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ABSTRACT
In this paper, we propose a new method for automatically
determining image orientations. This method is based on
a set of natural image statistics collected from a multi-
scale multi-orientation image decomposition (e.g., wavelets).
From these statistics, a two-stage hierarchal classification
with multiple binary SVM classifiers is employed to deter-
mine image orientation. The proposed method is evaluated
and compared to existing methods with experiments per-
formed on 18040 natural images, where it showed promising
performance.

Categories and Subject Descriptors
I.4.10 [Computing Methodologies]: Image Processing
and Computer Vision—Representation; I.4.8 [Computing
Methodologies]: Image Processing and Computer Vision—
Scene Analysis

General Terms
Algorithms, Design, Experimentation

Keywords
Orientation Determination, Natural Image Statistics, Image
Classification

1. INTRODUCTION
Displaying images in their correct orientations is one of

the basic requirements in image processing. While manu-
ally adjusting orientations for several images is trivial, it is
more efficient to be able to automate on several hundred dig-
ital photographs taken from a field trip or a vacation. One
solution is to have the digital cameras record, at the time
of capture, the orientation information in the image file (for
instance, a user-defined tag in the JPEG header). However,
there is yet not a widely accepted protocol for image pro-
cessing softwares to take advantage of such information, and
most legacy digital images were taken with cameras without
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such a feature. A more practical alternative then is to de-
sign systems that are able to determine image orientations
with signal processing.

Technically, the goal of automatic image orientation de-
termination is to classify an image to one of the four possi-
ble orientations, corresponding to rotation angles of 0◦, 90◦,
180◦ and 270◦. Nevertheless, in practice, it is usually suffi-
cient to determine if an image is landscape-oriented (0◦ or
180◦ orientation) or portrait-oriented (90◦ or 270◦ orienta-
tion), as it is rare to take a picture upside down. Existing
automatic image orientation determination methods fall into
two main categories. Top-down methods are based on high-
level perception cues (e.g., the detection of faces, skies and
walls [3]), or semantic relations in image contents (e.g., tex-
tured area in lower part [11]). Though a closer modeling
of the human perception process, top-down methods suffer
from the instabilities of current object detection and recog-
nition algorithms, and are more likely to bias to a particu-
lar set of training images. On the other hand, bottom-up
methods determine image orientations with low-level fea-
tures, examples include the color moments [9] and the edge
direction histograms [12, 13]. Compared to high-level cues,
low-level features are more robust and reliable. Further-
more, psychophysical studies also confirmed that low-level
features are critical for humans performance on determining
image orientations [4].

In this paper, we propose a new low-level image feature for
orientation determination, consisting of a set of natural im-
age statistics collected from a multi-scale multi-orientation
image decomposition (e.g., wavelets). Previously, we have
shown that these image statistics are effective in detecting
image steganography [5] and differentiating natural images
from computer generated images [6], as they capture statisti-
cal correlations within natural images across different scales
and color channels. In this work, these statistics are com-
bined with a hierarchal two-stage classification with multiple
binary SVM classifiers to determine image orientation. Ex-
perimental results on 18, 040 natural images of the proposed
method is reported and compared to existing methods.

2. NATURAL IMAGE STATISTICS
The image statistics are collected from a multi-scale multi-

orientation1 image decomposition based on separable quadra-
ture mirror filters (QMFs) [8]. As shown in Figure 1, such a
decomposition splits the frequency space into multiple scales
and orientations (vertical, horizontal, and diagonal). For a

1This is the orientation of the 2D filters.
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Figure 1: Left: an idealized frequency domain de-
composition with a three-scale QMF pyramid de-
composition. Shown, from top to bottom, are scales
0, 1, and 2, and from left to right, are the low-pass,
vertical, horizontal, and diagonal subbands. Right:
the magnitudes of a three-scale QMF pyramid de-
composition of a ”disc” image. Each subband is nor-
malized into range [0, 255].

color (RGB) image, the decomposition is applied indepen-
dently to each color channel. The resulting vertical, horizon-
tal, and diagonal subbands at scale i are denoted as V c

i (x, y),
Hc

i (x, y), and Dc
i (x, y), where c ∈ {r, g, b}.

One important characteristics of natural images is that
the coefficients in each oriented subband assume distribu-
tions characterized by a sharp peak at zero and large sym-
metric tails [1]. This is because natural images typically
contain large smooth regions and abrupt transitions (e.g.,
edges). The smooth regions, though dominant, produce
small coefficients near zero, while the transitions generate
large coefficients. Instead of directly modeling these distri-
butions, a set of statistics (mean, variance, skewness, and
kurtosis) are collected to characterize them for simplicity.

