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ABSTRACT
Vignetting is the phenomenon of reduced brightness in an image at
the peripheral region compared to the central region. As patterns
of vignetting are characteristics of lens models, they can be used
to authenticate digital images for forensic analysis. In this paper,
we describe a new method for model based single image vignetting
estimation and correction. We use the statistical properties of natu-
ral images in the discrete derivative domains and formulate the vi-
gnetting estimation problem as a maximum likelihood estimation.
We further provide a simple and efficient procedure for better ini-
tialization of the numerical optimization. Empirical evaluations of
the proposed method using synthesized and real vignetted images
show significant gain in both performance and running efficiency
in correcting vignetting from digital images, and the estimated vi-
gnetting functions are shown to be effective in classifying different
lens models.

Categories and Subject Descriptors
I.4 [Image Processing]: Miscellaneous

General Terms
Algorithms

Keywords
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1. INTRODUCTION
When taking a photograph using a camera, the volume of light

transmitted to the image sensor tends to decrease from the cen-
ter of the image to the corners, a phenomenon commonly known
as vignetting [26]. The reduction of light due to vignetting is at
its worst when lenses are focused at infinity with a large field of
view. Because vignetting is the result of the physics of light and
geometric shape of the lenses, it cannot be completely eliminated.
Indeed, small amount of vignetting is usually purposefully incorpo-
rated in the lens design to improve other attributes such as contrast
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and sharpness. Artificial vignetting effects are also intentionally
added to an image, by burning the outer edges of the photograph
for film stock or using digital imaging techniques such as the Lens
Correction filter in Photoshop, to draw attention to the central sub-
ject in the image. As different lenses have slightly different vi-
gnetting patterns, it is possible to identify lenses using the specific
way they cause vignetting. Such can provide useful information in
deciding the authenticity of an image for forensic analysis [7]. On
the other hand, with an estimated vignetting pattern, we can remove
vignetting effects from images where the attenuation of brightness
is undesirable, or accurate intensity values are needed.

In this work, we describe a new method to estimate vignetting
function, which approximates the light attenuation pattern of a lens,
from a single vignetted image. Our basic methodology is that,
based on a parametric vignetting function, we aim to factorize the
intensities of a vignetted image into the product the intensities of
the original image and the vignetting function. When using only
one observed vignetted image, this is an ill-posed problem, as many
different combinations of image intensities and vignetting func-
tions can produce the same observed vignetted image. To obtain a
feasible solution, following a general methodology widely adopted
recently in solving many ill-posed low level computer vision prob-
lems [20, 1, 27, 9], we take advantage of some regular statistical
properties of natural photographic images with no vignetting ef-
fects in the derivative domain, and formulate the estimation of the
vignetting function as maximum likelihood optimization. Further,
as the initial values of parameters are critical for the performance
and efficiency of the nonlinear optimization, we develop a simpler
and more efficient vignetting estimation method based on a Gaus-
sian approximation to the parametric vignetting model, whose re-
sults are used to initialize the nonlinear optimization procedure.

In comparison with several recent works of single image vi-
gnetting correction [34, 35], the method we propose has two impor-
tant advantages. First, unlike previous methods, our method does
not require the vignetting function to be centered at the image cen-
ter – it estimates the vignetting center from the vignetted image as
part of the procedure. Because of this, our method can be applied
when the vignetted image is cropped off-center. Further, previous
works typically assume circular shaped vignetting functions. How-
ever, it is known that for wide-angle lenses with large aperture, the
vignetting contour is not circular but elliptical [19]. In contrast, our
method is able to estimate elliptical shaped vignetting functions.
Using the estimated vignetting function from a vignetted image,
we study the effectiveness of vignetting patterns in identifying lens
models for digital forensics. We also demonstrate the performance
of the estimated vignetting function in correcting the intensities of
a vignetted image.



2. RELATED WORK
Vignetting is usually modeled as the multiplication of the image

intensities with a spatially varying vignetting function. Correcting
the vignetting effect is easy if the vignetting function is known or
can be calculated from lens parameters. For high-end digital cam-
eras, such lens parameters can be stored in the digital processors
for known lens types, and used to correct vignetting at the time
when an image is captured, an example of such function is the Pe-
ripheral Illumination Correction in the recent Cannon EOS series
cameras. Another simple approach to obtain lens vignetting pattern
is by calibration using an image of uniform brightness [29, 2, 17,
33]. On the other hand, if the camera is not at one’s disposal, the
vignetting function can be estimated using a sequence of images of
a static scene captured with the same camera/lens combination [11,
15, 21].

