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Abstract. Dilated Cardiomyopathy (DCM) is one of the main world-
wide causes of sudden cardiac death (SCD). Early diagnostics signifi-
cantly increases the chances of correct treatment and survival. However,
there are no efficient methods for mortality risk prediction from learning
cardiac magnetic resonance (CMR) image and clinical data due to the
poor image quality and extreme imbalanced datasets. To solve this prob-
lem, we proposed an effective multi-modality network (MMNet) for mor-
tality risk prediction in DCM, and we firstly directly optimize the AUC
to train the multimodal deep learning classifier by maximizing the WMW
statistic. This can achieve significant improvements in AUC, especially
under the imbalanced learning problem. MMNet consists of two branches:
clinical data branch and T1 mapping CMR images branch, which allows
the model to learn more comprehensive features and makes a more ac-
curate prediction. We validated our approach on a DCM dataset, which
contains 450 CMR images that only holds 34 positive samples. Experi-
mental results show that our approach archived accuracy of 98.89%, AUC
of 99.61%, sensitivity of 100% and specificity of 98.8%, demonstrating
the effectiveness of the proposed method.
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1 Introduction

Dilated Cardiomyopathy (DCM) is a common chronic and life-threatening car-
diopathy [5]. It can lead to cardiovascular death, progressive heart failure or
sudden cardiac death (SCD). Thus, immediate emergency diagnosis of DCM is
critical for life saving and later recovery. For severe cardiomyopathy patients,
cardiologists may consider ventricular assist devices (VAD) or heart transplants
operation in the early stage of an incident. However, both are not only expen-
sive but also can lead to serious complications, including infection, thromboem-
bolism, and multiple organ failure. In routine clinical diagnosis, especially for
early screening and postoperative assessment, visual assessment and empirical
evaluation are widely used. Nevertheless, they are subject to high inter-observer
variability, and the results are subjective and non-reproducible. Furthermore,
utilizing multi-modality medical data (e.g, clinical text report and magnetic
resonance imaging (MRI)) to assess the accurate risk of DCM patients are even
more challenging due to the complex nature of medical data (e.g., height, weight,
family history of cardiopathy, blood pressure, and so on).

In this regard, automatic computer-aided diagnosis systems are highly de-
sirable. Many attempts have been made to automatically assess the mortality
risk in DCM. Traditional risk assessment approaches have been mainly based on
boosted ensemble algorithms (feature selection by information gain ranking) [9,
1]. However, most of these methods are based on a small subset of the clinical
and imaging data. As a result, they are not able to capture sufficient information
to establish intrinsic correspondences between the mortality risk and clinical and
imaging data. Additionally, their performances are confined by the handcrafted
descriptors. As the one of the most successful machine learning techniques to-
day, Li et al. [7] [8] provided manifold alignment and efficient boundary point
detection method, which can help in the study of the characteristics of diseases.
Deep learning has been successfully applied to the recognition and prediction of
prostate cancer, Alzheimers disease, and vertebrae and neural foramina steno-
sis. In this work, we aim to propose a deep learning based framework for DCM
mortality risk assessment.

Automatic assessment the mortality risk in DCM remains a challenging prob-
lem due to two main issues. First, due to the rare occurrences of death, the
imaging data as well as the discrete clinical text data are highly imbalanced.
Nevertheless, most of the existing classification losses such as cross entropy are
not suitable for dealing with imbalanced classes. In machine learning literautre
[10], many a study has suggested that compared to simple classification losses,
AUC (area under the receiver operating characteristic curve) is a robust evalua-
tion measure for classification problem. However, it is non-differentiable and not
easy to compute. Therefore, directly optimize the AUC loss to train a classifier
is usually impractical. Although existing sampling, adjust class weight and data
enhancement have shown great success [3, 12], the imbalanced learning prob-
lem is still challenging. Second, in routine clinical procedures, risk assessment of
DCM is often carried out through evaluation of multi-modality image data (e.g.,
images and clinical text), in which one data modality is complementary to other
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Fig. 1. The architecture of the multi-modality framework. It mainly consists of a pic-
torial branch and a clinical branch. The model is directly optimized by the AUC Loss.

modalities. Thus, fusing multi-modality medical data for accurate mortality risk
assessment is highly desired.

