spatially varying Gaussian noises
are added. In particular, we use three types of spatial pat-
terns for the additive noise, (1) horizontal stripes of Gaussian
noises of uniformly increasing variances from σ = 10 (top)
to σ = 20 (bottom), (2) Gaussian noises of σ = 20 with
annular patterns and (3) Gaussian noises of σ = 20 with
checkerboard patterns. Three examples of the noise corrupted
images are shown in the first row of Fig. 5. The implemented
algorithm uses 63 8 × 8 random band-pass filters, with 5 × 5
local windows.

The second row of Fig. 5 shows the estimated local noise
variances of each corresponding image. These results sug-
gest that our method can recover the spatial patterns of these
locally varying noises. On the other hand, it should also be
noted that different local noise variances intrinsic to the orig-
inal image are also detected, which are most clearly visible
for the middle image that has extensive smooth regions (e.g.,
sky) and textures (e.g., trees).

We also perform a qualitative evaluation of our method.
Table 5 shows the average and standard deviation (in paren-
thesis) of the root mean squared difference between the esti-
mated noise standard deviations and the ground truth val-

Table 5 Quantitative evaluation with RMSE of our local noise estima-
tion method on three different data sets

Stripes Annulus Checkerboard

Our method 3.17 (4.22) 6.18 (5.23) 4.12 (4.46)

Method of
Mahdian and Saic
(2009)

7.69 (10.25) 12.76 (7.74) 9.89 (6.82)

The reported performances are the average and standard deviation (in
parenthesis) of the RMSE averaged over 100 images generated for
each noise pattern
Bold values indicate better performance

ues averaged over 100 images generated for each noise pat-
tern. As a comparison, in the same table, performances of
a local noise estimation method based on the MAD esti-
mator (Mahdian and Saic 2009) are also reported. As these
results show, our method achieves a significant margin in
estimation performance over the alternative method. Last,
the dynamic programming implementation also leads to a
significant speedup—analyzing an image of size 600 × 800
pixels takes 8 s, while the algorithm without dynamic pro-
gramming takes more than 600 s.8

6 Region Splicing Detection

We use the blind local noise estimation method developed
in the previous section to detect region splicing. Assuming
untampered images have spatially homogeneous noise sta-
tistics, a composite image with regions from other images
with different noise characteristics can be exposed by the
inconsistencies of local noise statistics.

8 All results are based on unoptimized MATLAB code running on a
machine of 2.4 GHz and 4GB RAM.
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Fig. 6 Examples of region splicing detection results for forged images from the Columbia Uncompressed Image Splicing Detection Evaluation
Dataset (Hsu and Chang 2006). See text for details

To this end, we first apply the blind local noise estimation
method to compute the local variances at all pixel locations.
Specifically, these local noise variances are the mean of the
estimations obtained with local window of different sizes
(n × n with n taking 2, 4, 8 10 and 12), based on 63 random
band-pass 8 × 8 filters. The use of averages over different
window sizes is to accommodate the precisions in estimating
statistics (larger windows) and recovering changes in local
statistics (smaller windows). We then segment the estimated
local noise statistics into distinct regions with significantly
different values and remove small isolated regions. Regions
with similar noise levels are further connected and merged
using mathematical morphological operations (Serra 1988).

It should be pointed out that due to the complex nature of
real camera noise, the estimations obtained from our algo-
rithm are usually approximations to the actual of local noise
variances. However, for the purpose of detecting region splic-
ing, it is sufficient to expose significant inconsistencies in the
local noise variances, which is what our algorithm is used for.

6.1 Qualitative Evaluations and Comparisons

We first test our region splicing detection method on 180
forged images from the Columbia Uncompressed Image
Splicing Detection Evaluation Dataset (Hsu and Chang
2006). These forged images were created from digital pho-
tographs captured with a wide range of camera models
and different lighting conditions (indoor, outdoor, cityscape
and natural environment). The spliced regions are manually
selected from the source images and randomly pasted into
different images to create the forgeries. The forged images
are in high resolution and uncompressed TIFF format. Sev-
eral examples of the forged images, together with the detec-
tion results using our method, are shown in Fig. 6. We further
apply our method to another set of forged images with spliced

regions, several examples, which are submissions to the con-
test of realistic image manipulation on the web site http://
www.Worth1000.com. and the corresponding detections of
which are shown in Fig. 7. Compared to the images from the
Columbia data set, these spliced regions in these images are
better merged with the original image and more challenging
to detect.

In general, these results suggest that inconsistencies of
local noise variances, which can be revealed effectively with
our method, are useful in exposing spliced regions. However,
these results also suggest some limitations of all noise based
splicing detection method. In particular, the basic assumption
that local noise variances are consistent within image regions
of the same origin may not be true, this is particularly the case
for images with a lot of small scale textures. We find that
such is a major cause of false detections and miss detections.
In particular, when applied to the 180 original images from
the Columbia data set, our method found spliced regions of
sufficient sizes in 5 images, mainly due to the variation of
local noise variances within these untampered images.