Perhaps the most challenging case of estimating vignetting func-
tion is when we only have a single vignetted image and no specific
information about the source camera/lens. The first method for
single image vignetting correction was [34], where the vignetted
image is segmented into texture and non-texture regions, and the
vignetting function is estimated from the non-texture regions with
distinct structures using a robust outlier exclusion procedure. How-
ever, the segmentation step in this method is relatively slow, and
can introduce errors that significantly affect the final vignetting
correction. An improved method was described in [35] based on
the empirically observed symmetry in the distributions of radial
derivatives, which are differential operations along the radial axis
originating from the image center. As no segmentation is required,
this method achieves improvement in both performance and run-
ning time. However, in practice, the estimation of radial deriva-
tives is numerically instable, which can lead to a large bias to the
estimated vignetting function. More important, both methods are
limited in two aspects. First, both assume that the center of the vi-
gnetting function is known and coincides with the geometric center
of the vignetted image. Second, both rely on the assumption that
the shape of the vignetting function is circular. These limitations
constrain the applicability of these methods to the more general sit-
uations such as the vignetted image has been cropped off-center, or
the vignetting pattern involved does not have a circular shape.

Using general camera/lens characteristics for the authentication
of digital images in forensic analysis has recently received a lot of
attention, notable examples include image sensor noise [6], interpo-
lation patterns in color filter arrays [25], lens chromatic aberrations
[16], intrinsic fingerprints [18, 31], and camera response functions
[12], and an extensive evaluation for some general image features
for camera model identification in [10]. Since vignetting pattern is
a specific characteristic for different camera/lens, it is possible to
employ an estimated vignetting function as a basis for camera/lens
identification and image authentication. To our best knowledge,
however, there has not been any previous systematic study of such
an approach.

3. VIGNETTING ESTIMATION
In this section, we describe in detail our method to estimate vi-

gnetting function from a single image. To simplify the subsequent
discussion, let us assume that the origin of the coordinate system
for v = (x, y)T is at the geometric center of the image. According
to the general observation of vignetting effect [26], the intensity at
a pixel location v = (x, y)T in a vignetted image, Iv(x, y), can be
closely approximated as the product of the intensity of the original
image, I(x, y), and a parametric vignetting function φ(v; θ), as:

Iv(v) = I(v)φ(v; θ), (1)

where we use θ to represent all parameters of the vignetting func-
tion. In this work, we adopt a generalization of the Kang-Weiss
vignetting model [17] for φ(v; θ), which allows for a center differ-
ing from the geometric center of the original image, and elliptical
contours for the vignetting function. Specifically, the vignetting
function model we use is

φ(v; θ) = A(v; c, P )G(v; {αi}ki=1). (2)

A(v; c, P ) is the illumination factor and is defined as

A(v; c, P ) =
1(

1 +
(
r
2

)2)2 ,

where

c =

(
c1
c2

)
, P =

(
p1 p2

p2 p3

)
,

are the center and the shape matrix of the vignetting function, re-
spectively, and

r =
√

(v − c)TP (v − c),

is the Mahalanobis distance of v to the center c. Unlike the original
Kang-Weiss model, in our generalization, the effective focal length
f of the vignetting function is implicit in the shape matrix P : for a
circular vignetting function, one has p1 = p3 = 1/f2 and p2 = 0.
G(v; {αi}ki=1) is the geometric factor of the vignetting function
and we use a polynomial of r as in [35]:

G(v; {αi}ki=1) = 1−
k∑
i=1

αir
i.

We fix the degree of the polynomial to k = 7. For conciseness, we
will use A(v) and G(v) instead to denote these functions subse-
quently. Correspondingly, our goal in this work is to obtain param-
eters in the vignetting function, θ, and recover the intensities of the
original image I(v), using a single observed vignetted image Iv . It
is more advantageous to take logarithm on both sides of Eq.(1) to
obtain a linear equation, as:

iv(v) = i(v) + logA(v) + logG(v), (3)

where i(v) and iv(v) denote log I(v) and log Iv(v), respectively.
Then, with an input iv(v), we aim to split it into the sum of three
terms i(v), logA(v) and logG(v). As can be easily seen, there
exist many different combinations of i(v), logA(v) and logG(v)
whose sum is iv(v), and thus the problem is intrinsically ill-posed.
However, this can be alleviated by searching i(v) that are consis-
tent with those of natural photographic images without significant
vignetting effects. Such consistency is evaluated in the discrete
derivative domains as described in the following.