There are also higher-order correlations within the decom-
position among coefficients not captured by their marginal
distributions [1]. Salient image features (e.g., edges) tend to
orient spatially and extend across multiple scales and color
channels. As a result, the coefficient magnitudes around
such image features, which measure the localized energy at
each spatial location, are correlated across space, orienta-
tion, scale and color channels. For example, a vertical edge
creates coefficients with large magnitudes in the vertical sub-
bands which are likely to have upper and lower spatial neigh-
bors with large magnitudes. Similarly, if there is a coefficient
with a large magnitude at scale i, it is also very likely that
its “parent” at scale i + 1 will also have a large magnitude.

To this end, a second set of statistics are collected from the
linear prediction errors of coefficient magnitudes [1]. Con-
sider the vertical subband of the green channel at scale i,
V g

i (x, y), a linear predictor for the magnitudes of these co-
efficients in a subset of all possible spatial, orientation, scale,
and color neighbors2 is formed as:

|V g
i (x, y)|=w1|V

g
i (x − 1, y)| + w2|V

g
i (x + 1, y)|

+w3|V
g

i (x, y − 1)| + w4|V
g

i (x, y + 1)|

+w5|V
g

i+1(x/2, y/2)| + w6|D
g
i+1(x/2, y/2)|

+w7|D
g

i (x, y)| + w8|V
b

i (x, y)| + w9|V
r

i (x, y)|, (1)

where | · | denotes magnitude and wk are the scalar weights.

2This choice of neighbors was motivated by the observations
of [1] and modified to include non-causal neighbors.

Evaluating Eq. (1) across the whole subband yields:

~v = Q~w, (2)

where ~v is formed by all |V g

i (x, y)| strung out into a col-
umn vector (to reduce sensitivity to noise, only magnitudes
greater than a pre-given threshold are considered), the columns
of the matrix Q contain the neighboring coefficient magni-
tudes as specified in Eq. (1), and ~w = (w1, · · · , w9)

T . Eq. (2)
is solved with the least squares as:

~w = (QT Q)−1QT~v. (3)

Similar linear predictors are constructed in all other sub-
bands corresponding to different orientations, scales and
color channels, with slightly different neighborhood settings.

With the linear predictors, the log errors between the ac-
tual and predicted coefficient magnitudes are computed as:

~p = log(~v) − log(|Q~w|), (4)

where the log(·) is computed point-wise on each vector com-
ponent. Then the mean, variance, skewness, and kurtosis
are collected to characterize the error distributions of each
subband in the decomposition.

For a QMF decomposition with n scales, the total num-
ber of coefficient statistics is 36(n − 1) (4 statistics for 3
oriented subbands and (n−1) levels per color channel), and
for similar reasons, the total number of error statistics is also
36(n − 1), yielding a grand sum of 72(n − 1) statistics. For
a decomposition of 4 levels, this setting yields 216 statistics,
which are the features for determining image orientation.

3. CLASSIFICATION
Based on these image statistics, non-linear support vec-

tor machine (SVM) classifiers [10] are employed to deter-
mine image orientation. Instead of treating the detection as
a multi-class problem [12, 13], we adopt a hierarchal two-
stage decision tree with SVM as base classifiers. In the first
stage, one binary SVM classifier is used to differentiate im-
ages with landscape orientations (0◦ or 180◦) from those
with portrait orientations (90◦ or 270◦). The second stage
of classification takes landscape or portrait images and fur-
ther determine their orientations with two more binary SVM
classifiers, the 0/180 classifier and the 90/270 classifier. To
give probabilistic meanings to the outputs of each binary
SVM classifier, they are calibrated to the posterior proba-
bilities of classification with a logistic function, whose pa-
rameters are estimated with a nonlinear least-squares [7].
Another important aspect in building the classifiers for im-
age orientation determination is to use a proper rejection
criterion. As pointed out by several authors [3, 12, 13],
there are many images lacking clear notion of orientation,
due to factors such as homogeneous textures, close-up views
and nearly diagonal rotations. These images are inherently
ambiguous and are subject to rejection by the classifiers.
Specifically, images with a classifier output near 0.5 are thus
rejected as being too ambiguous for classification (labeled as
N/D). The number of images being rejected is controlled by
a pre-given threshold t that defines the projection region as
[0.5 − t, 0.5 + t]. The overall process of image orientation
determination is shown in Figure 2.

