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Abstract. Diffusion-based generative models employ stochastic differential
equations and their equivalent probability flow ordinary differential equations
to establish a smooth transformation between complex high-dimensional data
distributions and tractable prior distributions. In this paper, we reveal a striking
geometric regularity in the deterministic sampling dynamics of diffusion gener-
ative models: each simulated sampling trajectory along the gradient field lies
within an extremely low-dimensional subspace, and all trajectories exhibit an
almost identical ‘boomerang’ shape, regardless of the model architecture, applied
conditions, or generated content. We characterize several intriguing properties
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of these trajectories, particularly under closed-form solutions based on kernel-
estimated data modeling. We also demonstrate a practical application of the dis-
covered trajectory regularity by proposing a dynamic programming-based scheme
to better align the sampling time schedule with the underlying trajectory struc-
ture. This simple strategy requires minimal modification to existing deterministic
numerical solvers, incurs negligible computational overhead, and achieves super-
ior image generation performance, especially in regions with only 5-10 function
evaluations.

Keywords: diffusion-based generative models, sampling dynamics,
trajectory regularity, low-dimensional structure
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1. Introduction

Diffusion-based generative models (Sohl-Dickstein et al 2015, Song and Ermon 2019, Ho
et al 2020, Song et al 2021c, Karras et al 2022, Chen et al 2024), originally inspired by
nonequilibrium statistical mechanics (Jarzynski 1997, Sohl-Dickstein et al 2015, Bahri
et al 2020), have recently garnered significant attention and achieved remarkable res-
ults in image (Dhariwal and Nichol 2021, Rombach et al 2022), audio (Kong et al
2021, Huang et al 2023), video (Ho et al 2022, Blattmann et al 2023), and notably in
text-to-image synthesis (Saharia et al 2022, Ruiz et al 2023, Esser et al 2024, Podell
et al 2024). These models introduce noise into data through a forward process and
subsequently generate data by sampling via a backward process. Both processes are
characterized and modeled using stochastic differential equations (SDEs) (Song et al
2021c). In diffusion-based generative models, the pivotal element is the score func-
tion, defined as the gradient of the log data density w.r.t. the input (Hyvérinen 2005,
Lyu 2009, Raphan and Simoncelli 2011, Vincent 2011), irrespective of specific model
configurations. Training such a model involves learning the score function, which can
be equivalently achieved by training a noise-dependent denoising model to minimize
the mean squared error in data reconstruction, using the data-noise pairings generated
during the forward process (Karras et al 2022, Chen et al 2024). To synthesize new
data, diffusion-based generative models solve the acquired score-based backward SDE
through a numerical solver. Recent research has shown that the backward SDE can
be effectively replaced by an equivalent probability flow ordinary differential equation
(PF-ODE), preserving identical marginal distributions (Song et al 2021a, 2021c, Lu
et al 2022a, Zhang and Chen 2023, Zhou et al 2024a). This deterministic ODE-based
generation reduces the need for stochastic sampling to just the randomness in the initial
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Figure 1. A geometric picture of deterministic sampling dynamics in diffusion-
based generative models. Each initial sample (from the noise distribution) starts
from a big sphere and converges to the final sample (in the data manifold) along a
regular sampling trajectory. The score direction points to the denoising output of
the current position, and the denoising output forms an implicit denoising trajectory
controlling the explicit sampling trajectory. Each sampling trajectory inherently lies
in a low-dimensional subspace with almost the same shape.

sample selection, thereby simplifying and granting more control over the entire gener-
ative process (Song et al 2021a, 2021c). Under the PF-ODE formulation, starting from
white Gaussian noise, the sampling trajectory is formed by running a numerical solver
with discretized time steps. These steps collectively constitute the time schedule used
in sampling.

Despite the impressive generative capabilities exhibited by diffusion-based models,
many mathematical and statistical aspects of these models remain veiled in mystery.
This obscurity primarily stems from the inherent complexity of the associated SDEs,
the nonlinear nature of neural network parameterizations, and the high dimensionality
of real-world data (Biroli and Mézard 2023, 2024, Biroli et al 2024, Ghio et al 2024,
Achilli et al 2025, Tkeda et al 2025, Yu and Huang 2025). In this paper, we reveal a
striking regularity in the deterministic sampling dynamics of diffusion models, i.e. the
tendency of sample paths to exhibit a consistent ‘boomerang’ shape, as illustrated in
figure 1. More precisely, we observe that each sampling trajectory barely strays from the
displacement vector connecting its starting and ending points (section 3.1), while the
trajectory deviation can be effectively captured using two orthogonal bases (section 3.2).
Therefore, the sampling trajectory in the original high-dimensional data space can be
faithfully represented by its projection onto a three-dimensional subspace. These pro-
jected spatial curves are fully characterized by the Frenet-Serret formulas and exhibit
a remarkably consistent geometric structure, irrespective of initial random samples,
applied control signals, or target data samples (figure 5 and section 3.3). This intrinsic
regularity provides theoretical support for several empirical practices in the literat-
ure, such as employing a shared time schedule across different samples and using large
sampling steps with negligible truncation error (Song et al 2021a, Karras et al 2022, Lu
et al 2022a), particularly during the initial stage of generation (Dockhorn et al 2022,
Zhou et al 2024a).

https://doi.org/10.1088/1742-5468 /aelTac 4
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The geometric trajectory regularity of deterministic sampling trajectories has not
been previously investigated. This work aims to elucidate this phenomenon. We
begin by simplifying any ODE-based sampling trajectory to its drift-free counterpart
(section 2.3), which reveals an implicit denoising trajectory controlling the direction
of the associated sampling dynamics (section 4.1). Building on this insight, we estab-
lish a connection between the closed-form solution of denoising trajectory, which is
derived under kernel density estimates (KDEs) with varying bandwidths to approx-
imate the data distribution perturbed by different noise levels, and the classical mean-
shift algorithm (Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu and Meer 2002).
Although the KDE-based solution is not directly tractable for practical trajectory sim-
ulation, it asymptotically converges to the optimal solution derived from the real data
distribution and provides a solid foundation for theoretical analysis of our discovered
trajectory structure. We further characterize the deterministic sampling dynamics from
both local and global perspectives: locally, they exhibit stepwise rotation and mono-
tone likelihood increase; globally, they follow a linear-nonlinear-linear mode-seek path
of approximately constant length, as implied by this interpretation of the PF-ODE
(section 4.2). Moreover, we theoretically analyze the trajectory deviation under the
Gaussian data assumption (section 4.3). This geometric regularity unifies prior empirical
observations and clarifies several existing heuristics for accelerating diffusion sampling.
As a demonstration of this insight, we develop an efficient and effective accelerated
sampling algorithm based on dynamic programming (DP) to determine the optimal
time schedule (section 5). Experimental results demonstrate that the proposed approach
significantly improves the performance of diffusion-based generative models using only
a few (< 10) function evaluations. Our main contributions are summarized as follows:

e We demonstrate and characterize a strong geometric regularity in deterministic
sampling dynamics of diffusion-based generative models, i.e. each sampling traject-
ory exhibits a consistent ‘boomerang’-shaped structure confined to an extremely
low-dimensional subspace.

e We provide theoretical explanations for this regularity through closed-form analyses
of the denoising trajectory under the empirical data distribution and under the
Gaussian data assumption. Several derived properties offer insights into both the
local and global structures of sampling trajectories.

e We develop a DP-based algorithm that leverages the trajectory regularity to determ-
ine an optimal sampling time schedule. It incurs negligible computational over-
head while substantially improving image quality, particularly in few-step inference
regimes.

2. Preliminaries

2.1. Generative modeling with SDEs

For successful generative modeling, it is essential to connect the data distribution pq
with a manageable, non-informative noise distribution p,. Diffusion models achieve this
objective by incrementally introducing white Gaussian noise into the data, effectively
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obliterating its structures, and subsequently reconstructing the synthesized data from
noise samples via a series of denoising steps. A typical choice for p, is an isotropic
multivariate normal distribution with zero mean. The forward step can be modeled as
a diffusion process {z;} for t € [0,T] starting from the initial condition z; ~ pg, which
corresponds to the solution of an It6 SDE (Oksendal 2013, Song et al 2021c¢)

dz; = f (z;,t)dt +g(t)dw;, f(,1):R'=RY g():R—=R, (1)

where w; denotes the Wiener process; f(-,t) is a vector-valued function referred to
as drift coefficient and g(-) is a scalar function referred to as diffusion coefficient?.
The temporal marginal distribution of z; is denoted as p;(z;), with po(zo) = pa(zo)-
By properly setting the coefficients and terminal time 7, the data distribution pq is
smoothly transformed to the approximate noise distribution py(zr) = p, in a forward
manner. The solutions to It6 SDEs are always Markov processes, and they can be fully
characterized by the transition kernel py(z¢|zs) with 0 < s < ¢ < T'. This transition kernel
becomes a Gaussian distribution when considering the linear SDE with an affine drift
coefficient f(z;,t) = f(t)z;. In this case, we can directly sample data zq and its corrupted
version z; with different levels of noise, which largely simplifies the computation of the
forward process and eases the model training. Therefore, linear SDEs are widely used in
practice!. The transition kernel py;(z¢|zo) derived with standard techniques (Sirkké and
Solin 2019, Karras et al 2022) has the following analytic form

pot (ze|20) = N (245 () 20, 8> (t) 0* (1) 1), (2)
or equlvalently, z: = s(t)zo+ [s(t)o(t)] €, where s(t)= exp(f(ff(g)dg), o(t) =
\/ fo ] d¢, and €; ~ N(0,1I). For notation simplicity, we hereafter denote them

as s and o, respectlvely. Then, we can rewrite the forward linear SDE (1) in terms of
s; and oy,

_ dlogs; [do? _ dlogs; _ do?
dz; = i z; dt + s; r dwy, f(t)= P and g (t) =s; T (3)

Furthermore, following previous works (Kingma et al 2021, Rombach et al 2022),
we define the signal to-noise ratio (SNR) of the transition kernel (2) as SNR(¢) =

s?/(s?0?) = 1/0?, which is a monotonically non-increasing function of . A simple corol-
lary is that any linear diffusion process with the same o; exhibits an identical SNR
function. Two specific forms of linear SDEs, namely, the variance-preserving (VP) SDE
and the variance-exploding (VE) SDE (Song et al 2021c, Karras et al 2022) are widely
used in large-scale diffusion models, see more details in appendix A.1.

3 The noise term in this case is independent of the state z; (a.k.a. additive noise), and therefore the Tté and Stratonovich interpret-
ations of the above SDE coincide (Stratonovich 1968, Sarkké and Solin 2019). A unique, strong solution of this SDE exists when
the time-varying drift and diffusion coefficients are globally Lipschitz in both state and time (Oksendal 2013).

4 Some non-linear diffusion-based generative models also exist (Zhang and Chen 2021, Chen et al 2022, Liu et al 2023a), but they
are beyond the scope of this paper.

https://doi.org/10.1088/1742-5468 /aelTac 6
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The reversal of the forward linear SDE as expressed in (3) is represented by another
backward SDE, which facilitates the synthesis of data from noise through a back-
ward sampling (Feller 1949, Anderson 1982). Based on the well-known Fokker—Planck—
Kolmogorov (FPK) equation that describes the evolution of p:(z:) given the initial
condition py(z¢) = pa(zo) (Oksendal 2013), i.e.

8]'%_(:15) =-V- lpt (z¢) [ (t) 20 — J Q(t)

Vupi <zt>] , @)

it is straightforward to verify that a family of backward diffusion processes with varying
7¢, as described by the following formula, all maintain the same temporal marginal
distributions {p;(z;)}., as the forward SDE at each time throughout the diffusion
process

2
o= |1 (03~ 5 0 Vadown )t 4 g (1), )

where 7); controls the amount of stochasticity and w; denotes the Wiener process when
time flows backwards. Notably, there exists a particular deterministic process with the
parameter 7; = 0, termed PF-ODE in the literature (Song et al 2021c, Karras et al 2022).
PF-ODE describes a time-dependent vector field, which can directly initialize a gener-
ative modeling framework and then induce the associated probability path (Albergo
et al 2023, Lipman et al 2023, Liu et al 2023b). The deterministic nature of ODE offers
several benefits in generative modeling, including efficient sampling, unique encoding,
and meaningful latent manipulations (Song et al 2021a, 2021c, Chen et al 2024). We
thus choose this mathematical formula to analyze the sampling behavior of diffusion
models throughout this paper.

2.2. Score estimation and diffusion sampling

Simulating the preceding PF-ODE requires having access to the score function
V. logpi(z;) (Hyvérinen 2005, Lyu 2009), which is typically estimated with denoising
score matching (DSM) (Vincent 2011, Song and Ermon 2019, Karras et al 2022). Thanks
to a profound connection between the score function and the posterior expectation from
the perspective of empirical Bayes (Robbins 1956, Morris 1983, Efron 2010, Raphan and
Simoncelli 2011), we can also train a denoising autoencoder (DAE) (Vincent et al 2008,
Bengio et al 2013b, Alain and Bengio 2014) to estimate the conditional expectation
E(zo|z¢), and then convert it to the score function, see more details in appendix A.2.
We summarize this connection as the following lemma.

Lemma 1. Let the clean data be zy~ pq, and consider a transition kernel that adds

Gaussian noise to the data, pot(z:|zo) :N(zt;stzo, s%UfI). Then the score function is
related to the posterior expectation by

Vi logpi (z:) = (StUt)iz (siE(zo|2t) —2¢) (6)

https://doi.org/10.1088/1742-5468 /aelTac 7
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or equivalently, by linearity of expectation,

Vo logpi (z:) = — (5100)  Eppmm€s € = (5100) " (20 — s120). (7)

Therefore, we can train a data-prediction model r¢(z:;t) to approximate the posterior
expectation E(zg|z;), or train a noise-prediction model €g(z;t) to approximate the pos-

terior expectation E (%m), and then substitute the score in (5) with the learned

model for the diffusion sampling process. The DAE objective function of training a
data-prediction model rg(z;;t) across different noise levels with a weighting function
A(t) is

T
LAk (9, A (t)) = /0 A (t) EZOdiEZtNPOt(Zt|ZO) HT@ (Zt; t) - Z0||§dt' (8)

Lemma 2. The optimal estimator v (zs;t) for the DAE objective, also known as the
Bayesian least squares estimator or minimum mean square error (MMSE) estimator,
is given by E(zo|z;).

In particular, this optimal estimator admits a closed-form solution under the empir-
ical data distribution (Karras et al 2022, Scarvelis et al 2023, Chen et al 2023a), as
stated in the following lemma.

Lemma 3. Let D:= {y; € R%};cr denote a dataset of |Z| i.i.d. data points drawn from
pa. When training a DAE with the empirical data distribution pg, the optimal denoising
output is a convexr combination of original data points, namely

exp (— ||z — yi ||3/20}
~yli=3 il12/207)

ro(ze3t) = mrinEYNﬁd]EZtN;DOt(ZtIY) 7o (z4:1) Z exp (— ||z — Yj||%/20t2)Yi7 (9)

where py(y) is the sum of multiple Dirac delta functions, i.e. pg(y) = (1/|Z]) Y ez 6(|ly —
yill)-

In practice, it is assumed that V,, logp;(z;) ~ (StUt)iZ (siro(ze;t) — z¢) for a converged
model®, and we can plug it into (5) with 17, =0 to derive the empirical PF-ODE for
sampling as follows

dz; dlogs; dlogaoy

= 1) —

@@ T q crelmi)—m) (10)
. legStZ 15 dO’t6 (Z t)
- dt t tdt o\4¢,t) .