We also compare the performance of our method with sev-
eral existing region splicing detection methods that can auto-
matically locate the spliced region in an image.9 We first com-
pare with two noise-based region splicing detection methods
(Mahdian and Saic 2009; Pan et al. 2011). The former is based
on the MAD estimator of local noise variances in the high-
pass Haar wavelet subband. The latter directly applies the
global noise variance estimation method in Zoran and Weiss
(2009) to local pixel patches. The original algorithms in both

9 This precludes methods that only classify whole image as containing
spliced regions (e.g., Bayram et al. 2006; Fu et al. 2007; Ng and Chang
2004), or require initial user input for possible spliced regions (Popescu
and Farid 2004; Hsu and Chang 2006; Lin et al. 2005, or predicate on
more detailed knowledge of the imaging processes (Chen et al. 2007).
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Fig. 7 Detection results on
splicing image forgeries from
Worth1000.com. Images are
used with the courtesy and
permission of the original
contributors

methods examine only non-overlapping blocks (40 × 40 and
64 × 64, respectively).

We created two tampered images with the aid of Adobe
Photoshop using region splicing. The top three rows of
Fig. 8 show the original images contributing the background,
the original images contributing the spliced regions, and
the tampered images, respectively. The original images (in
uncompressed TIFF format) are obtained from Flickr.com,
and they are taken with different cameras: the original images
in the top row were taken with a Canon 400D camera and
a Canon Digital Rebel 100 camera, respectively. The two
original images in the second row were taken with a Canon
EOS-60D digital camera and a SONY DSC-H20 digital cam-
era, respectively. The differences in sensor types, exposure,
and ISO speeds in these images are the main causes of the
different noise variances in the forged images. Comparisons
of detected spliced regions are shown in the last two rows of
Fig. 8. For the two comparable methods, the settings were
identical as given in each paper. Though all three methods
seem to locate the spliced region, our method provides a
higher level of accuracy because the region is determined to
the pixel level.

We further compare with the detection method of Lin et
al. (2009), which exploits some particular properties of tam-
pered images in the JPEG format. Specifically, if we assume

the tampered JPEG image is a composite of regions from
multiple different original JPEG images, each of which has
different JPEG compression qualities, then during its genera-
tion, most of the image blocks undergo at least twice of JPEG
compression, one from the original image and the other from
the process of saving the tampered image in JPEG format. It
is known that double JPEG compressed images have distinct
properties in the histograms of DCT coefficients (Popescu
and Farid 2004).

We compare the detection results of our method and the
method of Lin et al. (2009), which exposes spliced regions by
detecting each 8×8 image blocks for double JPEG character-
istics, on two example images (Fig. 9). As the results show,
both methods seem to be able to identify similar tampered
regions, but our method fails to detect the entire tampered
regions. One cause may be the low JPEG quality (Q = 65)
of these images. Heavy JPEG compression affects most the
high-frequency bands of the image, where the noise resides.
As such, the difference in noise levels between the original
images and the spliced regions are also reduced.

On the other hand, the detection of Lin et al. (2009) is
only to the level of 8×8 JPEG blocks, while our method can
provide more accurate demarcation of the spliced region. In
addition, we would like to point out that for the method of Lin
et al. (2009) to be effective, several restrictive assumptions
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Fig. 8 (a,b) Two pairs of
original JPEG images from
Flickr.com. (c) Forgeries
generated with image splicing
using the original images with
Adobe Photoshop. (d)
Splicing detection results using
our method. (e) Splicing
detection results using the
method in Pan et al. (2011). (f)
Splicing detection results using
the method in Mahdian and Saic
(2009)

Fig. 9 Comparison of splicing
detection results of our method
with the method in Lin et al.
(2009). The forged images and
detection results are provided
with permission by the authors
of Lin et al. (2009)
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have to be met: (1) the tampered image must be in JPEG
format, (2) the image contributing the background must be
in JPEG format and must have a different quality factor from
the tampered image, and (3) the spliced region has to exhibit
no double JPEG artifact (Lin et al. 2009). In contrast, noise-
based detection methods are based on more general image
statistics and can be applied to forged images created from
original images of different formats.