Compared to the multi-class classification method, where
multiple binary classifiers are combined in either the one-
against-all or pairwise fashion, the two-stage framework is
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Figure 2: Overall process of image orientation deter-
mination. N/D stands for “not detectable”, corre-
sponding to images being rejected by the classifiers.

more tailored to the orientation determination problem and
affords several advantages. First, only three binary clas-
sifiers are needed, whereas there are four binary classifiers
in one-against-all and six in all-pair classifications. Using
less classifiers simplifies the overall training process, which
requires less training data. Secondly, the output of each
binary classifier has specific meaning in the proposed two-
stage framework, obviating merging outputs of the compos-
ing binary classifiers. Finally, as pointed out earlier, in many
practical applications such as organizing personal photo al-
bums, it is sufficient to determine the orientation of an im-
age to the level of portrait/landscape. Thus the interme-
diate classifier outputs from the first stage can be reported
directly without further processing.

4. EXPERIMENTS
To empirically evaluate the proposed orientation determi-

nation method, we conducted a set of experiments on an
image database of 18040 photographic images. Images in
this database come from various sources ranging from pro-
fessional image galleries to personal photo albums. these
images span a range of contents (e.g., landscapes, city scenes
and portraits) and imaging conditions (e.g., indoor and out-
door lighting, close up and far away views, etc.). Among all
the 18040 images, 9177 are landscape-oriented and 8863 are
portrait oriented. A further categorization in orientations
shows that there are 8946 images with a 0◦ orientation an-
gle, and 7992 images with a 90◦ orientation angle. There
are relative fewer images of 270◦ and 180◦ in the database
(871 and 231, respectively). As such image orientations are
less frequently used in practice.

From this image database, 6000 landscape and 6000 por-
trait images were used to train the landscape/portrait clas-
sifier, while the rest formed the testing set. The training
set of the 0/180 classifier is constructed from the 6000 la-
beled landscape images. Besides these images, it also in-
cludes their 180◦ rotated copies, to accommodate the rel-
ative small number of 180◦ oriented images. The training
set of the 90/270 classifier is similarly formed from the 6000
portrait images.

From each image, training and testing alike, image statis-
tics as described in Section 2 were extracted. To accommo-
date different image sizes, statistics were collected from the
central 256 × 256 image region. For each image region, a
four-level three-orientation QMF pyramid was constructed
for each color channel, from which 216 coefficient and error
statistics were collected to form a 216-D feature vector. For
a basis of comparison, two other low-level image features
used for orientation determination, color moments (CM) [9]

rejection rate
0% 10% 20% 50%

CM 69.4 73.6 84.3 88.2
EDH 72.3 79.1 89.7 93.2

our work 78.9 81.3 90.4 95.1

Table 1: Classification accuracies of the land-
scape/portrait classifier, with different low-level fea-
tures and different rejection rates.

rejection rate
0% 10% 20% 50%

CM 71.4 78.9 86.3 93.2
EDH 69.3 75.2 87.6 95.1

our work 67.2 73.1 84.9 91.6

Table 2: Classification accuracies of the 0/180 clas-
sifier, with different low-level features and different
rejection rates.

and edge direction histograms (EDH) [12] were also collected
on each image. The CM and EDH features were vectors of
288 and 945 dimensions, respectively. As a standard pre-
processing step in SVM classification, each dimension in all
type of features were normalized over training examples to
the same scale. From the collected image feature vectors,
the three binary nonlinear SVM classifiers with radial basis
function (RBF) kernels were trained and tested3. The pa-
rameters of the SVMs, i.e., the regularization factor and the
width of the RBF kernel were found by cross-validation.

Listed in Table 1 are the classification accuracies of the
landscape/portrait classifier on the testing set, with vary-
ing rejection rates. For comparison, performances of SVM
classifiers with CM and EDH features are also shown. Note
that the proposed low-level feature of natural image statis-
tics achieved a better performance than both the CM and
the EDH features, while having a relative lower dimension-
ality. Shown in Figure 3 are some images whose orienta-
tions are correctly determined by the classifier based on the
proposed feature. The proposed image statistics captures
structural regularities in an image, e.g., the distribution of
vertical and horizontal energies in the original image. In Fig-
ure 4, examples of images whose orientations are incorrectly
determined are shown. The orientation of these images can-
not to be determined at the image statistics level, without
semantic information (e.g., the road signs). Shown in Fig-
ure 5 are some examples of images being rejected by the
classifier, corresponding to a rejection rate of 10%. Many
rejected images lack a definite orientation and can be plau-
sibly explained as either landscape or portrait oriented.