Both the data-prediction model rg(z;;t) and the noise-prediction model €g(z¢;t) above
are widely used in existing works (Ho et al 2020, Song et al 2021a, Bao et al 2022,
Karras et al 2022, Lu et al 2022b, Zhang and Chen 2023, Chen et al 2024, Zhou et al
2024a).

5 We slightly abuse the notation and still denote the converged model as 7¢(+;t) hereafter.

https://doi.org/10.1088/1742-5468 /aelTac 8
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Given the empirical PF-ODE (10), we can synthesize novel samples by first drawing
pure noises z;, ~ p, as the initial condition, and then numerically solving this equation
backward with N steps to obtain a sequence {2} , with a certain time schedule
IF={ty=e¢,---,ty =T}. We adopt hat notations such as z; to denote the samples
generated by numerical methods, which differs from the exact solutions denoted as z;,.
The final sample z;, is considered to approximately follow the data distribution pq. We
designate this sequence as a sampling trajectory generated by the diffusion model.
More details about numerical approximation can be found in appendix A.3.

2.3. The equivalence of diffusion models

We further demonstrate that diffusion models modeled by linear SDEs are equivalent
up to a scaling transformation, provided they share the same SNR function of transition
kernels (2). In particular, any other model type (e.g. the VP diffusion process) can be
transformed into its VE counterparts via the following lemma.

Lemma 4. The linear diffusion process defined as (3) can be transformed into its VE
counterpart with the change of variables x; = 7/ st, keeping the SNR function unchanged.

Similarly, we provide the PF-ODE and its empirical version in terms of the x variable
(or say, in the x-space) as follows

Xt — 1o (X¢;1)

dXt = —atVXt logpt (Xt) dO't = dO't — €¢ (Xt,t) dO’t, (].].)

Ot
with the score function Vy, logp:(x;) = $:V,, logpi(z:), for t € [0,T]. Because of the above
analysis, we can safely remove the drift term in the forward SDE (3) by transforming
them into the VE counterparts without changing the essential characteristics of the
underlying diffusion model. In the following discussions, we merely focus on the math-
ematical properties and geometric behaviors of a standardized VE-SDE, i.e.

dx; = y/do?/dtdw;, o;:R— R, (12)

with a pre-defined increasing noise schedule o;. Lemma 4 guarantees the applicability
of our conclusions to any other types of linear diffusion processes, including the typical
flow matching-based models (Albergo et al 2023, Lipman et al 2023, Liu et al 2023b).
In this case, the sampling trajectory is denoted as {%X;, }_, with the time schedule
I'={ty=¢,--,ty =T} and the initial noise is denoted as %X;, ~ p, = N(0,0%1).

2.4. Conditional and latent diffusion models

It is straightforward to extend the above framework of unconditional diffusion models
into the conditional variants (Dhariwal and Nichol 2021, Song et al 2021c, Rombach
et al 2022). Given the class or text-based condition c, the modeled marginal distribu-
tions become p;(x¢|c) (or p:(z¢|c) in the z-space) instead of the original p;(x;), and the
sampling process relies on the learned conditional score Vy, logp;(x;|c) at each time. In
general, discrete texts are first mapped into a continuous text embedding space (Nichol

https://doi.org/10.1088/1742-5468 /aelTac 9
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et al 2022, Rombach et al 2022, Saharia et al 2022), which distinguishes text-conditional
diffusion models from the diffusion models conditioned on discrete class labels. Another
extension from the practical consideration is performing the diffusion process in a low-
dimensional latent space rather than the original high-dimensional data space (Vahdat
et al 2021, Rombach et al 2022). With the help of an autoencoder structure, latent diffu-
sion models significantly reduce computational demand and scale up to high-resolution
generation.

In the following empirical analysis (section 3), we will demonstrate that strong
trajectory regularity is widely present in wunconditional, class-conditional, and text-
conditional diffusion models. This observation motivates us to investigate the underly-
ing mechanism behind (section 4) and to develop an improved algorithm for sampling
acceleration (section 5).

3. Geometric regularity in deterministic sampling dynamics

As mentioned in section 1, the sampling trajectories of diffusion-based generative models
under the PF-ODE framework exhibit a certain regularity in their shapes, regardless
of the specific content generated. To better demonstrate this concept, we undertake a
series of empirical studies in this section, covering unconditional generation (pixel space)
on CIFAR-10 (Krizhevsky and Hinton 2009), class-conditional generation (pixel space)
on ImageNet (Russakovsky et al 2015), and text-conditional generation (latent space)
with Stable Diffusion v1.5 (Rombach et al 2022). The spatial resolutions used for these
diffusion processes are 32 x 32, 64 x 64, 64 x 64, respectively. Given the complexity of
visualizing the entire sampling trajectory and analyzing its geometric characteristics
in the original high-dimensional space, we develop subspace projection techniques to
better capture the intrinsic structure of diffusion models.

3.1. One-dimensional projection

We first examine the trajectory deviation from the straight line connecting the two
endpoints, which serves to assess the linearity of the sampling trajectory. A sketch of
this computation is provided in figure 2(a). This approach allows us to align and col-
lectively observe the general behaviors of all trajectories. Specifically, we denote the
displacement vector between the two endpoints as vy, ¢, := Xy, — X¢,,, and compute the
trajectory deviation as the perpendicular Euclidean distance (L?) from each intermedi-
ate sample X;, to the vector vy, _,, i.e. diq 1= \/Hvtn%to”% - (vtj;%t0 ‘vth‘,ﬁto/||vtNﬁtoH2)2,
Additionally, we calculate the L? distance between each intermediate sample %X;, and
the final sample X;,, denoted as dgq := ||X;, — X4,||2, and refer to it as the final sample
distance.

The empirical results of trajectory deviation diq and final sample distance dgq are
depicted as the red curves and blue curves in figure 3, respectively. Note that we use
sampling time as the horizontal axis, which allows all sampling trajectories to be aligned
and compared both within and across different time slices. From figures 3(a) and (b),
we observe that the sampling trajectory’s deviation gradually increases from ¢ =80
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Figure 2. Illustration of subspace projection techniques. The deterministic
sampling trajectory begins with an initial noise X;, and progresses to the synthes-
ized data x;,. (a) The trajectory deviation equals the reconstruction error when the
d-dimensional point of the sampling trajectory is projected onto the displacement
vector Vi, = Xy, — Xiy- (b) We adopt vy, 4, and several top principal compon-
ents (PCs) from its (d — 1)-dimensional orthogonal complement to approximate the
original d-dimensional sampling trajectory.
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(a) Unconditional generation (CIFAR-10). (b) Class-conditional generation (ImageNet).
2
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(c¢) Text-conditional generation (SDv1.5).

Figure 3. Results of the 1-D trajectory projection. The sampling trajectory exhibits
an extremely small trajectory deviation (red curve) compared to the final sample
distance (blue curve) in the sampling process. Each trajectory is simulated with
the Euler method and 100 number of function evaluations (NFEs). The reported
average and standard deviations are based on 5000 randomly generated sampling
trajectories, considering variations in initial noises, class labels, and text prompts.

to approximately t=10, then swiftly diminishes as it approaches the final samples.
This pattern suggests that initially, each sample might be influenced by various modes,
experiencing significant impact, but later becomes strongly guided by its specific mode
after a certain turning point. This behavior supports the heuristic approach of arranging
time intervals more densely near the minimum timestamp and sparsely towards the
maximum one (Song et al 2021a, 2023, Karras et al 2022, Chen et al 2024). However,

https://doi.org/10.1088/1742-5468 /aelTac 11


https://doi.org/10.1088/1742-5468/ae17ac

Geometric regularity in deterministic sampling dynamics of diffusion-based generative models

when we consider the ratio of the maximum deviation to the endpoint distance in
figure 3(a) and (b), we find that the trajectory deviation is remarkably slight (e.g.
30/8800 ~ 0.0034 for ImageNet), indicating a pronounced straightness. Additionally,
the generated samples along the sampling trajectory tend to move monotonically from
their initial points toward their final points (as illustrated by the blue curves). Similar
results can be found for the text-conditional generation in the latent space, as shown in
figure 3(c).

The trajectory deviation also reflects the reconstruction error if we project all d-
dimensional points of the sampling trajectory onto the displacement vector v;, .. As
demonstrated in figure 4, the one-dimensional (1-D) approximation proves inadequate,
leading to a significant deviation from the actual trajectory both in terms of visual
comparison and quantitative results. These observations imply that while all trajector-
ies share a similar macro-structure, the 1-D projection cannot accurately capture the
full trajectory structure, probably due to the failure of modeling rotational properties.
Therefore, we further develop a multi-dimensional subspace projection technique, as
detailed below.

3.2. Multiple-dimensional projections

We then implement principal component analysis (PCA) on the orthogonal complement
of the displacement vector v, ., which assists in assessing rotational properties of the
sampling trajectory. A sketch of this computation is provided in figure 2(b). This (d — 1)-
D orthogonal space relative to v, , is denoted as V = {u:ulv,, ,;, =0,Vu € R?}. We
begin by projecting each d-D sampling trajectory into V), followed by conducting PCA.

As illustrated in figure 4, the 2D approximation using vy, _,;, and the first principal
component markedly narrows the visual discrepancy with the real trajectory, thereby
reducing the L? reconstruction error. This finding suggests that all points in each d-D
sampling trajectory diverge slightly from a 2D plane. Consequently, the tangent and
normal vectors of the sampling trajectory can be effectively characterized in this man-
ner. By incorporating an additional principal component, we enhance our ability to
capture the torsion of the sampling trajectory, thereby increasing the total explained
variance to approximately 85% (figures 4(c), (f) and (i)). This improvement allows for a
more accurate approximation of the actual trajectory and further reduces the L? recon-
struction error (figures 4(b), (e) and (h)). In practical terms, this level of approximation
effectively captures all the visually pertinent information, with the deviation from the
real trajectory being nearly indistinguishable (figures 4(a), (d) and (g)). Consequently,
we can confidently utilize a 3D subspace, formed by two principal components and the
displacement vector v, to understand the geometric structure of high-dimensional
sampling trajectories.

Expanding on this understanding, in figure 5, we present a visualization of ran-
domly selected sampling trajectories created by diffusion models under various gener-
ation settings. Note that the scale along the axis corresponding to X, — X, is orders
of magnitude larger than those of the other two principal components. Since we focus
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Figure 4. Visual comparison of trajectory reconstruction for (a) unconditional, (d)
class-conditional (generated by EDM (Karras et al 2022)), and (g) text-conditional
generation (generated by SDv1.5 (Rombach et al 2022)). The real sampling tra-
jectories (top row) are reconstructed using v, (1-D recon.), along with their
top 1 or 2 principal components (2D or 3D recon.). To amplify visual differences,
we present the denoising outputs of these trajectories. (b/e/h) The L? distance
between the real trajectory samples and their reconstructed counterparts is com-
puted up to 5D reconstruction. (c/f/i) The variance explained by the top & principal
components is reported as the ratio of the sum of the top k eigenvalues to the sum
of all eigenvalues.

on the geometric shape regularity of sampling trajectories rather than their absolute
locations, we align all trajectories via orthogonal transformations to eliminate arbitrary
orientation variations. These transformations, including rotations and reflections, are
determined by solving the classic Orthogonal Procrustes Problem (Hurley and Cattell
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(c¢) Text-conditional generation (SDv1.5, latent space).

Figure 5. We project 30 sampling trajectories generated by (a) unconditional, (b)
class-conditional, and (c) text-conditional diffusion models into the 3D subspaces.
Each trajectory is simulated with the Euler method and 100 number of function
evaluations (NFEs). These trajectories are first aligned to the direction of the
displacement vector X;, — X, (this direction is slightly different for each sample),
and then projected to the top 2 principal components in the orthogonal space to
Xy, — Xty - See texts for more details.

1962, Schénemann 1966, Golub and Van Loan 2013), after which we visualize the calib-
rated trajectories. Specifically, we represent each projected sampling trajectory in the
3D subspace as a matrix R € RV*3, where each row corresponds to a sample coordin-
ate r € R? at a particular time step, and N is the total number of generated samples
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in the trajectory. Then, we seek an orthogonal transformation O € R3*3 to minimize
the Frobenius norm of the residual error matrix E when aligning one matrix R € RV*3
with a reference projected trajectory matrix R € RV3 of the same dimensions. This
optimization problem is formulated as

E:r%inHﬁ—ROH%, s.t. 070 =1Is,. (13)

The optimal solution can be derived using the method of Lagrange multipliers, yielding
O*=UV"!, where U and V are obtained via singular value decomposition (SVD) of
RTﬁ, i.e. RTR = UXVT. As shown in figure 3, we adopt sampling time as the horizontal
axis to better observe the trajectory shapes by aligning different trajectories across time
slices. Here, time is scaled by a factor of v/d to preserve relative magnitudes between
axes. In other words, the visualization remains almost unchanged whether we use the
displacement vector v;,_,; or scaled time as the first axis. Moreover, in this case, an

orthogonal transformation O € R?*? that fixes the first axis suffices for alignment.

As a result, the calibrated trajectories depicted in figure 5 largely adhere to the
straight line connecting their endpoints, corroborating the small trajectory deviation
observed in our previous findings (figure 3). Furthermore, figure 5 accurately depicts the
sampling trajectory’s behavior, showing its gradual departure from the osculating plane
during sampling. Interestingly, each trajectory consistently exhibits a simple, approx-
imately linear-nonlinear structure. This reveals a strong regularity in all sampling tra-
jectories, independent of the specific content generated and variations in initial noises,
class labels, and text prompts.

3.3. Three-dimensional projection revisited

Given the strong trajectory regularity of deterministic diffusion sampling manifested
in the three-dimensional Euclidean space, as shown in figure 5, we further resort to a
differential geometry tool known as the Frenet—Serret formulas (Do Carmo 2016) to
precisely characterize geometric properties of the projected sampling trajectory.

We denote the projected sampling trajectory consisting of N discrete points in the
3D subspace as r(§), where £ =T —t with T as the terminal time and ¢ as the sampling
time (see section 2 for detailed notations). Thanks to our proposed subspace projection
techniques (sections 3.1 and 3.2), each projected sampling trajectory keeps starting
from pure noise r(0) and ends at the synthesized data r(7T). The arc-length of this

spatial curve is denoted as s(§) = f(f ||’ (u)||du, which is a strictly monotone increasing
function. We then use the arc-length s to parameterize the spatial curve, and define
the tangent unit vector, normal unit vector, and binormal unit vector as T(s) :=r'(s),
N(s):=r"(s)/|lr""(s)||, and B(s) := T(s) x N(s), respectively. These three unit vectors
are interrelated, and their relationship is characterized by the well-known Frenet—Serret
formulas listed below,

dT(s)
ds

dN (s
ds

~
Il
|
X
—~
»
~
H
—~
w
~
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~
oe]
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~

=k (s)N(s), = —7(s)N(s), (14)
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Figure 6. We compute the curvature and torsion functions of each 3D spatial curve
that approximates the original high-dimensional sampling trajectory. The Euler
method with 1000 NFEs is employed to faithfully simulate 30 sampling trajector-
ies with (a) unconditional, (b) class-conditional, and (c) text-conditional diffusion
models. The geometric properties of the curves are then estimated using least-
squares fitting.

where the curvature x(s) and the torsion 7(s) measure the deviations of a spatial curve
r(s) from being a straight line and from being planar, respectively. In practice, we
generally employ the following expressions for numerical calculation®.

k(s)=[r"(s) xx” ()] /Il ()P, 7(s)=[(x"(s) xx""(5))-x"""(s)] /[l (5) xx"" (s) > (15)

Specifically, for each discrete point on the spatial curve, we employ its surrounding
points within a given window size to estimate the first-, second-, and third-order deriv-
atives based on the third-order Taylor expansion (Lewiner et al 2005). With the help
of least squares fitting using an appropriate window size, the torsion and curvature
functions of each projected sampling trajectory can be reliably estimated with small
reconstruction errors.