In this paper, an end-to-end multimodal framework is proposed to solve the
above issues. The core idea is to leverage the fused features extracted from
the multi-modality data. It consists of two branches: clinical branch and image
branch. The image branch is a 2D convolutional network, which extracts image
features from the left ventricle T1 mapping CMR images. The clinical branch
is a fully-connected network, which extracts features from clinical textual data.
Afterward, these features are fused by concatenation layer for the final predic-
tion. Furthermore, inspired by [13], we optimize the alternative Wilcoxon-Mann-
Whitney (WMW) loss to directly optimize the AUC instead of other typical
classification losses to address the imbalanced learning issue. Our method main
contributions are as follows: 1) a multi-modal framework seamlessly fuse CMR
images and clinical data features to better learn hierarchical feature representa-
tions; 2) we combine AUC optimization and multimodal framework together to
train the proposed network. This approach effectively addresses the imbalanced
learning issue. To the best of our knowledge, this is first work to directly use
AUC to optimize complex deep neural networks.

2 Methodology

Fig. 1 shows an overview of the proposed method. Our goal is to automatically
generate a prediction score for the cardiac patients. A multi-modality frame-
work is proposed to seamlessly fuse CMR images and clinical text features,
thereby generating better hierarchical feature representations for accurate DCM
risk assessment. Our network is able to effectively fuse the information from
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multi-modality medical data, helping it to generate more reliable predictions.
We directly optimize the AUC loss to train the proposed network.

2.1 A Multi-Modality Network (MMNet)

As shown in Fig. 1, the proposed framework consists of two branches: the clinical
branch and the pictorial branch. The clinical branch is used to extract 1D texture
record features from clinical textual data. The first layers will learn the low level
features with multiple 1D convolutional layers, which are followed by ReLU non-
linearity activation layers. There are three convolutional layers (with 16, 32 and
64 filters) for feature extraction.

The pictorial branch automatically extract discriminative features from the
CMR images. It consists of a ConNet Head (a convolutional network) and a con-
volutional layer. The ConvNet head is used to successively extract noisy-invariant
high-level representations from the images. This is extremely important, espe-
cially when low-level features (e.g., color, texture) is not sufficient to represent
the image due to various reasons (e.g., variation of image intensities). Note that
our ConvNet Head is not limited to one kind of network. It can be VGG-16 [11],
DenseNet-121, Inception-V3, and Xception, etc. To reduce the computational
costs, a 2D convolution layer with 64 filters (1 × 1 kernels) is followed by the
ConvNet head to reduce the number of feature map channels.

Finally, after flattening the feature maps generated by both branches, the
high-level textual semantics are concatenated with the high-level image seman-
tics, yielding the fused high-level representations. The fused high-level represen-
tations is fed into a fully connected (FC) layer with 512 neurons and softmax
layer, generating the final predictions.

2.2 AUC Optimization

Due to the extremely low mortality of DCM, the number of observations belong-
ing to the death class is significantly lower than those belonging to the non-fatal
class. As a result, the imbalanced class problem is predominant. Notably, the
rate of negative samples to positive samples is 12.23 in our dataset. In this situ-
ation, if the common loss functions such as cross entropy is employed to train the
network, the prediction will be extremely biased. Although a very high accuracy
can be obtained, the specificity is very low. Although AUC is non-differentiable
and not easy to compute (it is usually used as a robust measure to evaluate the
performance of classifiers), several works [13] had demonstrated that maximizing
the alternative Wilcoxon-Mann-Whitney (WMW) loss is equivalent to directly
optimizing AUC. Inspired by [13], we adopted the WMW loss to optimize our
network. Formally,

R(xi, yj) =

 (−(xi − yj − γ))p , xi − yj < γ

0 , otherwise
(1)
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where the xi is the predicted score for ith positive sample, and yj is the predicted
generated for jth negative sample. The margin γ and exponent p are two hyper-
parameters. Finally, we directly optimize the AUC by minimizing the objective
function UR with 0 < γ ≤ 1 and p > 1:

UR =

m−1∑
i=0

n−1∑
j=0

R (xi, yj) . (2)

Note that function R is differentiable, we can use any gradient based methods
to train the MMNet.