3.1 Discrete Derivative Operators
We use Dr

∆ to denote discrete derivative operators used in this
work, where superscript t ∈ {x, y, xx, xy, yy} corresponds to the
type of derivatives (e.g.,Dx

∆ is the first order horizontal derivative),
and ∆ is the step size in computing such derivatives. Specifically,
these operators are defined, as:

Dx
∆I(x, y) = I(x+ ∆, y)− I(x, y),

Dy
∆I(x, y) = I(x, y + ∆)− I(x, y),

Dxx
∆ I(x, y) = I(x+ ∆, y) + I(x−∆, y)− 2I(x, y),

Dyy
∆ I(x, y) = I(x, y + ∆) + I(x, y −∆)− 2I(x, y),

Dxy
∆ I(x, y) = I(x+ ∆, y + ∆)− I(x, y + ∆)

− I(x+ ∆, y)− I(x, y).



Note that when applied to an image, these discrete derivative op-
erators can be efficiently implemented as convolution of the im-
age with appropriate filters1. Conceptually, the discrete differential
operators, after normalizing with the step size, implement the cor-
responding continuous differential operators on the discrete pixel
lattice. For instance 1

∆
Dx

∆ corresponds to ∂
∂x

, and 1
∆2D

xx
∆ corre-

sponds to ∂2

∂x2 .
We then apply the five discrete derivative operators to both sides

of Eq.(3), which yields

Dr
∆iv(v) = Dr

∆i(v) +Dr
∆ logA(v) +Dr

∆ logG(v). (4)

Note that Eq.(4) holds for each pixel location v. The spatially vary-
ing logA(v) and logG(v) make the relation between Dr

∆iv(v)
and Dr

∆i(v) inhomogeneous, the farther v is away from the vi-
gnetting center c, the larger the shift given by Dr

∆ logA(v) +
Dr

∆ logG(v). This spatial inhomogeneity makes direct estimation
of the parameters difficult, and is solved by taking average both
sides of Eq.(4) over all pixel locations v. Specifically, this leads to
a new relation that holds for each individual vignetted image Iv , as:

Dr
∆i(v) = Dr

∆iv(v)−Dr
∆ logA(v)−Dr

∆ logG(v), (5)

where the bars denote the averaging operation over all v in the im-
age plane. Eq.(5) shows that in the discrete derivative domains, the
spatially averaged response of the original image, Dr

∆iv(v), can
be obtained from that of the observed vignetted image Dr

∆i(v), by
adjusting with a value, Dr

∆ logA(v) +Dr
∆ logG(v), that is com-

pletely determined by the vignetting function. Term Dr
∆i(v) is

not directly accessible as it reflects properties of the original image
without vignetting. But we can seek vignetting function parame-
ters θ that make Dr

∆iv(v)−Dr
∆ logA(v)−Dr

∆ logG(v) consis-
tent with Dr

∆i(v) for natural images. The essential component for
this method is then the common and regular statistical properties of
Dr

∆i(v), which are discussed in the following.

3.2 Natural Image Statistics in the Derivative
Domains

Images resembling scenes from the physical world are loosely
tagged as natural images, and are known to occupy only a small
fraction of all possible images [28]. More importantly, natural im-
ages have regular statistical properties that distinguish them from
random images [14]. Over the past two decades, many regular sta-
tistical properties of natural images have been observed. One par-
ticular stable observation is that natural images tend to have heavy
tailed non-Gaussian marginal distributions in the general band-pass
domains [4]. Furthermore, these marginal densities can be well fit
with the generalized Laplacian density (sometimes also known as
the generalized Gaussian density) [23, 30, 13], defined as

p(x) =
p

2γΓ(1/β)
exp

(
− |x/γ|β

)
,

with γ and β being the model parameters and Γ(·) being the stan-
dard Gamma function. The non-Gaussian characteristics and close
approximation with the generalized Laplacians of the marginals
are robust to point-wise nonlinear transforms of pixel intensities
such as the logarithm [28] and specific choices of the band-pass
domains, of which the derivative domains used in this paper are
special cases [3].