As shown in figure 6, the projected sampling trajectory remains nearly straight for
a large portion (~ 80%) of the entire sampling process, with both curvature and torsion
staying close to zero, consistent with the analysis in sections 3.1 and 3.2. For example, in
class-conditional generation (figure 6(b)), the curvature and torsion gradually increase
once the arc-length s exceeds around 7000. The torsion reaches its peak at around 8250,
corresponding to a sampling time of around four, and then decreases back toward zero.
Note that figure 6 serves as an important complement to figure 5, providing a more
faithful description of the rotational structure of the 3D spatial curve throughout the
sampling process. In contrast, the significant differences in axis magnitudes in figure 5
may visually distort the actual trajectory shape. Furthermore, according to the funda-
mental theorem of curves in differential geometry (Do Carmo 2016), the shape of any
regular curve with non-zero curvature in 3D space is fully determined by its curvature

6 These two equations also hold for the spatial curve r(¢) parametrized by £.
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and torsion. The highly similar evolution patterns of curvature and torsion observed
in figure 6 provides strong evidence of trajectory regularity, suggesting that sampling
trajectories are congruent across different diffusion models and generation conditions.

4. Understanding the deterministic sampling dynamics

In this section, we investigate several properties of deterministic sampling in diffusion
models and provide explanations for the trajectory regularity observed in the previous
section. We begin by noting that, beyond the explicit sampling trajectory, there exists an
additional but often overlooked trajectory that determines each intermediate sampling
point through a convex combination (section 4.1). Under the empirical data distribution,
we establish a connection between the closed-form solutions of these trajectories and the
classic mean-shift algorithm (section 4.2). We then present a detailed theoretical analysis
of the sampling dynamics, revealing stepwise rotation and monotone likelihood increase
as local behaviors, and characterizing the overall trajectory as a linear-nonlinear—linear
mode-seeking path of approximately constant length as a global behavior. Finally, we
revisit trajectory regularity under the Gaussian data assumption (section 4.3).

4.1. Implicit denoising trajectory

Given a parametric diffusion model with the denoising output re(-;-), the sampling
trajectory is simulated by numerically solving the empirical PF-ODE (11). Meanwhile,
an implicitly coupled sequence {rg(X;,,t,)}’; is formed as a by-product. We designate
this sequence, or simplified to {rg(%;,)}2_, if there is no ambiguity, as the denoising
trajectory. We then rearrange the empirical PF-ODE (11) as r¢(x4;t) = x; — 0¢(dx;/doy),
and take the derivative of both sides to obtain the differential equation of the denoising
trajectory

dre (x¢;t) /doy = —oy [d*x,/do}] . (16)

This equation, although not directly applicable for simulation, reveals that the denoising
trajectory encapsulates the curvature information of the associated sampling trajectory.
The following proposition reveals how these two trajectories are inherently related.

Proposition 1. Given the probability flow ODE (11) and a current position X;,.,, n €
[0, N — 1] in the sampling trajectory, the next position X;, predicted by a k-th order

Taylor expansion with the time step size oy,,, — 0y, 18
S O-tn S O-tn+l — O-tn S
th = th+l + RB (th+l) Y (17)
t7z+1 O.tn,-%—l

which is a convex combination of X;,., and the generalized denotsing output

k- .
. . 1 dix
RH (th,+1) - TB (th+1) - Z d

i—1
il / a-tn (O-tll, - O-tn )Z * (]‘8)
— il dO't(Z) +1 +1

n+1

Xt
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In particular, we have Rg(X,,,) =ro(Xt,,,) for the Euler method (k= 1), and Re(X:,.,) =

N ot,—0t,.,, dre(Xe, .
ro(Xe,,,) + 5 ofigtt’“) for second-order numerical methods (k= 2).

Corollary 1. The denoising output ro(X:,.,,) reflects the prediction made by a single Euler
step from x;,,, with the time step size oy, .

Corollary 2. FEach second-order ODE-based accelerated sampling method corresponds to
a specific first-order finite difference of drg(Xy,.,)/doy.

The ratio oy, /0y,., in (17) quantifies the relative preference for maintaining the cur-
rent position versus transitioning to the generalized denoising output at ¢,.;. Since
the denoising output starts from a spurious mode and gradually converges toward
a true mode, a reasonable strategy is to decrease this weight progressively during
sampling. From this perspective, different time-scheduling functions designed for dif-
fusion sampling, such as uniform, quadratic, or polynomial schedules (Song et al 2021a,
Karras et al 2022, Lu et al 2022a, Chen et al 2024), essentially represent various weight-
ing functions. This interpretation also motivates the direct search for proper weights to
further enhance visual quality (section 5).

We primarily focus on the Euler method to simplify subsequent discussions, though
these insights can be readily extended to higher-order methods. The trajectory behavior
in the continuous-time scenario is similarly discernible through examining the sampling
process with an infinitesimally small Euler step.

4.2. Theoretical analysis of the trajectory structure

In this section, we leverage the well-established closed-form solutions under the empirical
data distribution (Karras et al 2022, Scarvelis et al 2023, Chen et al 2023a) to connect
deterministic sampling dynamics with the classic mean-shift algorithm (Fukunaga and
Hostetler 1975, Cheng 1995, Comaniciu and Meer 2002), and characterize their local
and global behaviors.

As discussed in section 2.2, once a diffusion model converges to the optimum, i.e.
Vt, ro(xi;t) — rp(xe;t) = E(xo|x¢), it captures the score Vy, logp;(x;) across different
noise levels. The exact formula for the optimal denoising output is given in (9), under
which both the sampling trajectory and the denoising trajectory admit closed-form solu-
tions. In this case, the marginal density at each time step of the forward diffusion pro-
cess (12) becomes a Gaussian KDE with bandwidth o7, i.e. pi(x¢) = [ pot(x¢]y)paly) =
(L/|Z]) > ;ez N (x43yi,071). Intuitively, the forward process can be viewed as an expan-
sion in both magnitude and manifold: the training data samples leave the original small-
magnitude low-rank manifold and spread onto a large-magnitude high-rank manifold.
Consequently, the squared magnitude of a noisy sample is expected to exceed that of the
original sample. As the dimension d — oo, this expansion occurs with probability one
and the isotropic Gaussian noise becomes approximately uniformly distributed on the
sphere (Vershynin 2018, Chen et al 2023a). In contrast, the backward process exhibits
the opposite trend due to marginal preservation.

In particular, the closed-form solution (9) is highly reminiscent of the iterative for-
mula used in mean shift (Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu and
Meer 2002, Yamasaki and Tanaka 2020). Mean shift is a non-parametric algorithm

https://doi.org/10.1088/1742-5468 /aelTac 18


https://doi.org/10.1088/1742-5468/ae17ac

Geometric regularity in deterministic sampling dynamics of diffusion-based generative models

designed to locate modes of a density function, typically a KDE, via iterative gradient
ascent with adaptive step sizes. Given a current position x, mean shift with a Gaussian
kernel and bandwidth A iteratively adds the vector m(x) — x, which points toward the
direction of maximum increase of the KDE p,(x) = (1/|Z]) ZiﬂlN(X;yi,hQI), to itself,
i.e. x + [m(x) — x| +x. The mean vector is

Z exp (=[x —yi [3/2h%) vi.
2 exp (=[x —y;l3/2h%)

As a mode-seeking algorithm, mean shift has been particularly successful in clustering
(Cheng 1995, Carreira-Perpinan 2015), image segmentation (Comaniciu and Meer 1999,
2002), and video tracking (Comaniciu et al 2000, 2003). By identifying the bandwidth o,
in (9) with the bandwidth & in (19), we build a connection between the optimal denoising
output of a diffusion model and annealed mean shift under the KDE-based data model-
ing. Moreover, the time-decreasing bandwidth (o; — 0 as t — 0) in (9) strongly parallels
annealed mean shift, or multi-bandwidth mean shift (Shen et al 2005), a metaheuristic
algorithm designed to escape local maxima where classical mean shift is susceptible to
stuck, by monotonically decreasing the bandwidth in iterations. Analogous to (17), each
Euler step in the optimal case equals a convex combination of the annealed mean vector
and the current position, with the PF-ODE dx;/do; = (x; — r(x4;t)) /or = €5(x4;t).

The above analysis further implies that all ODE trajectories generated by an optimal
diffusion model are uniquely determined and governed by a bandwidth-varying mean
shift. In this setting, both the forward (encoding) process and backward (decoding)
process depend solely on the data distribution and the noise distribution, independ-
ent of the model architecture or optimization algorithm. This property, previously
referred to as uniquely identifiable encoding and empirically verified in (Song et al
2021c¢), is here shown to be theoretically connected to a global KDE-based mode-seeking
algorithm (Shen et al 2005), and thus reveals the asymptotic sampling behavior of dif-
fusion models as training converges to the optimum. Although optimal diffusion models
essentially memorize the dataset and replay discrete data points during sampling, we
argue that in practice, a slight score deviation from the optimum both preserves gener-
ative ability and substantially mitigates mode collapse (see appendix C.2).

(19)

4.2.1. Local properties. We first show that (1) the denoising output governs the rota-
tion of the sampling trajectory, and (2) each sampling trajectory converges monoton-
ically in terms of sample likelihood, with its coupled denoising trajectory consistently
achieving higher likelihood.

Figure 7(a) illustrates two successive Euler steps according to proposition 1. The
direction of the sampling trajectory (depicted as a polygonal chain with consecutive blue
vertices) is controlled by the denoising outputs, while the vertex locations depend on the
time schedule. In the optimal case, the sampling path follows a similar structure with
the PF-ODE dx; = €y(x;;t)do;. This equation defines a special vector field featuring an
approximately constant magnitude ||€j(x;t)||2 across all marginal distributions p;(x;).

https://doi.org/10.1088/1742-5468 /aelTac 19


https://doi.org/10.1088/1742-5468/ae17ac

Geometric regularity in deterministic sampling dynamics of diffusion-based generative models

ot [l€0(%e, ),

7o (%e,)
High
e \al === -- @ Xtn Sample
7o (R, )@ = 7 Re, Likelihood
9ty ll€0 (e )l &) o nR)+v  tow
(a) Stepwise rotation. (b) Monotone likelihood increasing.

Figure 7. (a) An illustration of two consecutive Euler steps, starting from a current
sample X .,. A single Euler step in the ODE-based sampling is a convex combina-
tion of the denoising output and the current position to determine the next posi-
tion. Blue points form a piecewise linear sampling trajectory, while red points form
the denoising trajectory governing the rotation direction. (b) We have three like-
lihood orders in the ODE-based diffusion sampling: (1) pn(re(Xs,)) = pn(Xs,), (2)

pr(Xe,_,) 2 pu(%t,), and (3) pu(rg(Xe,)) = pn(X,). Note that py(rg(xe,)) may not
possess the highest likelihood within the sphere.

Proposition 2. The magnitude of €5(x;;t) concentrates around Vd, where d denotes the
data dimension. Consequently, the total length of the sampling trajectory is approxim-
ately UT\/E, where o1 denotes the mazximum noise level.

The above results also hold for practical diffusion models, with proofs and sup-
porting empirical evidence provided in appendix B.6. We further deduce that the
position of each intermediate point X;, n € [1,N —1] in the sampling trajectory is
primarily determined by the chosen time schedule, given that |[[re(Xy,.,) — X, |2 =
(o1, /01, |lro(Xe,.) = X1, [la = o, | €0(X1,..) [l & 0, || €0 (X1, ) |2 = [|70(Xe,) — X4, [[2- In this
scenario, the denoising output r(%y,.,) appears to be oscillating toward r¢(x;,) around
x;,, akin to the motion of a simple gravity pendulum (Young et al 1996). The pen-
dulum length contracts by the factor oy, /ov,,, at each sampling step, starting from an
initial length of roughly orv/d. This specific structure is shared across all trajectories.
In practice, the oscillation amplitude is extremely small (~ 0°), and the entire sampling
trajectory remains nearly confined to a two-dimensional plane. The minor deviations
can be effectively represented using a small number of orthogonal bases, as discussed in
section 3.

Next, we characterize the likelihood orders in the deterministic sampling process. To
simplify notations, we denote the deviation of denoising output from the optimal coun-
terpart as di(Xy,) = ||75(%s,) — r0(Xs,)||, and the distance between the optimal denoising
output and the current position as da(X;,) = ||75(%s,) — X4, [[5-

Proposition 3. In deterministic sampling with the Euler method, the sample likelihood
is non-decreasing, i.e. Vn € [1,N], we have py(Xy,_,) = pn(Xs,) and pp(re(Xy,)) = pn(Xs,)
with respect to the Gaussian KDE py(x) = (1/|Z]) Y ;s N (x;y:, h*I) for any positive
bandwidth h, under the assumption that all samples in the trajectory satisfy dy(X¢,) <
d2(5\<tn)'
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Figure 8. Comparison of visual quality (top is sampling trajectory, bottom is
denoising trajectory) and Fréchet Inception Distance (FID (Heusel et al 2017),
lower is better) w.r.t. the number of score function evaluations (NFEs). The denois-
ing trajectory converges much faster than the sampling trajectory in terms of FID
and visual quality. Figures (a)(b) are generated by EDM (Karras et al 2022), and
figure (c) is generated by SDv1.5 (Rombach et al 2022).

A visual illustration is provided in figure 7(b). The assumption requires that the
learned denoising output rg(%;,) falls within a sphere centered at the optimal denois-
ing output ry(x;,) with a radius of dy(%;,). This radius controls the maximum devi-
ation of the learned denoising output and shrinks during the sampling process. In
practice, such an assumption is relatively easy to satisfy for a well-trained diffusion
model. Therefore, each sampling trajectory monotonically converges in terms of sample
likelihood (pp(%:,_,) = pr(Xs,)), while its coupled denoising trajectory converges even
faster (pp(re(Xt,)) = pn(%:,)). Given an empirical data distribution, proposition 3 applies
to any marginal distribution of the forward SDE {p;(x)}L,, each of which is a KDE
with varying positive bandwidth t. Moreover, with an infinitesimal step size, proposi-
tion 3 naturally extends to the continuous-time version. Finally, the standard monotone
convergence property of mean shift is recovered when diffusion models are trained to
optimality.

Corollary 3. We have p,(m(X,)) = pn(Xe,), when ro(Xs,) = rg(Xy,) = m(Xy,).

Besides the monotone increase in sample likelihood, a similar trend is observed
in image quality (figure 8). Both qualitative and quantitative results show that the
denoising trajectory converges significantly faster than the sampling trajectory. This
observation motivates a new technique, which we termed ‘ODE-Jump’. The key idea is
to directly transition from any sample at any time step of the sampling trajectory to its
corresponding point on the denoising trajectory, and then returns the denoising output
as the final synthetic result. Specifically, instead of following the full sequence X;, —
cee = Xy, = oo — Xy, We modify it to Xy, — -+ — Xy, — 79(Xy, ). This reduces the total
NFE from N to N —n + 1, assuming one NFE per step. This technique is highly flexible
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and simple to implement. It only requires monitoring the visual quality of intermediate
denoising samples to determine an appropriate time to terminate the remaining steps.
As an example, consider the sampling process with SDv1.5 in figure 8(c). By jumping
from NFE = 80 of the sampling trajectory to NFE = 81 of the denoising trajectory, we
obtain a substantial improvement in FID, while producing a visually comparable result
to the final sample at NFE = 100 with significantly fewer NFEs. Additional results are
shown in figure 11. Figure 8 also highlights the insensitivity of FID to subtle differences
in image quality, a limitation also noted in previous work (Kirstain et al 2023, Podell
et al 2024).