6.2 Quantitative Evaluations and Sensitivity Analyses

We perform a quantitative evaluation of our region splicing
detection method. We use 100 untampered images from the
UCID database (Schaefer and Stich 2004). We generate a
forged image by (1) randomly choosing a pair of untam-
pered images, (2) randomly selecting a rectangular region
from one image, (3) adding white Gaussian noise of a given
level to the selected region, and (4) pasting it into a ran-
dom region in the other image. This simple process aims to
simulate the process of region splicing, while the use of rec-
tangular region is to facilitate calculating the qualitative per-
formance measures. We quantify the detection accuracy with
the fraction of pixels in tampered regions that are correctly
identified, and define the false positive rate as the fraction of
pixels in untampered regions that are included in the detected
spliced regions. We use the receiver-operator characteristics
(ROC) curve as a comprehensive evaluation of the detection
accuracy and false positive rates shown in Fig. 10. Perfor-
mance levels on each ROC curve are obtained by adjust-
ing the segmentation threshold of local noise variances. The
reported ROC curves are results of averaging over 100 forged
images.

The left panel in Fig. 10 corresponds to ROC curves
for a fixed size of the spliced region (16 % of the original
image) and different noise levels. We measure the added
noise strength with the local signal-to-noise ratio defined as

log10(
σ 2

0 +σ 2

σ 2 ), where σ0 and σ correspond to the variances
of the spliced region in the original image (estimated with
the global noise variance estimation method of Sect. 4) and
the simulated Gaussian noise, respectively. The middle panel
shows ROC curves for a fixed noise variance correspond-
ing to local SNR of 20 dB and different sizes of the spliced

regions (measured as the percentage of the size of the orig-
inal images). The right panel of Fig. 10 shows ROC curves
for fixed noise variance and splicing region sizes, but the
forged image undergoes JPEG compression of different qual-
ity rates. These results show that the overall detection accu-
racies for higher noise variances or larger regions are better.
However, the performances deteriorate with lower noise vari-
ances, smaller regions, or low JPEG qualities, as under such
circumstances, the difference between spliced region and the
original image cannot be effectively reflected by local noise
variances.

7 Discussion

In this work, we describe an effective and efficient method
of blind (local) image noise estimation and its applica-
tion in detecting region splicing. Our method is based on
the observed projection kurtosis concentration phenomenon.
The blind noise estimation problem is then formulated as
an optimization problem, whose closed-form solution is the
basis of an efficient blind local noise estimation method. We
provide experimental evaluations showing the effectiveness
and robustness of our method.

Though we have demonstrated promising performances,
we would like to point out that the technique described in this
work is based on some very simple and specific statistical
aberration caused by additive noise. Unquestionably, there
exist much more statistical characteristics that distinguish
natural image patches from noise patches, and one can expect
more sophisticated methods based on contrasting the two
types of patches may become more effective in estimating
the noise.

We are also aware of several limitations of our region splic-
ing detection method. First, our method relies on the assump-
tion that the spliced region and the original image have dif-
ferent intrinsic noise variances. Therefore, wherever their
difference in noise variances is not significant, our method
may fail to locate the spliced region. One case in point is
when the tampered image underwent heavy JPEG compres-
sion. Furthermore, we assume that the intrinsic noise vari-
ances are similar across different pixels of the untampered

Fig. 10 ROC curves of
detection accuracy vs false
positive rates for different
settings of the tampering
operation
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image. This may not hold for images with large regions
with distinct texture and smooth regions (e.g., a forest in
the background of sky) or large regions of saturated pixels.
The existence of such regions is the major source of false
detections of our current method. Thirdly, inconsistency in
local noise statistics is only one aspect that can be used to
expose spliced regions. In particular, the blind noise estima-
tion method provides an easy approach for forged images to
avoid being detected by such methods, by first estimating and
compensating the difference in noise variances of the original
and spliced regions. To be more effective in detection, these
methods should be combined with other detection methods
that are based on alternative regular aspects of untampered
images.

There are several important directions that we would like
to further extend the current work. The blind local noise
estimation method assume a simple noise model that is (1)
additive, (2) signal independent, (3) independent, and (4)
Gaussian distributed. As we have shown both theoretically
(Sect. 4.3) and empirically (Sect. 4.4), the additivity and
Gaussianity assumptions of the noise model can be relaxed
to certain extend in our method. An important future work
is to further extend our method to correlated noise, where
instead of local noise variance, we would like to estimate the
local noise covariance matrix from a single noise corrupted
image. Such an algorithm can also help to reduce false detec-
tions of spliced regions, as noise typically has much weaker
inter-pixel correlations compared to structures in images, and
features from the estimated local noise covariance matrix
can be used to further differentiate image structures from
noise.

Second, we have demonstrated a 1D variant of our region
splicing detection method is also effective for audio forg-
eries (Pan et al. 2012b). Along this direction, we will fur-
ther extend our method for the detection of video splicing
by identifying significant difference in spatial-temporal local
noise variances, so it can be applied to detect region splic-
ing in videos. We would also study local noise statistics
as a characterizing “fingerprint” of the acquisition devices
(e.g., camera or scanner) to prove or disprove an image’s
authenticity.