However, to tackle the vignetting estimation problem in Eq.(5),
we need to investigate the statistical properties of the spatial aver-
1Though more elaborated filters such as those in [8] can be employed, we
found the results are quite independent of the choice of filters.
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Figure 1: Log marginal histograms (green solid curves) for dif-
ferent Dt

∆i(v) and ∆ obtained with randomly chosen blocks
from the van Hateren database Red and black dashed curves
in each plot correspond to Gaussian densities of the same mean
and variance and the optimally fitted generalized Laplacian
densities, respectively.

ages of the derivative domain responses of natural images,Dt
∆i(v),

instead of the responses (Dt
∆i(v)) themselves. To our knowledge,

there has no previous systematic study of this aspect of natural im-
age statistics. For an empirical evaluation, we collect 20, 000 ran-
domly chosen pixel blocks of size 200×200 from images in the Van
Hateren image database [32]. These grayscale images are obtained
from calibrated cameras with no obvious vignetting effects and lin-
earized intensities. We first log transform the pixel intensity, then
apply the discrete derivative operators to the log pixel intensities
of each image block. We then collect the mean discrete deriva-
tive domain response for each of the 20, 000 blocks and obtain
their histograms. These histograms are shown in the log domain
in Fig.1 (green solid curves) for different Dt

∆i(v) and ∆ values
(columns). For the sake of comparison, Gaussian densities with the
same means and variances are shown as red dashed curves. Also
shown as black dashed curves in each plot are the optimal fitting
(using the method of moment matching [30]) of the generalized
Laplacian density to these histograms.

From this experiment, we note that the histograms of the mean
responses of natural images in the discrete derivative domain, sim-
ilar to those of the raw derivative domain responses, have means
close to zero and show strong non-Gaussian characteristics. Fur-
thermore, they can also be well approximated with generalized



Laplacian models. However, the statistics of the mean responses
are different from the statistics of the raw responses in several im-
portant aspects. Especially, our experimental results show that the
variance and kurtosis of the mean responses tend to be significantly
smaller than those obtained over the raw responses. Such decrease
in variance and kurtosis are results of taking average of random
variables of finite variances, which tend to reduce the variance,
and the resulting density of such averages tends to be more sim-
ilar to Gaussian (thus with reduced kurtosis) than the original vari-
ables. However, the histograms in Fig.1 do not become more alike
to Gaussians as would be predicted with the central limit theorem
[5], because there are strong statistical dependencies in the deriva-
tive domain responses, for which the central limit theorem does not
strictly apply [22].

3.3 Maximum Likelihood Estimation of the
Vignetting Function

As shown in previous section, we can model the marginal densi-
ties of the spatially averaged responses of original natural images in
the discrete derivative domains with regards to different derivative
types and step sizes with generalized Laplacian densities, as:

pr,∆(x) ∝ exp
(
− |x/γr,∆|βr,∆

)
,

with parameters βr,∆ and γr,∆ estimated from the Van Hateren
image database as described in Section 3.2 for each r and ∆. We
can reformulate the estimation of vignetting function parameter as
to maximize the joint (log) likelihood of Dr

∆i(v) with regards to
different r and ∆. Dropping irrelevant constants, this is equivalent
to:

min
θ

∑
r,∆

(
Dr

∆iv(v)−Dr
∆ logA(v)−Dr

∆ logG(v)

γr,∆

)βr,∆
,

(6)

with a constraint ensuring the shape matrix P to be positive def-
inite, i.e., p1p3 > p2

2. Note that in the above objective function,
Dr

∆iv(v), Dr
∆ logA(v) and Dr

∆ logG(v) are all computed from
observed vignetted image and the parametric vignetting function
for a given parameter setting θ. The optimization is implemented
numerically with coordinate descent. In details, denote the objec-
tive function in Eq.(6) as L(c, P, {αi}ki=1), the optimization pro-
ceeds as alternating between steps that optimizes {αi}ki=1 with c
and P fixed and that optimizes c and P with {αi}ki=1 fixed. Each
of the two optimization steps is efficiently implemented with gradi-
ent based numerical methods. The overall coordinate-descent pro-
cedure thus guarantees to converge to a local minimum of Eq.(6).

3.4 Gaussian Approximation Initialization
The nonlinear objective function in Eq.(6) have many local min-

imums, where the choice of the initial parameter values plays a
critical role. In this section, we describe a simpler and more ef-
ficient method that can be used to find good initial values for the
center c and shape matrix P in the generalized Kang-Weiss model,
Eq.(2). This algorithm hinges on two observations. First, the geo-
metric factor G(v) contributes significantly less than A(v) in the
vignetting function, and second, the illumination factor A(v)can
be approximated with a Gaussian function2. To see the latter, first
note that we have

logA(v) = log
1(

1 +
(
r
2

)2)2 = −2 log

(
1 +

( r
2

)2
)
.

2In statistics, this corresponds to the fact that the Gaussian density is a good
approximation to the Student’s t-density with a large degree of freedom [5].

Next, using the Taylor expansion of log function, log(1 + x) =
x+O(x2) for x ≥ 0, we have

−2 log

(
1 +

( r
2

)2
)

= −r
2

2
+O

(( r
2

)4
)
.