4.2.2. Global properties. ~We then show that (1) the sampling trajectory acts as a
linear—nonlinear—linear mode-seeking path, and (2) the trajectory statistics undergo a
dramatic change during a short phase transition period.

In the optimal case, the denoising output, also referred to as the annealed mean
vector, starts from a spurious mode (approximately the dataset mean), i.e. rg(x;t) ~
(1/|Z) >;ezyi when the bandwidth o, is sufficiently large. Meanwhile, the sampling
trajectory is initially located in an approximately uni-modal Gaussian distribution with
a linear score function:

The first linear stage: Vi, logp; (x¢) = (rj (x5t) — x¢) Jo? = —x; /o7, (20)

This approximation holds for large ¢, since the dataset mean has negligible norm
relative to x; by the concentration of measure (lemma 5). This justifies heuristic
methods that replace the learned score with the Gaussian analytic score at the first
step (Dockhorn et al 2022, Wang and Vastola 2024, Zhou et al 2024a). As o; mono-
tonically decreases during sampling, the number of modes in the Gaussian KDE
pi(xt) = (1/|Z]) X jer N (x45yi,071) increases (Silverman 1981), and the underlying dis-
tribution surface gradually shifts from a simple Gaussian to a complex multi-modal
form. In this intermediate stage, the score function appears highly data-dependent and
nonlinear, as multiple data points exert non-negligible influence. Finally, with a suffi-
ciently small bandwidth o, the sampling trajectory is attracted to a specific real-data
mode, and the score function appears approximately linear again, i.e.

The second linear stage: Vi, logp; (x;) = (rf (x¢;t) —%¢) Jo? =~ (yr — Xt) /o, (21)

where y; denotes the nearest data point to x;. In other words, the posterior distribution
can again be well approximated by a Gaussian. This global linear-nonlinear—linear
behavior allows the sampling trajectory to locate a true mode under mild conditions,
similar to annealed mean shift (Shen et al 2005). Intriguingly, the total trajectory length
is guaranteed to be about orvd (proposition 2), implying a shared structural property
across trajectories originating from different initial conditions.

A straightforward piece of quantitative evidence supporting the above analysis comes
from the trajectory statistics of generated sampling paths based on optimal denoising
outputs, as discussed in section 3.3. The statistics presented in figures 9(a) and (d)
exhibit a distinct three-stage pattern, with the first and second linear stages char-
acterized by near-zero curvature and torsion. Critical transition points can be readily
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Figure 9. Further analysis of deterministic sampling dynamics based on optimal
denoising outputs, includes (a/d) the curvature and torsion functions; (b) an illus-
tration of the bi-level convex combination used to infer the next position; (e) the
evolution of convex combination coefficients; and (c¢/f) the corresponding Shannon
entropy along the sampling trajectories.

identified by thresholding. For example, curvature values below 1e~®, which corresponds
to average sampling times of 14.80 or 3.44, can be used to define linear trajectories in
practice. We next delve into a more detailed analysis of the phase transition between
the linear and nonlinear stages in the sampling dynamics. Given the current position
Xt,., and its corresponding optimal denoising output 75(Xy,,,), the next position X,
predicted by the Euler method according to (17) becomes

A~ O-tn ~ atn+1 atrL *

th = th+1 + —TO ( tn+1)
Utn+1 tn+l
. exp — 1%, —yi ||%/2Ut2) Ot, Ot,y — Oty (22)
o Z 2 2 th+l + y7 .
Z exp (= [%s,., = ¥;ll5/207) \ o1, Oty
w(%0,01) 9i(%1,01)

This implies that x;, lies within a convex hull, whose vertices y; are convex combinations
of the current position X;,,, and data points y;, with coefficients determined by the time
schedule (ov,/0v,.,, 1 —0y,/0%,.,), as illustrated in figure 9(b). In contrast, another con-
vex combination, parameterized by coefficients u;(x;, ., ), quantifies the relative influence
of individual data points and plays a central role in determining transition points within
the linear-nonlinear—linear path. As shown in figure 9(e), where a logarithmic scale is
used with a small bias term 1le™'? for numerical stability, the evolution of coefficients
begins approximately uniform at 1/50000 ~ 10~*7 and gradually converges toward a
specific data point. Note that the influence of different data points evolves differently:
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some decay monotonically, while others increase initially before declining. This beha-
vior suggests the existence of hierarchical clusters in the dataset, potentially reflect-
ing coarse-to-fine semantic structures in representing learning (Bengio et al 2013a).
Moreover, there exists a non-eligible period (roughly the final 5% of the trajectory in
figure 9(e)) during which one data point already dominates the trajectory’s trend. This
phenomenon becomes more pronounced in figures 9(c) and (f), where we introduce a
Shannon entropy-based criterion, H(u) = —)_, ui(xs,,,)logui(xs,,,), and its temporal
derivative 0H(u)/0t to quantify and visualize the evolving influence of data points
throughout the sampling dynamics. Similar three distinct dynamical regimes and phase
transitions during the generative diffusion process have also been observed in previous
works (Biroli et al 2024, Raya and Ambrogioni 2024).

4.3. Regularity revisited under the Gaussian data assumption

Although we have analyzed closed-form solutions for the optimal sampling dynamics
under the empirical data distribution (section 4.2), the resulting complex ODE hinders
detailed theoretical analysis, particularly in the intermediate nonlinear regime. To gain
further insight, we examine a simplified Gaussian data setting and demonstrate that
trajectory regularity still emerges. These findings confirm that the observed structure
is primarily an intrinsic property of deterministic sampling dynamics.

Proposition 4. Suppose the data distribution is Gaussian pa(x) =N (w,X), where p €
RY, ¥ € R js positive semi-definite (PSD) with rank (X) =r < d. Let ¥ = UAU"
denote the SVD, where U € R&>" contains eigenvectors u; as columns, and A € R™" is
diagonal with eigenvalues \;, i € [1,r]. In this setting, the PF-ODE solution x; can be
decomposed into the final sample xy, a scaled reverse displacement vector xp — Xy, and
a trajectory residual Ag(t):

aT

(t) B /\k+01&2 B py Ot 1_ by
Prit) = i + 02 ANe+0% o MNe+02 |

The squared norm of the trajectory residual, ||Ax(t)||3, approximates the 1-D
trajectory deviation and almost surely attains a unique maximum for ¢ € [og,o07].
Furthermore, it concentrates around its expectation Ex, [||Ax(¢)[|3]. Proofs are deferred
to appendix B.8. Empirical verification is provided in figures 10, 13—15, 18-19, where we
consider two cases: (1) fitting the entire dataset with a single Gaussian distribution, and
(2) fitting each class with an individual Gaussian, yielding a Gaussian mixture model
for the full dataset. Both simplified Gaussian data settings exhibit similar trajectory
regularity, as we have observed in section 3.

o s
xi=Xo+ — (xr—X0) +Ar(t),  Ap(t) = or ()} (xp— p)uy,
k=1

(23)
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Figure 10. Unconditional generation results on CIFAR-10 (32x 32). (a)—(b) One-
dimensional trajectory deviation. (c)—(d) Three-dimensional trajectory visual-
ization. Trajectory reconstruction and corresponding statistics are provided in
figures 18 and 19.

5. Geometry-inspired time scheduling

In this section, as a simple illustration, we propose a new technique inspired by the geo-
metric regularity of deterministic sampling in diffusion models to accelerate sampling
and enhance sample quality. This technique is compatible with any numerical solver-
based sampler and model architecture, easy to implement, and incurs negligible com-
putational overhead.

5.1. Algorithm

A deterministic ODE-based numerical solver such as the Euler (Song et al 2021c) or
Runge-Kutta (Liu et al 2022, Zhang and Chen 2023) relies on a pre-defined time sched-
ule I'={ty =€, -+ ,txy = T} in the sampling process. Typically, given the initial time ¢y
and the final time t(, the intermediate time steps from t; to ty_; are determined by
heuristic strategies such as uniform, quadratic (Song et al 2021a), log-SNR, (Lu et al
2022a, 2022b), and polynomial functions (Karras et al 2022, Song et al 2023). In fact,
the time schedule reflects our prior knowledge of the sampling trajectory shape. Under
the constraint of the total number of score function evaluations (NFEs), an improved
time schedule can reduce the local truncation error in each numerical step, and hope-
fully minimize the global truncation error. In this way, the sample quality generated by
numerical methods could approach that of the exact solutions of the given empirical
PF-ODE (11).

Our previous discussions in section 3 identified each sampling trajectory as a simple
low-dimensional ‘boomerang’ curve. We thus leverage this geometric structure to re-
allocate the intermediate timestamps according to the principle that assigning a larger
time step size when the trajectory exhibits a relatively small curvature, while assign-
ing a smaller time step size when the trajectory exhibits a relatively large curvature.
Additionally, different trajectories share almost the same shape, regardless of the model
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architecture used or generation conditions, which helps us estimate the common struc-
ture of the sampling trajectory by using just a few ‘warmup’ samples. We name our
approach to achieve the above goal as geometry-inspired time scheduling (GITS) and
elaborate the details as follows.

The allocation of the intermediate timestamps can be formulated as an integer pro-
gramming problem and solved using standard DP to search for an optimal time sched-
ule (Cormen et al 2022)7. We first define a searching space denoted as Iy, which is
a fine-grained grid including all possible intermediate timestamps. Then, we measure
the trajectory curvature by the local truncation errors. More precisely, we define the
cost from the current position x;, to the next position x;, as the difference between an
Euler step and the ground-truth prediction, i.e. ¢, := D(Xy,t;,X1,t;), where t; and
tj are two intermediate timestamps from I'y and ¢; > ¢;. According to the empirical PF-
ODE (11), the ground-truth prediction is calculated as x;, ¢, = Xy, + fttj €o(x;)o/dt, and
the Euler prediction is calculated as X, ¢, = X, + (0, — 0, )€9(Xy,)o{.. The cost function
D can be defined as the Euclidean distance in the original pixel space, or any other
user-specified metric. Given all computed pairwise costs, which form a cost matrix, the
problem reduces to a standard minimum-cost path problem and can be solved with DP.
Since the global truncation error is not equal to the accumulation of local truncation
errors at each step, we introduce a hyperparameter «, analogous to the discount factor
used in reinforcement learning (Sutton et al 1998), to compensate for this effect.

Dynamic programming is a fundamental concept widely used in computer science
and many other fields (Cormen et al 2022). Watson et al (2021) was the first one lever-
aging DP to re-allocate the time schedule in diffusion models. However, our motivation
differs significantly from that of this previous work. Watson et al (2021) exploited the
fact that the evidence lower bound (ELBO) can be decomposed into separate KL terms
and utilized DP to find the optimal discrete-time schedule that maximizes the training
ELBO. However, this strategy was reported to worsen sample quality, as acknowledged
by the authors. In contrast, we first discovered a strong trajectory regularity shared
by all sampling trajectories, and then used several ‘warmup’ samples to estimate the
trajectory curvature to determine a more effective time schedule for the sampling of
diffusion models.

5.2. Experimental results

We adhere to the setup and experimental designs of the EDM framework (Karras et al
2022, Song et al 2023), with f(t) =0, g(t) = v/2t, and o, =t. Under this parameter-
ization, the forward VE-SDE is expressed as dx; = v/2tdw;, while the corresponding

empirical PF-ODE is formulated as dx;/dt = (x; — rg (x4;t))/t. The temporal domain is

segmented using a polynomial function ¢, = (té/ Tt %(t%ﬂ —té/ ")), where ty = 0.002,

ty =80, n€[0,N], and p=7. We initiate the DP experiments with 256 ‘warmup’
samples randomly selected from Gaussian noise to create a more refined grid, and then
calculate the associated cost matrix. The ground-truth predictions are generated by

7 We also tried the Branch and Bound algorithm (Land and Doig 1960) and obtained similar results. Nevertheless, alternative
approaches exist for determining the time schedule, such as using a trainable neural network (Frankel et al 2025, Tong et al 2025),
by leveraging our discovered trajectory regularity.
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Table 1. Sample quality comparison in terms of Fréchet Inception Distance
(FID (Heusel et al 2017), lower is better) on four datasets (resolutions ranging
from 32 x 32 to 256 x 256).

NFE
METHOD . G S 10
CIFAR-10 32x32 (Krizhevsky and Hinton 2009)
DDIM (Song et al 2021a) 49.66 35.62 22.32 15.69
DDIM + GITS (ours) 28.05 21.04 13.30 10.37
DPM-Solver-2 (Lu et al 2022a) — 60.00 10.30 5.01
DPM-Solver+-+(3 M) (Lu et al 2022b) 24.97 11.99 4.54 3.00
DEIS-tAB3 (Zhang and Chen 2023) 14.39 9.40 5.55 4.09
UniPC (Zhao et al 2023) 23.98 11.14 3.99 2.89
AMED-Solver (Zhou et al 2024a) — 7.04 5.56 4.14
AMED-Plugin (Zhou et al 2024a) — 6.67 3.34 2.48
iPNDM (Zhang and Chen 2023) 13.59 7.05 3.69 2.77
iPNDM + GITS (ours) 8.38 4.88 3.24 2.49
FFHQ 64x64 (Karras et al 2019)
DDIM (Song et al 2021a) 43.93 35.22 24.39 18.37
DDIM + GITS (ours) 29.80 23.67 16.60 13.06
DPM-Solver-2 (Lu et al 2022a) — 83.17 22.84 9.46
DPM-Solver+-+(3 M) (Lu et al 2022b) 22.51 13.74 6.04 4.12
DEIS-tAB3 (Zhang and Chen 2023) 17.36 12.25 7.59 5.56
UniPC (Zhao et al 2023) 21.40 12.85 5.50 3.84
AMED-Solver (Zhou et al 2024a) — 10.28 6.90 5.49
AMED-Plugin (Zhou et al 2024a) — 9.54 5.28 3.66
iPNDM (Zhang and Chen 2023) 17.17 10.03 5.52 3.98
iPNDM + GITS (ours) 11.22 7.00 4.52 3.62
ImageNet 64x64 (Russakovsky et al 2015)
DDIM (Song et al 2021a) 43.81 34.03 22.59 16.72
DDIM + GITS (ours) 24.92 19.54 13.79 10.83
DPM-Solver-2 (Lu et al 2022a) — 44.83 12.42 6.84
DPM-Solver+-+(3 M) (Lu et al 2022b) 95.49 15.06 7.84 5.67
DEIS-tAB3 (Zhang and Chen 2023) 14.75 12.57 6.84 5.34
UniPC (Zhao et al 2023) 24.36 14.30 7.52 9.53
RES(M)* (Zhang et al 2023) 25.10 14.32 7.44 5.12
AMED-Solver (Zhou et al 2024a) — 10.63 7.71 6.06
AMED-Plugin (Zhou et al 2024a) — 12.05 7.03 5.01
iPNDM (Zhang and Chen 2023) 18.99 12.92 7.20 5.11
iPNDM + GITS (ours) 10.79 8.43 5.82 4.48

(Continued.)
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Table 1. (Continued.)