Last, the ubiquity of noise suggests wider applicability of
our noise variance estimation algorithms. In particular, we
have recently also studied the use of a variant of our local
noise variance estimation algorithm on scanning pattern esti-
mation from sensitivity coding magnetic resonance images
in medical imaging applications (Pan et al. 2012a).
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Appendix 1: Lyapunov Central Limit Theorem

Suppose {X1, · · · , Xn} is a sequence of independent random
variables, each with finite expected value μi and variance σ 2

i .
Define s2

n = ∑n
i=1 σ 2

i , If for some δ > 0, the ”Lyapunovs
condition”

lim
n→∞

1

s2+δ
n

n∑

i=1

E
[ |Xi − μi |2+δ

] = 0

is satisfied, then a sum of (Xi − μi )/sn converges in distri-
bution to a standard normal random variable, as n goes to
infinity:

1

sn

n∑

i=1

(Xi − μi )
d−→ N (0, 1).

Appendix 2: Derivation of Claim 1

Based on the joint density function of the GSM variable x, Eq.
(5), we can obtain the marginal distribution of its projection
on a non-zero vector w as:

pw(t) =
∫

x:wT x=t
p(x)dx =

∫

z
pz(z)dz

∫

x:wT x=t

1
√

(2πz)d |det(�x)|
exp

(

−xT �−1
x x

2z

)

dx.

The marginalization in the inside integral reduces to a
Gaussian distribution with zero mean and variance zwT �xw,
based on the property of Gaussian distributions. Therefore,
pw(t) is a 1D GSM model with mixing density pz(z), as:

pw(t) =
∫

z
Nt (0, zwT �xw)pz(z)dz =

∫

z

1√
2πzwT �xw

exp

(

− t2

2zwT �xw

)

pz(z)dz

Now, the variance of wT x is computed as

Et

{
t2
}

=
∫

z
pz(z)dz

∫

t
t2Nt (0, zwT �xw) =

wT �xw
∫

z
zpz(z)dz = wT �xwEz {z} .

Furthermore, the fourth order moment of wT x is given as

Et

{
t4
}

=
∫

z
pz(z)dz

∫

t
t4Nt (0, zwT �xw) =

3wT �xw
∫

z
z2 pz(z)dz = 3wT �xwEz

{
z2
}

,

where we use the fact that for a Gaussian distribution
Nt (0, σ 2), its fourth order moment is 3σ 4. Putting all results
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together in the definition of kurtosis, we have

κ(w) = Et
{
t4
}

Et
{
t2
}2 − 3 = 3Ez

{
z2
}

Ez {z}2 − 3

= 3(Ez
{
z2
} − Ez {z}2)

Ez {z}2 = 3varz {z}
Ez {z} .

Appendix 3: Derivation of Eq. (11)

First we expand the objective function in (7) as

L
(√

κ, σ 2
)

=
K∑

k=1

(
√

κ̃k − √
κ +

√
κσ 2

σ̃ 2
k

)2

,

The gradient of L
(√

κ, σ 2
)

with regards to the two parame-
ters are computed as, as:

∂L

∂σ 2 = 2
K∑

k=1

(
√

κ̃k − √
κ +

√
κσ 2

σ̃ 2
k

) √
κ

σ̃ 2
k

. (18)

∂L

∂
√

κ
= 2

K∑

k=1

(
√

κ̃k − √
κ +

√
κσ 2

σ̃ 2
k

)(
σ 2

σ̃ 2
k

− 1

)

(19)

Setting Eq. (18) to zero, and considering
√

κ > 0, we have

K∑

k=1

1

σ̃ 2
k

(
√

κ̃k − √
κ +

√
κσ 2

σ̃ 2
k

)

= 0, (20)

Setting Eq. (19) to zero and substituting with Eq. (20) yield

K∑

k=1

(
√

κ̃k − √
κ +

√
κσ 2

σ̃ 2
k

)

= 0,

from which we can obtain

σ 2 = 1
1
K

∑K
k=1

1
σ̃ 2

k

− 1√
κ

∑K
k=1

√
κ̃k

∑K
k=1

1
σ̃ 2

k

. (21)

Next, substituting Eq. (21) back into Eq. (20), we have

√
κ

⎛

⎝ 1
1
K

∑K
k=1

1
σ̃ 2

k

− 1√
κ

∑K
k=1

√
κ̃k

∑K
k=1

1
σ̃ 2

k

⎞

⎠
K∑

k=1

1

(σ̃ 2
k )2

+
K∑

k=1

√
κ̃k

σ̃ 2
k

− √
κ

K∑

k=1

1

σ̃ 2
k

= 0. (22)

Further arranging terms and replacing average over dif-
ferent channels with 〈·〉k yield Eq. (11). Further checking
the second-order conditions ensures that the solution is the
unique global minimizer of Eq. (7).
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