3 Experiments

Data Acquisition & Pre-processing. Our experiments are conducted on a
dataset with 450 patients, which are collected from our collaborative hospital.
The clinical text reports and the incidents are provided by senior cardiologists
during clinical examinations and follow-up visits. As each report belongs to a
cardiomyopathy patient and each patient has several CMR images, each clinical
text report corresponds to several CMR images.

All CMR images are 2D short axis cine native T1 mapping MR images. The
pixel spaces of those CMR images range from 1.172×1.172×1.0mm3 to 1.406×
1.406 × 1.0mm3. The original dimension size is 256 × 218 × 1 pixels. To ensure
the training datasets are one and the same common space to enable improved
quantitative analysis, we resample the image to a spacing of 1.0× 1.0× 1.0mm3

to ensure isotropy and normalize the of CMR image intensities to [−1, 1]. The
clinical text data contains extensive patient information such as family history of
cardiopathy, height, weight, blood pressure. We normalize the categorical clinical
textual values to [0, 1].

Unfortunately, as the mortality rate is 7.5%, our dataset is extremely im-
balanced. Due to the lack of positive samples, several data augmentations are
applied to them to virtually enlarge the training set. These augmentations in-
clude: random rotation from 0 to 180 degrees, random vertical or horizontal flip,
and random shift along the X axis or Y axis from 0 to 2%. During the augmen-
tation process, the corresponding text data is duplicated. Four types of criteria
is used to measure the performance of classifiers: 1) accuracy; 2) sensitivity; 3)
specificity; 4) AUC.

Implementation Details. We adopted 5-fold cross-validation to evaluate
the performances of different methods. The final evaluation score is calculated
by averaging the scores of all 5 folds.We use Adam optimizer [6] with a initial
learning rate of 0.003, and leave other parameters as Keras default. Our model
uses batch size of 32 training with 40 epochs.

Results and Analysis. We compared our method with the signal model
methods [11, 4] that only using CMR images and traditional methods which
only using clinical data to predict death risk. Table 1 shows the performance by
traditional methods: Linear SVM, Decision Tree, Random Forest and other ad-
vanced CNN models: VGG-16 [11], ResNet-50 [4], DenseNet-121, Inception-V3,
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Table 1. Comparison of the proposed MMNet with the other advanced CNN methods
of risk assessment.

Methods Loss Inputs Accuracy Sensitivity Specificity AUC

Linear SVM - Clinical 85.29% 0.0 100% 66.21%
Decision Tree - Clinical 82.35% 0.0 100% 45.52%
Random Forest - Clinical 85.29% 0.0 100% 63.10%

VGG-16 BCE CMR - - - -
ResNet-50 BCE CMR 80.67% 47.06% 83.41% 73.36%
Inception-V3 BCE CMR 89.11% 26.47% 94.23% 73.47%
Xception BCE CMR 86.00% 41.18% 89.66% 78.00%
MMNet BCE CMR+Clinical 97.04% 100% 96.81% 99.31%

VGG-16 WMW CMR - - - -
ResNet-50 WMW CMR 72.00% 67.65% 72.36% 76.21%
Inception-V3 WMW CMR 90.44% 44.12% 94.23% 75.24%
Xception WMW CMR 84.00% 41.18% 87.50% 78.09%
MMNet WMW CMR+Clinical 98.89% 100% 98.80% 99.61%

and Xception [2]. For a classifier, WMW loss aims to achieve reliable improve-
ments in the AUC measure. In order to demonstrate the effectiveness of AUC
optimization on imbalanced datasets, we also compare our framework with dif-
ferent loss function: BCE loss and WMW loss in deep architecture (see Table 1).
Table 1 illustrates that our method in general achieve better performance than
all the other methods, in terms of Accuracy, Sensitivity, Specificity and AUC,
and the ROC curve for each mehtod is shown in Fig. 2 (Left).