NFE
METHOD - . < 0
LSUN Bedroom 256x256 (Yu et al 2015) (pixel-space)
DDIM (Song et al 2021a) 34.34 25.25 15.71 11.42
DDIM + GITS (ours) 92.04 16.54 11.20 9.04
DPM-Solver-2 (Lu et al 2022a) — 80.59 23.26 9.61
DPM-Solver+-+(3 M) (Lu et al 2022b) 23.15 12.28 7.44 5.71
UniPC (Zhao et al 2023) 23.34 11.71 7.53 5.75
AMED-Solver (Zhou et al 2024a) — 12.75 6.95 5.38
AMED-Plugin (Zhou et al 2024a) — 11.58 7.48 5.70
iPNDM (Zhang and Chen 2023) 26.65 20.73 11.78 5.57
iPNDM + GITS (ours) 15.85 10.41 7.31 5.28

*Results reported by authors. More results are provided in table 8.

Table 2. Image generation results using Stable Diffusion v1.5 (two NFEs per
sampling step).

Step
METHOD 5 6 7 8
DPM-Solver++(2 M) (Lu et al 2022b) 16.80 15.43 14.88 14.65
DPM-Solver++(2 M) + GITS (ours) 15.53 13.18 12.32 12.17

iPNDM (Zhang and Chen 2023), which employs a fourth-order multistep Runge-Kutta
method with a lower-order warming start, using the polynomial time schedule with 60
NFEs. This yields a grid size of |I'y| = 61. The default classifier-free guidance scale of
7.5 is used for Stable Diffusion (SDv1.5). We follow the standard FID and CLIP Score
evaluation protocol for SDv1.5, using the reference statistics and 30k sampled captions
from the MS-COCO validation set (Lin et al 2014). For other datasets, we compute
FID based on 50k generated samples (Heusel et al 2017). All reported results for evalu-
ated methods are obtained based on our developed open-source toolbox: https://github.
com/zju-pi/diff-sampler.

Image generation. As shown in tables 1 and 2, our simple time re-allocation strategy
based on iPNDM (Zhang and Chen 2023) consistently outperforms all existing ODE-
based accelerated sampling methods with a significant margin, especially in the few
NFE cases. In particular, all time schedules in these datasets are searched based on
the Euler method, i.e. DDIM (Song et al 2021a), but they are directly applicable to
high-order methods such as iPNDM (Zhang and Chen 2023). The trajectory regularity
we uncovered guarantees that the schedule determined through 256 ‘warmup’ samples
is effective across all generated content. Furthermore, the experimental results suggest
that identifying this trajectory regularity enhances our understanding of the mechanisms
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of diffusion models. This understanding opens avenues for developing tailored time
schedules for more efficient diffusion sampling. Note that we did not adopt the analytical
first step (AFS) that replaces the first numerical step with an analytical Gaussian score
to save one NFE, proposed in Dockhorn et al (2022) and later used in Zhou et al
(2024a), as we found AFS is particularly effective only for datasets with low-resolution
images. DPM-Solver-2 (Lu et al 2022a) and AMED-Solver/Plugin (Zhou et al 2024a)
are thus not applicable with NFE =5 (marked as ‘-’) in table 1. Ablation studies on
AFS are provided in table 8.

A concurrent work named AYS was recently proposed to optimize time schedules for
sampling by minimizing the mismatch between the true backward SDE and its linear
approximation, utilizing tools from stochastic calculus (Sabour et al 2024). In contrast,
our GITS exploits the strong trajectory regularity inherent in diffusion models and
yields time schedules via DP, requiring only a small number of ‘warmup’ samples. Our
method also gets rid of the time-consuming Monte-Carlo computation in AYS (Sabour
et al 2024) and therefore is several orders of magnitude faster. In figure 11, we compare
image samples generated under different time schedules, using the publicly released
colab code and its default setting®. The text prompts used are ‘a photo of an astronaut
riding a horse on Mars’ (1st row); ‘a whimsical underwater world inhabited by colorful
sea creatures and coral reefs’ (2nd row); ‘a digital illustration of the Babel tower, 4k
detailed, trending in artstation, fantasy vivid colors’ (3rd row). The evaluated FID
results for each schedule are 14.28 (uniform), 12.48 (AYS), and 12.01 (GITS). Besides,
building on the significantly faster convergence of the denoising trajectory compared to
the sampling trajectory, as discussed in section 4.2.1, we propose ‘GITS-Jump’ to further
reduce sampling cost by 30% (from 10-step to 7-step), almost without degradation in
image quality.

Time schedule comparison. From table 3, we can see that time schedules consid-
erably affect the image generation performance. Compared with existing handcrafted
schedules, the schedule we found better fits the underlying trajectory structure in the
sampling of diffusion models and achieves smaller truncation errors with improved
sample quality.

Running time. Our strategy is highly efficient and incurs a very low computational
cost, without requiring access to the real dataset. The procedure starts with a small
number of initial ‘warmup’ samples, followed by executing the given ODE-solver with
both fine-grained and coarse-grained steps to construct the cost matrix for DP. Such a
computation is performed only once per dataset, and it yields optimal time schedules
for different NFE budgets simultaneously, thanks to the optimal substructure prop-
erty (Cormen et al 2022). As reported in table 4, the entire algorithm takes less than or
approximately one minute on datasets such as CIFAR-10, FFHQ, and ImageNet 64 x 64,
and around 10 to 15 min for larger datasets such as LSUN Bedroom and LAION (Stable
Diffusion), when evaluated on an NVIDIA A100 GPU.

8 https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/.
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(a) Uniform. (b) AYS. (c) GITS. (d) GITS +Jump(30%).

GITS Step
6 7 8 9 10

Sampling trajectory  56.86/26.49 24.52/28.58 14.15/29.56  11.44/29.95 12.01/30.11
Denoising trajectory — 20.55/29.77 14.48/29.97 13.16/30.06 12.45/30.09 12.01/30.11

Figure 11. Top: Visual comparison of samples generated by SDv1.5 using 10-
step DPM-Solver++(2 M) under various time schedules: (a) uniform, (b) AYS-
optimized (Sabour et al 2024), and (c¢) GITS-optimized. (d) Results from
GITS+Jump, which further reduces the number of steps by 30%, are also presented
for comparison. Bottom: FID and CLIP Scores (underlined) for GITS along the
trajectories are reported.

Ablation studies. We provide ablation studies on the number of ‘warmup’ sample sizes
and the grid size used for generating the fine-grained sampling trajectory in tables 5
and 6, respectively. The default experiments are conducted using iPNDM+GITS with
the coefficient v =1.15 on CIFAR-10. We also provide a sensitivity analysis of the coef-
ficient in table 8. It is shown that the number of ‘warmup’ samples is not a critical
hyper-parameter, but reducing it generally increases the variance, as shown in table 6.
Due to subtle differences among sampling trajectories (see figure 5), we recommend util-
izing a reasonable number of ‘warmup’ samples to determine the optimal time schedule,
such that this time schedule works well for all the generated samples.
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Table 3. The comparison of FID results on CIFAR-10 across different time

schedules.
NFE

TIME SCHEDULE 5 6 8 10

DDIM-uniform 36.98 28.22 19.60 15.45
DDIM-logsnr 53.53 38.20 24.06 16.43
DDIM-polynomial 49.66 35.62 22.32 15.69
DDIM + GITS (ours) 28.05 21.04 13.30 10.09
iPNDM-uniform 17.34 9.75 7.56 7.35
iPNDM-logsnr 19.87 10.68 4.74 2.94
iPNDM-polynomial 13.59 7.05 3.69 2.77
iPNDM + GITS (ours) 8.38 4.88 3.24 2.49

Table 4. Time (in seconds) used at different stages of GITS. ‘warmup’ samples are
generated using 60 NFE, and the NFE budget for dynamic programming is set to

10.
sample cost dynamic total
DATASET generation matrix programming time (s)
CIFAR-10 32 x 32 27.47 5.29 0.015 32.78
FFHQ 64 x 64 51.90 10.88 0.016 62.79
ImageNet 64 x 64 TL.77 13.28 0.016 85.07
LSUN Bedroom 517.63 122.13 0.015 639.78
LAION (SDv1.5) 877.62 24.00 0.016 901.62

Table 5. Ablation study on the grid size of the dynamic programming-based time

scheduling.
NFE BUDGET
GRID SIZE 4 5 6 7 8 9 10
11 20.88 10.15 5.11 4.63 3.16 2.78 2.77
21 16.22 9.87 4.83 3.76 3.39 3.20 2.81
41 15.34 9.34 4.83 5.54 3.01 2.66 2.53
61 (default) 15.10 8.38 4.88 5.11 3.24 2.70 2.49
81 15.74 8.57 5.09 5.38 3.10 2.93 2.38
101 15.03 8.72 5.02 5.19 3.12 2.81 2.41
iPNDM 24.82 13.59 7.05 5.08 3.69 3.17 2.77
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Table 6. Ablation study on the ‘warmup’ sample size.

SAMPLE SIZE

NFE 1? 16 64 128 256 512 1024 2048

) 9.25 9.55+£0.75 9.57£0.97 9.21+0.44 8.844+0.30 8.81+0.04 8.894+0.11 8.88+0.12
6 5.12 5.36£0.61 5.16£0.28 4.994+0.18 5.03+0.25 5.204+0.27 5.01+0.19 4.92+0.08
8 3.13 3.25+£0.13 3.224+0.08 3.284+0.10 3.27£0.11 3.30£0.11 3.294+0.08 3.33+0.10
10 241 2.464+0.11 2.46£0.05 2.45+£0.05 2.46+0.04 2.454+0.04 2.44£0.05 2.44+£0.05

* indicates that a unique time schedule is searched for each of the 50k generated
samples. This special case is more time-consuming while achieving similar results,
owing to the strong trajectory regularity.

6. Related work and discussions

The popular VE SDEs (Song and Ermon 2019, Song et al 2021c) are taken as our
main examples for analysis, which are equivalent to their VP counterparts according to
Itd’s lemma (see lemma 4 and appendix B.4). The equivalence has been established in
their corresponding PF-ODE (rather than SDE) forms by using the change-of-variable
formula (see proposition 1 of (Song et al 2021a) and proposition 3 of (Zhang and
Chen 2023)). Karras et al (2022) also presented a series of operational steps to reframe
different models within a single framework (see appendix C of (Karras et al 2022)).
The equivalence guarantees the wide applicability of our conclusions, even though we
focus on VE-SDEs. Besides, instead of training a noise-conditional score model with
DSM (Vincent 2011, Song and Ermon 2019, Song et al 2021b) or training a noise-
prediction model to estimate the added noise in each step (Ho et al 2020, Nichol and
Dhariwal 2021, Vahdat et al 2021, Song et al 2021a, Bao et al 2022), we follow (Kingma
et al 2021, Karras et al 2022) and train a denoising model that predicts the reconstructed
data from its corrupted version. With the help of simplified empirical PF-ODE (11),
we can characterize an implicit denoising trajectory, draw inspiration from classical
non-parametric mean shift (Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu and
Meer 2002), and derive various trajectory properties.

Denoising trajectories have been observed since the renaissance of diffusion models
(see figure 6 of Ho et al (2020)) and later in figure 3 of Kwon et al (2023), but they
have not been systematically investigated, perhaps due to the indirect model paramet-
erization. Karras et al (2022) were the first to note that the denoising output reflects
the tangent of the sampling trajectory, consistent with our corollary 1. However, their
work did not formulate it in differential-equation form nor examine how it controls
the evolution of the sampling trajectory. In fact, Karras et al (2022) mentioned this
property to argue that the sampling trajectory of (11) is approximately linear, owing
to the slow variation of the denoising output, and validated this intuition using a 1-D
toy example. In contrast, we establish the equivalence of linear diffusion models and
provide an in-depth analysis of high-dimensional sampling trajectories with real data,
highlighting their intrinsically low dimensionality and pronounced geometric regularity.
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The mathematical foundations of the closed-form solution for the DSM objective, or
equivalently, the DAE objective, were established more than half a century ago under
the framework of empirical Bayes (Robbins 1956); see, for instance, Chapter 1 of (Efron
2010). Perhaps the earliest appearance of the closed-form solution (9) for a finite dataset
within the literature of diffusion models is in appendix B.3 of (Karras et al 2022), where
it was included for completeness and not connected to kernel density estimation (KDE)
or any application. Subsequent works explicitly adopted the KDE-based interpretation
(or, optimal denoising output) to analyze memorization and generalization in generative
diffusion models (Gu et al 2023, Kadkhodaie et al 2023, Scarvelis et al 2023, Yi et al
2023, Chen et al 2023a, Kamb and Ganguli 2024, Li et al 2024, Niedoba et al 2024),
listed here chronologically by their arXiv release dates. The early arXiv version® of our
paper (Chen et al 2023a) was among the first, or at least concurrent with these studies.
Importantly, our unique contribution lies in leveraging this well-established analytical
formula to provide theoretical guarantees for the observed trajectory regularity and to
extract additional insights from this approximate model in the context of diffusion-based
generative models (section 4.2).

The trajectory regularity revealed in this paper is presented as an independent
scientific discovery, supported by comprehensive empirical and theoretical analysis
designed to reveal, characterize, and understand these principles. It is not intended
merely as a prerequisite for specific algorithms; rather, it provides an intuitive yet groun-
ded perspective on the underlying mechanics of diffusion models and helps explain the
success of many widely used heuristic methods. (I) The observation that sampling tra-
jectories follow a simple curvature and torsion function clarifies, for instance, why large
steps can be safely taken at the beginning of sampling (Dockhorn et al 2022, Zhou
et al 2024a) without incurring significant truncation errors, and why polynomial time
schedules outperform uniform schedules during sampling. Moreover, training efficiency
improves when a larger computational training budget is allocated to the intermediate
non-linear region of the trajectory and fewer to the near-linear regions (Karras et al
2022, Chen 2023, Hang et al 2024), considering the trajectory shape. While previous
work largely converged on these effective time/noise schedules through trial-and-error
search (Karras et al 2022, Lu et al 2022a, Chen 2023, Hang et al 2024, Sabour et al
2024). (II) Our geometric perspective also provides a theoretical justification for the
common heuristic of disabling classifier-free guidance (Ho and Salimans 2022, Karras
et al 2024, Kynkadénniemi et al 2024) at the beginning or end of the sampling process
with minimal performance degradation (Kynk&dadnniemi et al 2024, Castillo et al 2025).
This phenomenon arises naturally, since the intermediate nonlinear region strongly influ-
ences trajectory orientation, whereas the early and late linear regions contribute little.

Finally, we describe a potential application of the discovered trajectory regularity
for accelerating the sampling process. Different from most existing methods focusing on
developing improved ODE-solvers (Song et al 2021a, Karras et al 2022, Liu et al 2022,
Lu et al 2022a, Zhang and Chen 2023, Zhao et al 2023, Zhou et al 2024a) while selecting
time schedules through a handcrafted or empirical tuning, we leverage the trajectory
regularity of deterministic sampling dynamics to more effectively allocate discretized

9 https://arxiv.org/abs/2305.19947.
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time steps. Our method achieves acceleration by several orders of magnitude com-
pared with distillation-based sampling methods (Luhman and Luhman 2021, Salimans
and Ho 2022, Song et al 2023, Zheng et al 2023, Kim et al 2024, Zhou et al 2024Db).
Although Watson et al (2021) were the first to employ DP for optimizing time schedules
based on the decomposable nature of the ELBO objective, their method was shown to
degrade sample quality. Moreover, while various theoretical studies have explored con-
vergence analysis and score estimation of diffusion models, none of them have examined
the trajectory-level properties that govern the sampling dynamics (De Bortoli 2022,
Pidstrigach 2022, Lee et al 2023, Chen et al 2023b, 2023c).