Shown in Table 2 and 3 are the classification accuracies,
with different rejection rates, of the 0/180 classifiers and
90/270 classifiers with different feature types. In these cases,
however, the proposed image statistics features did not have
an obvious advantage over the other feature types. One pos-
sible reason is that the statistics collected are more sensitive
to a 90◦ rotation, a total reshuffle of components in the
feature vector with all statistics of vertical subbands and
horizontal subbands switching their positions, than a 180◦

rotation of an image. Nevertheless, by combining different
features in different stages of classification, better perfor-
mance is expected.

3SVM algorithm in our experiments was implemented with
package LIBSVM [2].



rejection rate
0% 10% 20% 50%

CM 53.7 65.8 73.2 88.7
EDH 61.3 67.8 76.5 87.6

our work 59.8 65.7 77.9 89.3

Table 3: Classification accuracies of the 90/270 clas-
sifier, with different low-level features and different
rejection rates.

portrait → portrait portrait → portrait

landscape → landscape landscape → landscape

Figure 3: Examples of images whose orientations are
correctly classified by the landscape/portrait classi-
fier using image statistics features.

5. DISCUSSION
In this paper, we present a method for automatically de-

tecting image orientations, based on a set of natural im-
age statistics and SVM classification. The image statistics
capture regularities in different oriented natural images and
the nonlinear SVM classifier transform such difference into
a computable procedure efficiently. Experimental results
based on 18040 natural images seem to confirm the efficacy
of the proposed method. However, our work also indicates
that there is no single low-level feature sufficient to reliably
determine image orientation. One of our on-going work is to
combine low-level features of different types to achieve the
optimal performance.

Acknowledgment
The author would like to thank Hany Farid for helpful and
inspiring comments about the paper. This work was sup-
ported by Hany Farid under an Alfred P. Sloan Fellowship,
an NSF CAREER Award (IIS99-83806), an NSF Infrastruc-
ture Grant (EIA-98-02068), and under Award No. 2000-
DT-CX-K001 from the Office for Domestic Preparedness,
U.S. Department of Homeland Security (points of view in
this document are those of the authors and do not necessar-
ily represent the official position of the U.S. Department of
Homeland Security).

6. REFERENCES
[1] R.W. Buccigrossi and E.P. Simoncelli. Image compression via

joint statistical characterization in the wavelet domain. IEEE
Transactions on Image Processing, 8(12):1688–1701, 1999.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
www.csie.ntu.edu.tw/~cjlin/libsvm.

[3] J. Luo and M. Boutell. A probabilistic approach to image
orientation detection via confidence-based integration of

portrait → landscape portrait → landscape

landscape → portrait landscape → portrait

Figure 4: Examples of images whose orientations
are misclassified by the landscape/portrait classifier
using image statistics features.

Figure 5: Rejected images by the landscape/portrait
classifier using image statistics features with a rejec-
tion rate of 10%.

low-level and semantic cues. In International Workshop on
Multimedia Data and Document Engineering, 2004.

[4] J. Luo, D. Crandall, A. Singhal, M. Boutell, and R. Gray.
Psychophysical study of image orientation perception. Spatial
Vision, 2003.

[5] S. Lyu and H. Farid. Detecting hidden messages using
higher-order statistics and support vector machines. In 5th
International Workshop on Information Hiding,
Noordwijkerhout, The Netherlands, 2002.

[6] S. Lyu and H. Farid. How realistic is photorealistic? IEEE
Transactions on Signal Processing, 53(2):845–850, 2005.

[7] J. Platt. Probabilistic outputs for support vector machines and
comparison to regularized likelihood methods. In Advances in
Neural Information Processing Systems (NIPS), 1999.

[8] E.P. Simoncelli and E.H. Adelson. Subband image coding,
chapter Subband transforms, pages 143–192. Kluwer
Academic, 1990.

[9] A. Vailaya, H. Zhang, and A. Jain. Automatic image
orientation detection. In International Conference on Image
Processing (ICIP), 1999.

[10] V. Vapnik. The nature of statistical learning theory. Spring
Verlag, 1995.

[11] L. Wang, X. Liu, L. Xia, G. Xu, and A. Bruckstein. Image
orientation detection with integrated human perception cues
(or which way is up). In International Conference on Image
Processing (ICIP), 2003.

[12] Y. Wang and H. Zhang. Content-based image orientation
detection with support vector machines. In IEEE Workshop
on Content-base Access of Image and Video Libraries
(CAIVL), 2001.

[13] L. Zhang, M. Li, and H. Zhang. Boosting image orientation
detection with indoor vs. outdoor classification. In IEEE
Workshop on Applications of Computer Vision (WACV),
2002.