From the results of risk assessment in Table 1, we can observe three key
points. First, it is difficult to train an effective classifier under imbalanced datasets.
Traditional classification methods cannot identify any positive samples. Due to
vanishing gradient problem, the VGG-16 cannot report valid results. Although
Inception-V3 produce a high classification accuracy of 90.44%, the sensitivity
actually is 44.12% and the specificity is 94.23% by contraries. This illustrates
the Inception-V3 model learn too much about majority class, but it provides
insufficient information about minority class. Therefore, it may predict almost
every sample as majority class. Second, our proposed MMNet takes the advan-
tage of the combined information of CMR images and clinical data, it performs
much better in terms of five types of criteria than the other methods only use
image information, but without clinical data. Specifically, MMNet with BCE
loss achieves a classification accuracy of 97.04%, a sensitivity of 100%, a speci-
ficity of 96.81% and an AUC of 99.31%. Finally, AUC optimization is crucial for
classification task when using imbalanced datasets. As shown in the rear rows
in the Table 1, the MMNet with WMW loss achieve better performance than
one with BCE loss. Moreover, Fig. 2 (Left) demonstrates again that our method
achieves substantial improvement of the ROC curve over other advanced CNN
models.

Hyper-parameter Selection. The WMW loss (Eq.(1)) has two essential
hyper-parameters: the exponent p and the margin γ. Generally, we set p = 3
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Fig. 2. Left: The ROC curves with AUC values for 5-fold cross-validation results of
different methods. Right: The Accuracy, Sensitivity, Specificity and ROC curves of
different γ for WMW Loss when p = 3 over 5-fold cross validation.

as suggested in [13]. Fig. 2 (Right) shows how the average performance of our
model varies with the parameter γ. As we can see, when γ ≤ 0.4, our model
consistently increases as γ increases. When γ > 0.4, all the metric scores in the
figure start to decrease. Nevertheless, the AUC is less affected when γ is near
0.4, which demonstrates that the model has high robustness when γ = 0.4. Thus,
we set p = 3 and γ = 0.4 in our experiment for the WMW loss.

Evaluation of the ConvNet Head. To investigate the effectiveness of us-
ing different convolutional network as ConvNet Head, we evaluate several widely
used ConvNets in our framework and the results are summarized in Table 2.
Experimental results show that our framework is consistent robust for various
ConvNet Head.

Table 2. Comparison results of the different ConvNet as image branch heads.

Head Accuracy Sensitivity Specificity AUC

ResNet-50 99.11% 100% 99.04% 99.43%
VGG-16 99.11% 100% 99.04% 99.49%
Xception 96.22% 100% 95.91% 99.53%
Inception-V3 98.89% 100% 98.80% 99.61%

Class Activation Map (CAM). To further understand how the classifier
make the predictions, we visualize the class activation map (CAM) [14] of the
last convolutional layer. Two group of negative and positeive examples are shown
in Fig. 3. There are obvious difference on the corresponding CAMs of negative
(survivors) and positive (dead) samples. We can see that the heatmap or jet
color map of positive samples is more comparatively concentrated than that of
negative samples.
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(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 3. Activation maps. The first row is examples of negative samples. The Second
row is examples of positive samples. (a) shows the original CMR images. (b) are the
activation maps, the green color indicates larger standard deviations, the pink color
represents the maximum values and the white color is composed of both types. The
heatmap is overlaid on the original images in (c). (d) displays heatmaps as jet color
map and overlap on the original image, the red color highlights the activation region
associated with the predicted class.

4 Conclusion

In this paper, we proposed an effective multi-modality framework (MMNet) for
mortality risk prediction in DCM. As far as we know, we are the first to directly
optimize the AUC to train the multimodal deep learning classifier by maximizing
the WMW statistic. This can achieve significant improvements in AUC, espe-
cially for the imbalanced learning problems. Experiment results demonstrate the
superiority of the proposed method.
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