7. Conclusion

We reveal that a strong trajectory regularity consistently emerges in the deterministic
sampling dynamics of diffusion-based generative models, regardless of the model imple-
mentation or generated content. This regularity is explained by characterizing and ana-
lyzing the implicit denoising trajectory, particularly its behavior under KDE-based data
modeling. These insights into the underlying trajectory structure lead to an accelerated
sampling method that enhances image synthesis quality with negligible computational
overhead. We hope that the empirical and theoretical findings presented in this paper
contribute to a deeper understanding of diffusion models and inspire further research
into more efficient training paradigms and faster sampling algorithms.

Future works. We aim to explore deeper geometric regularities in sampling trajectories,
characterize more precise structural patterns, and identify new applications inspired by
these insights. Several promising directions are outlined below:

e The geometric regularity of sampling trajectories analyzed in this paper may have
potential connections to the behavior of random walk paths simulated in the forward
process of diffusion models. In the limit of infinite dimensions and trajectory length,
random walk-based trajectories exhibit similarly intriguing low-dimensional struc-
tures, with the explained variance taking an analytic form. Furthermore, their pro-
jections onto PCA subspaces follow Lissajous curves (Antognini and Sohl-Dickstein
2018, Moore et al 2018). Extending existing theoretical results from the forward
diffusion process to the backward sampling process remains an open problem.

e A distinct three-stage pattern emerges in the sampling dynamics when using optimal
score functions. Concurrently with our earlier manuscripts (Chen et al 2023a,
2024), Biroli et al (2024) introduced concepts from statistical physics, such as sym-
metry breaking and phase transitions, to characterize sampling dynamics. They
provided analytic solutions for critical points in a simplified setting (two well-
separated Gaussian mixture classes), and discussed the trade-off between gener-
alization and memorization. It is particularly intriguing to bridge these theoretical
insights with realistic diffusion models, especially incorporating conditional signals
into the framework.

e In practice, sampling in diffusion-based generative models is typically performed
using general-purpose numerical solvers, sometimes augmented with learned solver
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coefficients or sampling schedules in a data-driven way (Frankel et al 2025, Tong
et al 2025). Our findings reveal that each integral curve of the gradient field defined
by a diffusion model lies within an extremely low-dimensional subspace embedded
in the high-dimensional data space, with a regular trajectory shape shared across all
initial conditions. While we present a preliminary attempt to exploit this structure,
further investigation in this direction holds great promise.
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Appendix A. Further readings

A.1l. Details about popular linear SDEs

In the literature, two specific forms of linear SDEs are widely used in large-scale diffusion
models (Balaji et al 2022, Ramesh et al 2022, Rombach et al 2022, Saharia et al 2022,
Peebles and Xie 2023, Podell et al 2024, Xie et al 2025), namely, the VP SDE and the VE
SDE (Song et al 2021c, Karras et al 2022). They correspond to the continuous versions
of previously established models, i.e. DDPMs (Ho et al 2020, Nichol and Dhariwal 2021)
and NCSNs (Song and Ermon 2019, 2020), respectively. Next, we demonstrate that the
original notations of VP-SDE, VE-SDE (Song et al 2021c¢), including recently proposed
flow matching-based generative models (Albergo et al 2023, Heitz et al 2023, Lipman
et al 2023, Neklyudov et al 2023, Liu et al 2023b, Esser et al 2024) can be recovered
by properly setting the coefficients s; and o:

e VP-SDEs (Ho et al 2020, Nichol and Dhariwal 2021, Song et al 2021a, 2021c):
By setting s, =./o, or=+/(1—0)/ow, By =—dloga;/dt, and o € (0,1] as a

decreasing sequence with oy =1,a1 &~ 0, we have the transition kernel p(z¢|z¢) =
N (z4; \/awzo, (1 — o)), or equivalently,

zi =+ zo+V1—o €, €~N(0]I), (24)

with the forward linear SDE dz;, = —3 Bz, dt + /Bidw;.

e VE-SDEs (Song and Ermon 2019, Song et al 2021c): By setting s; =1, and og ~
0, or > 1 for an increasing sequence o;, we have the transition kernel py(z:|z¢) =
N (z;29,021), or equivalently,

Zy = 7o+ O1€, €4~ N(O,I) s (25)

with the forward linear SDE dz; = /do?/dt dw;.

e A typical flow matching-based instantiation (Lipman et al 2023, Liu et al 2023b,
Esser et al 2024) defines the transition kernel directly without relying on the
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forward linear SDE, with s; =1—¢/T, o, =1t/(T —t), i.e. por(zt|zo) =N (z; (1 —
t/T)zg, (t/T)?I), or equivalently,

zo=(1—t/T)zg+t/Te;, € ~N(0,T). (26)

A.2. Details about score matching

The score function V,, logp(z;) (Hyvérinen 2005, Lyu 2009), which can be estimated
with nonparametric score matching via KDE, implicit score matching via integration
by parts formula (Hyvérinen 2005), sliced score matching via Hutchinson’s trace estim-
ator (Song et al 2019), or more typically, DSM via mean squared regression (Vincent
2011, Song and Ermon 2019, Karras et al 2022). The DSM objective function of training
a score-estimation model sg(z;t) is

so(213t)

T e,
Lpsu (0;A(t)) 12/ A E oy B (120 || Vi 108 Do (203 1) — V5, 1og por (24]20) || 3dE. (27)
0

The weighting function \(¢) across different noise levels reflects our preference for visual
quality or density estimation during model training (Song et al 2021b, Kim et al 2022).
The optimal estimator sj(z;;t) equals V, logp:(z;), and therefore we can use the con-
verged score-estimation model as an effective proxy for the ground-truth score function.
lemma 1 shows that we can also estimate the conditional expectation E(zg|z;) instead,
typically using a DAE (Vincent et al 2008, Bengio et al 2013b). In fact, the mathem-
atical essentials of the deep connection between DAE and DSM were established more
than half a century ago under the framework of empirical Bayes (Robbins 1956); see, for
example, chapter 1 of a textbook (Efron 2010), or technical details given in appendix A
of our early manuscript (Chen et al 2023a).

A.3. Details about numerical approximation

Given the empirical PF-ODE (10), generally, we have two formulas to calculate the exact
solution from the current position z, ,, to the next position z;, (top <t, <tp+1 <ty) in
the ODE-based sampling to obtain the sampling trajectory from ty to ty. One is the
direct integral from ¢, 1 to t,

t, t 2
" dz " (dlogs 1 ,do
Z, =7, —I—/ tat = Zt,,, +/ ( & tZt — —Sf—t V., logp, (zt)) , (28)
t tn+1

dt

n+1

and another leverages the semi-linear structure in the PF-ODE to derive the following
equation with the variant of constants formula (Lu et al 2022a, Zhang and Chen 2023)

tn tn tn g2 (t)
m=exo ([ r@a)a,— [ (o[ 100ar) SOV 08 @) )
t71+1 t

tn+1

(29)

Sty

t’ll
7 s / (510101 V5 log pe (z2)) dt.

Stn+1 th+l
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The above integrals, whether in (28) or (29), involving the score function parameterized
by a neural network, are generally intractable. Therefore, deterministic sampling in dif-
fusion models centers on approximating these integrals with numerical methods in each
step. In practice, various sampling strategies inspired by classic numerical methods have
been proposed to solve the backward PF-ODE (10), including the Euler method (Song
et al 2021a), Heun’s method (Karras et al 2022), Runge-Kutta method (Song et al
2021c, Liu et al 2022, Lu et al 2022a), and linear multistep method (Liu et al 2022,
Lu et al 2022b, Zhang and Chen 2023, Zhao et al 2023, Chen et al 2024, Zhou et al
2024a).

Appendix B. Proofs

In this section, we provide detailed proofs of the lemmas, propositions, and theorems
presented in the main content.

B.1. Proof of lemma 1

Lemma 1. Let the clean data be zg~ pq, and consider a transition kernel that adds
Gaussian noise to the data, pot(z:|zo) :N(zt;stzo, s%atQI). Then the score function is
related to the posterior expectation by

Vo logp: (ze) = (8:00) " (8B (z0]2e) — 2) (30)
or equivalently, by linearity of expectation,
Vo logp (z¢) = — (stat)flEpm(zdzt)et, € = (stat)fl (2t — s120) - (31)

Proof. We take derivative of p;(z;) = [ pa(zo)poi(2:|20)dzo with respect to z,,

S+Zo) — Z
Vi (2¢) = / %pd (20) pot (2¢]20) dzo

810

207V, py (2:) = / s170pa (20) por (24]20) dzo — 7y (22)

(32)
V.t (2
Sfaf#i)t) = St/ZOpt (zo|z¢) dzo — 24
V. logp: (z:) = (s:0:) 7 (st (z0]2) — 21).
We further have
_ _ S+Z0 — Z
Vi logpi (20) = (s100) 2 (5.E (z0]1) — 70) = (s100) 'E (;—01) )

—1
= —(5101)" Epy(zplar) €5

by linearity of expectation, where z; = s;zg + s;0€;, € ~ N (0,I) according to the trans-
ition kernel (2). O
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B.2. Proof of lemma 2

Lemma 2. The optimal estimator r;(zs;t) for the DAE objective, also known as the
Bayesian least squares estimator or minimum mean square error (MMSE) estimator,
is given by E(zo|z:).

Proof. The solution is easily obtained by setting the derivative of Lpag equal to zero.
For each noisy sample z;, we have

Vorg(z:)LAE = 0
/ptg (zo|zt) (1 (21;t) — 29)dzp =0

/ pro (20]22)7% (22:) dzo = / pro (20]22) 70020

ro(zi;t) = E(zo|zy).

B.3. Proof of lemma 3

Lemma 3. Let D :={y; € R%};cr denote a dataset of |Z| i.i.d. data points drawn from
pa- When training a DAE with the empirical data distribution pg, the optimal denoising
output is a convexr combination of original data points, namely

exp (— ||z — yil|3/207
~vli=3 il /201)

Yi, 35
> exp (—llz — y;[37207) " %)

7"5 (Zt; t) - I%inEywﬁdEZtNPm(ZtW) HT@ (Ztv
where py(y) is the sum of multiple Dirac delta functions, i.e. pa(y) = (1/|Z|) > ez 6(|ly —
yill)-

Proof Based on lemmas 1 and 2, and the Gaussian KDE py(z;) = [ poi(z:]y)pa(y) =
] Zz/\/ (zt,yl,o—t I), the optimal denoising output is

15 (z1;t) = E(20|2:) = ZH-Ut Vy, logpy (24)
+ szf-/\/ Zhy“UtI)
=Z
! 7t Z N Zt7y]7UfI)
Zt>Y17UfI) Yi— %t
_Zf+UtZZNZt:YJaUt )( 7 )

Oj
2
Z (z;yi,071 36
_Zt+ Z : ! ) (Yi_zt) ( )

N ZtanaUt )

_Z Zt:}’zaUtD v;
Z N Ztvy]vat ) '
Z eXP _Hzt Yi||2/20t2>
> exp (—lz: —y;ll3/207)""
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where each weight is calculated based on the time-scaled and normalized Euclidean
distance between the input z; and each data point y; and the sum of coefficients equals
one. 0

B.4. Proof of lemma 4

Lemma 4. The linear diffusion process defined as (3) can be transformed into its VE
counterpart with the change of variables x; = z¢/ s, keeping the SNR function unchanged.

Proof. We adopt the change-of-variables formula x; = ¢(t,z;) = z:/s; with ¢ :[0,T] x
R™ — R™, and denote the ith dimension of z;, x; and w; as z;[i], x;[i], and w;[i] respect-
ively; ¢ = [¢1,++, b4, ,¢]" with a twice differentiable scalar function ¢;(t,z) = z/s;
of two real variables ¢ and z. Since each dimension of z; is independent, we can apply
It6’s lemma (Oksendal 2013) to each dimension with ¢;(¢,z[i]) separately. We have

d¢;  zds d¢; 1 0% ¢; B . dlogs; . do? .
e d o g =0 dnll= S mlil s Grawil (37)
then
‘ 1 (O L 0bi g3 (t) 0% I, .
de; (t,z:[i]) = ( 5% + f(t)z[i] 5 + 5 9.2 dt+g (1) P dwy [i]
(0% | g7 (t) D¢ 0pi . ..
- ( ot L 022 di+ 0z dz¢[i]

(38)

_ z,[i] dlog s; 1 [(dlogs, .. [do?
dXt [Z] = — ;E] df fdt—FS—t( df th [Z] dt+$t d—ttd'wt>

dx;[i] = \/do?/dt dw[i] = dx; =1/do?/dt dwy,

with the initial condition x¢=zg~ pq. Since o; in the above VE-SDE (x-space) is
exactly the same as that used in the original SDE (z-space, (3)), the SNR remains
unchanged. [

We also establish the connections between their score functions and sampling beha-
viors. Similarly, we have the score function (¢ € [0,77])

Vi logp () = Vi Iog | A (xisx0,07T) pa (xa)
=V /s log/N (2¢/51;%0,071) pa (xo) dxq (39)
= 5tVy, log/std./\/ (Zt; StZo, S?U?I) pa (zo)dzg = 5V, logp; (z) .

Corollary 4. With the same numerical method, the results obtained by solving (28)
or (29) are not equal in the general cases. But they become exactly the same by first
transforming the formulas into the x-space and then perform numerical approximation.

Corollary 5. With the same numerical method, the result obtained by solving (29) in the
z-space is exactly the same as the result obtained by solving (28) or (29) in the x-space.
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Proof. Given the sample z; obtained by solving the equation (29) in z-space start-
ing from z,,,, we demonstrate that z, /s, is exactly equal to sampling with the
equation (28) in x-space starting from x;, ., = 2,,,/5t,., to X;,. We have

tn
Zy,
Zy, = S, ( o / statat'VZt logpt (Zt) dt)

t'n+1 tn,+1
40
tn , tn dXt ( )
=80, | Xtou T | —0iVxlogpy(xe)opdt ) = sy, | Xe0 + [t | =X,
thil tny1 t
[

B.5. Proof of proposition 1

All following proofs are conducted in the context of a VE-SDE dx; = V2tdw,, ie. oy =t
for notation simplicity, and the sampling trajectory always starts from %, ~ N(0,7°1)
and ends at x;,. The PF-ODEs of the sampling trajectory and denoising trajectory are

dx; [—7’9()([71’) dTg(X[, ) — d X; 3
Gt = €o(x4t) = =—4==, and = "= = 1, respectively.

Proposition 1. Given the probability flow ODE (11) and a current position X;,.,, n €
[0, N — 1] in the sampling trajectory, the next position X;, predicted by a k-th order
Taylor expansion with the time step size oy, — 0y, 1S

n+1 n

A Ot Ot — Ot -
th - - th+1 + MRG (Xt7L+1) Y (41)

tn+1 O-t”+1

which is a conver combination of X;,., and the generalized denoising output

k .
. . 1 dix
R@ (th+1) = Tg (th+1) - Z il :

1—1
S G (o —on ) (42)
| i n+1 n n+1
i v daIg )

Xtﬂ+1

In particular, we have Rg(f(tnﬂ) ro(Xy,.,) for the Euler method (k= 1), and Re(Xy,,,) =

~ Ot, —0 dre(x
ro(Xe,,,) + 5 051 ) for second-order numerical methods (k= 2).

Proof. The k-th order Taylor expansion at Xy, ., is

k ;
A 1 dWx :
Xt, = § Z' dt( (tn - tn+1)

th

k .
. dx 1d0x .
=Xt + (tn tn+1) ! + Z (tn — thrl)Z
n+l Z' dt( ) Xt 41 (43)
N t,—1 +1 . R 1 d() .
= Xtm—l + nt +ZL (th-H —To (Xt71+1)> + z Z' dt( ) Xt (tn - tn-‘rl)z
n +1
tn . tha1 —t .
- - th+1 MRG (th,Jrl) )
tn-H tn—i—l
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. . k (0
where Ro(%y,.,) =7o(%t,.,) = Xiss gt

Xt71+1
approximation (k=1), we have Rg(xs, ,) =70(Xy,,,). As for the second-order approx-

imation (k=2), we have

t71,+1 (tn - thrl) dQXt
2 di2

tni1(tn —tne1)™t. As for the first-order

~ t’llr - tn dr )A( n+1
=Te (th,+1) + 2 +1 i Eitt ) . (44)

n+1

Re (xtnﬂ) =Te (f(tn,ﬂ) -

O

Corollary 6. The denoising output ro(X, ) reflects the prediction made by a single Euler
step from Xy, with the time step size t,.

Proof. The prediction of such an Euler step equals to

Xty (0= tngr) (Rt =70 (X0,0)) [lns = 70 (Xe,0) (45)
]

B.6. Proof of proposition 2

Lemma 5 (See section 3.1 in (Vershynin 2018)). Given a high-dimensional isotropic
Gaussian noise z ~ N (0;0%1,), o> 0, we have E||z||* = 02d, and with high probability,
z stays within a ‘thin spherical shell’: ||z|| = ov/d =+ O(1).

Proof. We denote z; as the ith dimension of random variable z, then the expectation and
variance is E [z;] = 0, V [z;] = 2, respectively. The fourth central moment is E [z}] = 30*.
Additionally,

E[zz] :V[Zi]—i—E[Zi]Q:U?, HZH

1

V{2l =E|ll2]*| - (& Iz]*])* =2da4,

Then, we have

aff] - mte-

= ’ (46)

E [lx -+ 2|12 — |xI2] = E [|l2] + 2x™2] = E [|z]]] = o*d. (47)
Furthermore, the standard deviation of ||z||? is 02v/2d, which means

HzH?:o—?dia?\/ﬁ:a?dio(\/E), |z =ovd+£0(1), (48)

holds with high probability. 0

Proposition 2. The magnitude of €5(x;;t) concentrates around Vd, where d denotes the
data dimension. Consequently, the total length of the sampling trajectory is approrim-
ately aT\/E, where o1 denotes the mazximum noise level.

Proof. We next provide a sketch of proof. Suppose the data distribution lies in a
smooth real low-dimensional manifold with the intrinsic dimension as m. According
to the Whitney embedding theorem (Whitney 1936), it can be smoothly embedded in a
real 2m Euclidean space. We then decompose each € € R? vector as 637” and € |, which
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legll2/v'@|  |— CIFAR10 — FFHQ — ImageNet LSUN_Bedroom lle7 112/ d| —— CIFAR-10-opt
1.0 [
1.01

1.014
0.8

1.00 1.00
0.6

0.99 4
i 0.99

0.98

0 20 40 60 80
0.2 v T T T T v T 0.98 T T T T T T T
tp=0 10 20 30 40 50 60 70 80 =0 10 20 30 40 50 60 70 80
2 2
(a) The L® norm of €g. (b) The L* norm of €g.

Figure 12. The optimal noise prediction satisfies ||€}]|> ~ v/d throughout the entire
sampling process, as guaranteed by theoretical results. The actual noise prediction
|€g|l2 also remains v/d for most time steps, but exhibits a noticeable shrinkage in
the final stage, when the time step approaches zero. This norm shrinkage almost
does not affect the trajectory length, as the discretized time steps in the final stage
are extremely small.

are parallel and perpendicular to the 2m Euclidean space, respectively. Therefore, we
have [leglla = lleg + €, [l > 1€l ~ v —2m.

We provide a upper bound for the ||ej||2 below
Xi— 715 (X)), x; — E (x0|x¢)

— =By [ ———I2
O¢ t

Xt —

X0
o ’Xt) 12 = B, ) [ Eopro o0 € |2 (49)

Ept(xf) l€all2 = ]Ept(xt) |

= Ept(xt)”E(

< Ept(xt)Epzu(Xo\Xt) ||€||2 - EPO(XO)]EPUt(thxo) ||€||2

~Vd (concentration of measure, lemma 5).

Additionally, the variance of ||€j||2 is relatively small.

* 2
Varpf,(xf) lepll2 = Varpt(xf) ”E[}tﬂ(xﬂle,)eHQ = ]Ept(xf) ”EPtO(XO|Xt)€H% - [pr(xf) ”E[}tﬂ(xﬂle,)eHQ]
< Ept(Xt)Epzo(Xo\Xt) HGH% - (d - Zm) = EPO(XO)EPUf(XU\Xt) HGH% - (d - 2m)
=d—(d—2m)
=2m

(50)

Therefore, the standard deviation of ||€}]|» is upper bounded by v/2m. Since d > m,
we can conclude that in the optimal case, the magnitude of vector field is approxim-
ately constant, i.e. ||€}|ls ~v/d. The total sampling trajectory length is Zi\,[:_ol(atm =
o1l €5 (xt,,,)|l2 = orv/d. Empirical verification is provided in figure 12. O

B.7. Proof of proposition 3

Proposition 3. In deterministic sampling with the Euler method, the sample likelihood
is non-decreasing, i.e. Vn € [1,N], we have py(Xy,_,) = pn(Xs,) and pp(re(Xy,)) = pn(Xs,)
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Table 7. PCA ratios computed by directly performing dimension reduction of the
original sampling trajectory. This differs from PCA ratios in the main context that
measures the reconstruction of the orthogonal complement of the displacement
vector of each trajectory.

Dataset

Top-1

Top-2

Top-3

CIFAR-10 (32 x 32)
FFHQ (64 x 64)
ImageNet (64 x 64)
SDv1.5,

MS-COCO

(64 x 64)

LSUN Bedroom
(256 x 256)

99.99729 £ 0.001 35%
99.998 43 £ 0.000 95%
99.998 05 £+ 0.001 21%
99.941 01 +0.01289%

99.999 53 £ 0.000 83%

99.999 98 + 0.000 18%
99.999 99 + 0.000 16%
99.999 98 + 0.000 19%
99.994 32 + 0.001 50%

99.99999 + 0.000 13%

99.999 994 + 0.000 027%
99.999 994 + 0.000 024%
99.999 994 + 0.000 033%
99.999 195 £ 0.000 475%

99.999 994 + 0.000 025%

in terms of the Gaussian KDE py(x) =

(1/1Z]) X iex N (x5 y4, h*T) with any positive band-

width h, assuming all samples in the sampling trajectory satisfy di(X;,) < da(Xy,).

Proof. We first prove that given a random vector v falling within a sphere centered

at the optimal denoising output rj(%;,) with a radius of ||rj(%y,)
— X4, |ly = || V][5, the sample likelihood is non-decreasing from %X;, to rj(x,) + v,

175 (%x,)

1.e.

- th 29

i.e. pp(rg(xe,)+v) = pr(Xs,). Then, we provide two settings for v to finish the proof.
The increase of sample likelihood from %;, to rj(X:,) + v in terms of py(x) is

pu(rp (X4,) +v) =

Q)

Ph Xt7

IIIZ

1 R - * (%
> WZN(th;Yi,hQI) (1%, =i ll3 = [l75 (%¢,) +v =i [13]

(rp (i) +viyi, I°T) = N (%434, 1°T)]

1 . .
= gy 2 Gy D) [ 18 2Ky — I ) 413+ 20 () + )]

Gy 1 . .
= W;N(Xt,ﬁ}’iah%) {HXTW“%

1 < A
= ez 2 (D) 15 -

9%
2x; Ty

2%, 1 (%,) + |17 (%0, )13 —

1 X * (S ~
— W;N(th;ythI) [Irp (%i,) — %, 13— [IV]3] =0,

5 (%) = Il (%) + VI3 +2(r (%) +v)" 7

IvII3]

5 (%,)]

(51)

where (i) uses the definition of convex function f(xs) > f(x1)+ f/(x1)(x2 —x;) with

£x) = exp (—31Ix[3), x:

= (%X,

—vy;)/hand xo =

(rg(%¢,) +v —yi)/h; (ii) uses the rela-

tionship between two consecutive steps X;, and 75(X;,) in mean shift, i.e.

T 3 (X1,) =

exp (=%, — yil3/2h?)

Yi,
Z 32 exp (=%, —;l3/2h?)
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which implies the following equation also holds

Z N (f(tn;yi, h2I) X; = Z N (f(tn;yi, hQI) ro(Xe,) - (53)

Since ||rp(Xs,) — X4, 1|5 = || V|5, or equivalently, ||rg(%s,) — Xy, |§ > Hvﬂg, we conclude that
the sample likelihood monotonically increases from x; to ry(X; )+ v unless X =
r5(X4,) + v, in terms of the KDE pj(x) = %ZiN(x;yi,hZI) with any positive band-
width h. We next provide two settings for v, which trivially satisfy the condition
175 (%X¢,) —X4,.|l, = ||V]l5 , and have the following corollaries:

L4 ph(Te()A(fn)) > p}L()Act71)7 When V= TO ()A(tn) - Tz (ﬁtn)'
o pr(X1,_,) = pi(Xe,), when v =rg(Xy,) —r5(%s,) + 22 (%1, —70(X1,)).

B.8. Proof of proposition 4

Proposition 4. Suppose the data distribution is Gaussian pq(x) =N (u,X), where p €
RY, 3 € R4 js PSD with rank (X) =r < d. Let ¥ = UAU? denote the singular value
decomposition (SVD), where U € R>" contains eigenvectors w; as columns, and A €
R™" s diagonal with eigenvalues \;, i € [1,7]. In this setting, the PF-ODE solution x;
can be decomposed into the final sample xy, a scaled reverse displacement vector Xt — X,
and a trajectory residual A(t):

r

X = X0+ - (xr—x0) + A (1), Ap(t) = > ekt uf (xr—p)w,
ot

A+ 0152 Ak ¢ py
or (t) = = — s—— | 1— 5 |-
Proof. The score function is Vy, logp;(x;) = (X + 1)~} (e — x;), and the corresponding
linear PF-ODE is dx;/do; = 04(2 + 1)1 (x; — ). The solution of x;

t
= [+ exp (/ o (E—i—agI)_lds) (x17— )

T
2o ds) (xr —
W W+ exp ( ldla /\k+"2 ) ] QTds> X7 —

= p+ Qexp ( [dlag wiz) ) (xr — 1)

L
o T k+0t T
:M—l——(I—UU (xp— Z ukuk (x7 — )
oT P
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= pt TG p) + (1—2) (Z & uku£<xT—u>> + (1)

N\ + o2
1 k + T

o
= X+ — (x1 — X0) + A (1), (55)
o7
where (i) applies the Woodbury identity, (ii) denotes Q = [U, U, | € R4 QQT =1, (iii)
exchanges the order of operators given commuting matrices (simultaneous diagonaliza-
tion). The trajectory deviation Ay(t):

ot )‘k+0t2 oy A T
A, (t) =Ud — ——1 U —
k(t) 146 oT + )\k—i-a% * (O'T ) )\k-l-a% (xr =)
r . o
ZZSOk(t)uk (xT—p)ug,  @(t)=——
— or
(2 -1) 5 (56)
)\k—l—O'T oT )\k—l—O'T

Since uiTuj =0 for i#j, we have the squared norm of the trajectory residual as
follows

h(t):=IlAx(t Hg—(Z% ; (xr — )) Z@j(t)ujujT(XT—u)

_ngk (uf (x1— ))°. (57)

Since x1 ~ N (p, X + 021), then

U' (xr—p) ~N (0,UT (£+07I)U) =N (0,U" (X +071,) U)
=N (0,A+07L,). (58)

h(t) =Y ort)* v, vr ~N(0,A+07). (59)

We denote si(t) = MFol then sp(T) =1, and

)\];4’0’%’
/ Ot 1" )‘k
s (t) = , s (t)=
# (1) (A +07) s (t) : (A& —I—O't)/ Vs + o2
Ak
= >0 A >0), 60
(Ae+03) si () ( ) 00
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le—4 le-5

or ) =10~ 2 (1) (0) = 51 ()~ 52 (0) = 2 (1= 52 0))
, . Ot _1—Sk(0)_s, _1—Sk(0)
Sok(t)_()\k—f—a'?f)sk(t) oT - k(t) o s
o (t) =5 (t) >0 for each k. (61)

Therefore, ¢ is a strict convex function for ¢ € [0,7] and must have one unique minimum.

\/ )\k()\k"!‘a%)*)\k
s, and

By setting ¢} (tmin) = 0, we have ty, = 2

30 (Vi VA o)
Sk (tmin) = NN ;

B Ak 2N
SOk(tmin)—\/)\k+O_% ( Mo v — 1). (62)

The visualization of ¢y (t)* and hy(t) with respect to kth eigenvalue (k € [1,1000]) and ¢
(t € 10,80]) are provided in figures 13 and 14. Since Ay (t) is approximately orthogonal
to the displacement vector xy — xr, the differences between trajectory deviations and

trajectory residuals are minor, as shown in figure 15.
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— () — luw(t)

— hy(t) U 0.25 = ha(t)

S — hy(t) — haw(t)
— i) 6 — hlt)

20 — hslt) 0.20 — hs(t)
— hglt) 5 ]

Rz (t) fzon (1)

— hs(t) 4 0.15 — hsoo(t)

15

haoa(t)
haooo (£)

ha(t)
Fryo(t)

10 0.10

0.05
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Figure 14. Variation of hy(t) = ¢ (t)*(uf (xr — p))* with respect to k and t.
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Figure 15. Comparison between trajectory deviations and trajectory residuals
using low-rank Gaussian approximation.
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(a) FFHQ (64x64). (b) LSUN Bedroom (256 256).

Figure 16. Trajectory deviation (1-D projection) on unconditional generation.

Appendix C. Additional results

C.1. Visualization of sampling trajectories

Figures 16(a) and (b) provide more experiments about the 1-D trajectory projection on
FFHQ and LSUN Bedroom. Figure 17 provides more results about Multi-D projections
on FFHQ. Figures 18 and 19 provide more results on CIFAR-10 using a Gaussian or
mixture of Gaussians model. Figure 20 visualizes more generated samples on three
datasets.

C.2. Diagnosis of score deviation

In this section, we simulate four new trajectories based on the optimal denoising out-
put 75(-) to monitor the score deviation from the optimum. We denote the optimal

sampling trajectory as {X} N ), where we generate samples as the standard sampling
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Figure 17. Trajectory reconstruction, visualization and statistics on FFHQ. Figure
(a) is generated by EDM (Karras et al 2022).
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trajectory
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2-D recon.

3-D recon. ¢
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04 0.80 4= tow-rank Gaussian

0 20 40 60 80 100 k=1 2 3 4 5

(a) Visual Comparison. (b) L? error. (c) PCA ratio.

n=0 20 40 60 80 100

Figure 18. Trajectory reconstruction, visualization and statistics on CIFAR-10
using low-rank Gaussian.

trajectory {%X;,})_, with the same time schedule T'= {ty =¢,---,ty =T}, but adopt
optimal denoising output r5(-) rather than denoising output rg(-) for score estimation.
The other three trajectories are simulated by tracking the (optimal) denoising output of
each sample in {X}} or {X;}, and designated as {rg(x})}, {re( x7)}, {rp(%¢)}. According
to (17) and ty=0, we have X} = rg(X;,), and similarly, Xy, =ro(Xs,). As t — 0, 75(X7)
and 7j(%;) serve as the approximate nearest neighbors of X; and x; to the real data,
respectively.

We calculate the deviation of denoising output to quantify the score deviation across
all time steps using the L? distance, though they should differ by a factor t?, and have
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(a) Visual Comparison. (b) L? error. (c) PCA ratio.

Figure 19. Trajectory reconstruction, visualization and statistics on CIFAR-10
using low-rank mixture of Gaussians.

(a) DDIM, NFE = 5. (b) DDIM + GITS, NFE = 5.

Figure 20. The visual comparison of samples generated by DDIM and DDIM +
GITS (1st row: CIFAR-10, 2nd row: ImageNet 64 x 64, 3rd row: LSUN Bedroom).
Figures are generated by EDM (Karras et al 2022).

the following observation: The learned score is well-matched to the optimal score in
the large-noise region, otherwise, they may diverge or almost coincide depending on
different regions. In fact, our learned score has to moderately diverge from the optimum
to guarantee the generative ability. Otherwise, the ODE-based sampling reduces to
an approximate (single-step) annealed mean shift for global mode-seeking, and simply
replays the dataset. As shown in figure 21, the nearest sample of X} to the real data is
almost the same as itself, which indicates the optimal sampling trajectory has a very
limited ability to synthesize novel samples. Empirically, score deviation in a small region
is sufficient to bring forth a decent generative ability.

From the comparison of {rg(x})}, {r(X})} sequences in figures 21 and 22, we can
clearly see that along the optimal sampling trajectory, the deviation between the learned
denoising output r¢(-) and its optimal counterpart r;(-) behaves differently in three
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Figure 21. Top: We visualize a forward diffusion process of a randomly-selected
image to obtain its encoding X, (first row) and simulate multiple trajectories
starting from this encoding (other rows). Bottom: The k-nearest neighbors (k = 5)
of X;, and X}, to real samples in the dataset. Figures are generated by EDM (Karras
et al 2022).
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Figure 22. The deviation (Euclidean distance) of outputs from their corresponding
optima.

successive regions: The deviation starts off as almost negligible (about 10 < ¢ < 80),
gradually increases (about 3 <t < 10), and then drops down to a low level once again
(about 0 < ¢ < 3). This phenomenon was also validated by a recent work (Xu et al 2023)
with a different perspective. We further observe that along the sampling trajectory, this
phenomenon disappears and the score deviation keeps increasing (see {rg(X:)}, {ry(%¢)}
sequences in figures 21 and 22). Additionally, samples in the latter half of {rj(x;)}
appear almost the same as the nearest sample of X, to the real data, as shown in
figure 21. This indicates that our score-based model strives to explore novel regions,
and synthetic samples in the sampling trajectory are quickly attracted to a real-data
mode but do not fall into it.

C.3. Comparision of time schedule and sample quality

Time schedule. The uniform schedule is commonly used with the DDPM (Ho
et al 2020) backbone. Following EDMs (Karras et al 2022), we rewrite this sched-
ule from its original range [es, 1] to [to,tn], where e, =0.001, t; =0.002 and ¢y = 80.
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Table 8. Sample quality in terms of FID (Heusel et al 2017) on four datasets
(resolutions ranging from 32 x 32 to 256 x 256).

NFE
METHOD Coeff AFS* 3 4 5 6 7 8 9 10
CIFAR-10 32x32 (Krizhevsky and Hinton 2009)
DDIM (Song et al 2021a) — X 93.36 66.76  49.66 35.62 27.93 2232 18.43 15.69
DDIM + GITS 1.10 X 88.68 46.88 32.50 22.04 16.76 13.93 11.57 10.09
DDIM + GITS (default) 1.15 79.67 X 43.07  28.05 21.04 16.35 13.30 11.62 10.37
DDIM + GITS 1.20 X 77.22  43.16 29.06 22.69 18.91 14.22 12.03 11.38
iPNDM (Zhang and Chen 2023) — X 4798 24.82 1359 7.05 5.08 3.69 3.17 2.77
iPNDM + GITS 1.10 X 51.31 17.19 12,90 5.98 6.62 4.36 3.59 3.14
iPNDM + GITS (default) 1.15 X 43.89 15.10 8.38 4.88 5.11 3.24 2.70 2.49
iPNDM + GITS 1.20 X 42.06 15.85 9.33 7.13 5.95 3.28 2.81 2.71
iPNDM + GITS 1.10 v 3422 1199 1244 6.08 6.20 3.53 3.48 2.91
iPNDM + GITS 1.15 v 29.63 11.23  8.08 4.86 4.46 2.92 2.46 2.27
iPNDM + GITS 1.20 v 25.98 10.11 6.77 4.29 3.43 2.70 242 228
FFHQ 64x64 (Karras et al 2019)
DDIM (Song et al 2021a) — X 78.21 5748 43.93 35.22 28.86 24.39 21.01 18.37
DDIM + GITS 1.10 X 62.70 43.12 31.01 24.62 2035 17.19 14.71 13.01
DDIM + GITS (default) 1.15 X 60.84 40.81 29.80 23.67 19.41 16.60 14.46 13.06
DDIM + GITS 1.20 X 59.64 40.56 30.29 23.88 20.07 17.36 15.40 14.05
iPNDM (Zhang and Chen 2023) — X 4598 28.29 17.17 10.03 7.79 5.52 4.58 3.98
iPNDM + GITS 1.10 X 34.82 1875 13.07 7.79 8.30 4.76 5.36 3.47
iPNDM + GITS (default) 1.15 X 33.09 17.04 11.22 7.00 6.72 4.52 4.33 3.62
iPNDM + GITS 1.20 X 31.70  16.87 10.83 7.10 6.37 5.78 4.81 4.39
iPNDM + GITS 1.10 v 33.19 1988 1290 8.29 7.50 4.26 4.95 3.13
iPNDM + GITS 1.15 v 30.39 15.78 10.15 6.86 5.97 4.09 3.76 3.24
iPNDM + GITS 1.20 v 26.41 13.59 8.85 6.39 5.36 491 3.89 3.51
ImageNet 64X 64 (Russakovsky et al 2015)
DDIM (Song et al 2021a) — X 82.96 5843 43.81 34.03 2746 2259 19.27 16.72
DDIM + GITS 1.10 X 60.11 36.23 2731 20.82 16.41 14.16 11.95 10.84
DDIM + GITS (default) 1.15 X 57.06  35.07 2492 19.54 16.01 13.79 12.17 10.83
DDIM + GITS 1.20 X 54.24 3427 24.67 19.46 16.66 14.15 13.41 11.87
iPNDM (Zhang and Chen 2023) — X 58.53  33.79 1899 1292 9.17 7.20 5.91 5.11
iPNDM + GITS 1.10 X 36.18 19.64 13.18 9.58 7.68 6.44 5.24 4.59
iPNDM + GITS (default) 1.15 X 3447 1895 10.79 8.43 6.83 5.82 4.96 4.48
iPNDM + GITS 1.20 X 32.70 1859 11.04 9.23 7.18 6.20 5.50 5.08
iPNDM + GITS 1.10 v 31.50  21.50 13.73 10.74 7.99 6.88 5.29 4.64
iPNDM + GITS 1.15 v 28.01 18.28 10.28 8.68 6.76 5.90 4.81 4.40
iPNDM + GITS 1.20 v 26.41 16.41 9.85 839 6.44 5.64 4.79 447
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Table 8. (Continued.)

METHOD Coeff AFS* 3 4 5 6 7 8 9 10

LSUN Bedroom 256 X256 (Yu et al 2015) (pixel-space)

DDIM (Song et al 2021a) X 86.13  54.45 34.34 2525 1949 1571 13.26 11.42
DDIM + GITS 1.05 X 81.77 36.89 2746 18.78 13.60 12.23 10.29 8.77
DDIM + GITS (default) 1.10 X 61.85 35.12 22.04 16.54 13.58 11.20 9.82 9.04
DDIM + GITS 1.15 X 60.11 31.02 23.65 17.18 13.42 12.61 10.89 10.57
iPNDM (Zhang and Chen 2023) — X 80.99 4390 26.65 20.73 13.80 11.78 8.38  5.57
iPNDM + GITS 1.05 X 59.02 2471 19.08 1277 8.19 6.67 5.58 4.83
iPNDM + GITS (default) 1.10 X 45.75 2298 15.85 10.41 8.63 7.31 6.01 5.28
iPNDM + GITS 1.15 X 44.78 21.67 1729 11.52 9.59  8.82 7.22 5.97

* After obtaining the DP schedule, we could further optimize the first time step with
AFS, using the same ‘warmup’ samples. The default setting in our main submission
does not use AFS and keeps the coefficient in DP as 1.1 for LSUN Bedroom and 1.15
otherwise. Although the performance can be further improved by carefully tuning the
coefficient and using AFS as shown above.

We first uniformly sample 7, (n € [0,N]) from [es,1] and then calculate ¢, by t, =
\/exp(%BdTnQ + BminTn) - 17 where Bd = &%M log(l + tN2)7 Bmin - log(l + tNQ) -

1
3084
’ The logSNR time schedule is proposed for fast sampling in DPM-Solver (Lu et al
2022a). We first uniformly sample A, (n € [0, N]) from [Apin, Amax] Where Apin = —logty
and Apa = —logty. The logSNR schedule is given by t, = e .

The polynomial time schedule ¢, = (té/ P4 %(t%’o — t(l)/ ")) is proposed in
EDM (Karras et al 2022), where t, = 0.002, txy =80, n € [0,N], and p=7.

The optimized time schedules for SDv1.5 in figure 11 include

o AYS (Sabour et al 2024): [999, 850, 736, 645, 545, 455, 343, 233, 124, 24, 0].
o GITS: [999, 783, 632, 483, 350, 233, 133, 67, 33, 17, 0).

Furthermore, we do observe strong similarity in the optimal time schedules across dif-
ferent models and datasets, although the exact trajectory shapes vary slightly due to
the influence of the specific models and datasets. (see figures 3, 5, 16, 17). We then
conducted cross-dataset experiments by directly applying a time schedule optimized
on one dataset (e.g. CIFAIR-10) to others (e.g. FFHQ and ImageNet). The results are
reported in table 10, where each column corresponds to the dataset used to optimize
the time schedule. We can see that the results within each row remain relatively stable,
which confirms that trajectory regularity is consistent across different datasets.
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Table 9. Comparison of various time schedules on CIFAR-10.

NFE TIME SCHEDULE FID
Uniform

3 [80.0000, 6.9503, 1.2867, 0.0020] 50.44
4 [80.0000, 11.7343, 2.8237, 0.8565, 0.0020] 18.73
5 [80.0000, 16.5063, 4.7464, 1.7541, 0.6502, 0.0020] 17.34
6 [80.0000, 20.9656, 6.9503, 2.8237, 1.2867, 0.5272, 0.0020] 9.75
7 [80.0000, 25.0154, 9.3124, 4.0679, 2.0043, 1.0249, 0.4447, 0.0020] 12.50
8 [80.0000, 28.6496, 11.7343, 5.4561, 2.8237, 1.5621, 0.8565, 0.3852, 0.0020] 7.56
9 [80.0000, 31.8981, 14.1472, 6.9503, 3.7419, 2.1599, 1.2867, 0.7382, 0.3401, 0.0020] 10.60
10 [80.0000, 34.8018, 16.5063, 8.5141, 4.7464, 2.8237, 1.7541, 1.0985, 0.6502, 0.3047, 0.0020] 7.35
LogSNR

3 80.0000, 2.3392, 0.0684, 0.0020] 88.38
4 80.0000, 5.6569, 0.4000, 0.0283, 0.0020] 35.59
5 80.0000, 9.6090, 1.1542, 0.1386, 0.0167, 0.0020] 19.87
6 80.0000, 13.6798, 2.3392, 0.4000, 0.0684, 0.0117, 0.0020] 10.68
7 80.0000, 17.6057, 3.8745, 0.8527, 0.1876, 0.0413, 0.0091, 0.0020] 6.56
8 80.0000, 21.2732, 5.6569, 1.5042, 0.4000, 0.1064, 0.0283, 0.0075, 0.0020] 4.74
9 80.0000, 24.6462, 7.5929, 2.3392, 0.7207, 0.2220, 0.0684, 0.0211, 0.0065, 0.0020] 3.53
10 80.0000, 27.7258, 9.6090, 3.3302, 1.1542, 0.4000, 0.1386, 0.0480, 0.0167, 0.0058, 0.0020] 2.94
Polynomial (p=17)

3 80.0000, 9.7232, 0.4700, 0.0020] 47.98
4 80.0000, 17.5278, 2.5152, 0.1698, 0.0020] 24.82
5 80.0000, 24.4083, 5.8389, 0.9654, 0.0851, 0.0020] 13.59
6 80.0000, 30.1833, 9.7232, 2.5152, 0.4700, 0.0515, 0.0020] 7.05
7 80.0000, 34.9922, 13.6986, 4.6371, 1.2866, 0.2675, 0.0352, 0.0020] 5.08
8 80.0000, 39.0167, 17.5278, 7.1005, 2.5152, 0.7434, 0.1698, 0.0261, 0.0020] 3.69
9 80.0000, 42.4152, 21.1087, 9.7232, 4.0661, 1.5017, 0.4700, 0.1166, 0.0204, 0.0020] 3.17
10 80.0000, 45.3137, 24.408 312.3816, 5.8389, 2.5152, 0.9654, 0.3183, 0.0851, 0.0167, 0.0020] 2.77
GITS (ours)

3 80.0000, 3.8811, 0.9654, 0.0020] 43.89
4 80.0000, 5.8389, 1.8543, 0.4700, 0.0020] 15.10
5 80.0000, 6.6563, 2.1632, 0.8119, 0.2107, 0.0020] 8.38
6 80.0000, 10.9836, 3.8811, 1.5840, 0.5666, 0.1698, 0.0020] 4.88
7 80.0000, 12.3816, 3.8811, 1.5840, 0.5666, 0.1698, 0.0395, 0.0020] 3.76
8 80.0000, 10.9836, 3.8811, 1.8543, 0.9654, 0.4700, 0.2107, 0.0665, 0.0020] 3.24
9 80.0000, 12.3816, 4.4590, 2.1632, 1.1431, 0.5666, 0.2597, 0.1079, 0.0300, 0.0020] 2.70
10 80.0000, 12.3816, 4.4590, 2.1632, 1.1431, 0.5666, 0.3183, 0.1698, 0.0665, 0.0225, 0.0020] 2.49
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Table 10. Comparison of FID results. Each column represents the dataset used
for searching the optimized time schedule. The optimized time schedules may vary
during different experiments due to the randomly sampled batch for optimization.

TIME SCHEDULE CIFAR-10 FFHQ ImageNet
NFE =5
CIFAR10 8.78 8.88 8.21
FFHQ 11.22 11.12 10.61
ImageNet 11.40 11.44 11.02
NFE = 6
CIFAR10 5.07 4.89 4.73
FFHQ 7.28 7.00 6.90
ImageNet 8.85 8.61 8.43
NFE = 8
CIFAR10 3.20 3.32 3.39
FFHQ 4.88 4.52 4.59
ImageNet 6.02 5.79 5.94
NFE = 10
CIFARI10 2.43 2.40 2.61
FFHQ 3.77 3.62 3.59
ImageNet 4.57 4.36 4.70
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