For typical vignetting, the effective focal length is large, and we
have 0 < r � 1. We can then drop the higher order terms, expo-
nentiating both sides yields in the above equation to obtain

A(v) ≈ exp(−r2/2),

of which the latter is the Gaussian function for r.
With the Gaussian approximation and dropping the geometric

term, Eq.(3) can be simplified into:

iv(v) = i(v)− 1

2
(v − c)TP (v − c). (7)

From Eq.(7), we devise an algorithm to estimate c and P . For
simplicity, we use continuous derivative operators to illustrate the
general idea first, and then switch to discrete derivative operators
to describe the actual implementation.

Taking partial derivatives to both sides of Eq.(7) with regards to
x and y, we have

∂iv(v)

∂x
=

∂i(v)

∂x
− p1(x− c1)− p2(y − c2), (8)

∂iv(v)

∂y
=

∂i(v)

∂y
− p3(y − c2)− p2(x− c1). (9)

Further taking partial derivatives with regards to x and y to Eq.(8)
and (9), we can obtain

∂2iv(v)

∂x2
=

∂2i(v)

∂x2
− p1, (10)

∂2iv(v)

∂y2
=

∂2i(v)

∂y2
− p3, (11)

∂2iv(v)

∂x∂y
=

∂2i(v)

∂x∂y
− p2. (12)

Next, as discussed in Section 3.1, we compute the spatial average
over all pixel locations v to both sides in Eq.(10)-(12), which yields

∂2iv(v)

∂x2
=

∂2i(v)

∂x2
− p1

∂2iv(v)

∂y2
=

∂2i(v)

∂y2
− p3

∂2iv(v)

∂x∂y
=

∂2i(v)

∂x∂y
− p2

As in the general case in Section 3.1, the spatial average gets rid
of the dependency to individual pixel locations. These equations
show that the elements of the shape matrix are computed as the
difference between the spatial averages of second order derivatives
of the vignetted image and those of the original image.

Following the general solution given in Section 3.3, we can use

the generalized Laplacian models for ∂
2i(v)

∂x2 , ∂
2i(v)

∂y2 and ∂2i(v)
∂x∂y

to
find optimal solutions of p1, p2 and p3. On the other hand, as
observed empirically (see Fig.1), for natural images with no vi-
gnetting effects, the means of the spatial averages of the derivative
domain responses tends to be close to zero. This implies an even
simpler and more efficient algorithm. Especially, (p1, p2, p3) are
directly estimated as

p1 ≈ −
∂2iv(v)

∂x2
,
p2 ≈ −

∂2iv(v)

∂x∂y ,

p3 ≈ −
∂2iv(v)

∂y2
.

(13)



With P obtained using Eq.(13), we can estimate the center of the
vignetting function, c, in a similar fashion. First, we compute the
average over all pixel locations v of the first order partial deriva-
tives given in Eq.(8) and (9). Because we set the origin of the co-
ordinate system for v = (x, y)T at the geometric center of the
image, which implies that

∑
x x = 0 and

∑
y y = 0, Eq.(8) and

(9) become:

∂iv(v)

∂x
=

∂i(v)

∂x
+ p1c1 + p2c2, (14)

∂iv(v)

∂y
=

∂i(v)

∂y
+ p2c1 + p3c2. (15)

Similarly, assuming the spatial averages of the first order deriva-
tives are close to zero, c1 and c2 are then directly obtained by solv-
ing the following simple linear equation:

(
p1 p2

p2 p3

)(
c1
c2

)
=

 ∂iv(v)
∂x

∂iv(v)
∂y

 . (16)

3.5 Using Multiple Step Sizes
Eq.(13) and (16) provide simple steps to estimate P and c using

continuous derivative operators. To implement these procedures for
discrete pixel lattice, we can simply replace the continuous deriva-
tive operators with the corresponding discrete derivative operators.
However, if we use the discrete derivative operators corresponding
to one step size, the estimation is usually subject to strong statistical
fluctuations and becomes much less accurate. Here, we describe a
more robust estimation method using discrete derivative operators
of multiple step sizes, which are defined in Section 3.1.

We start with the estimation of P . Approximating continuous
derivative operators with the corresponding normalized discrete deriva-
tive operators of step size ∆ in Eq.(13) leads to a quadratic depen-
dence between ∆ and Dt

∆iv(v) as:

Dxx
∆ iv(v) ≈ −p1∆2,

Dxy
∆ iv(v) ≈ −p2∆2,

Dyy
∆ iv(v) ≈ −p3∆2.

In Fig.2, we illustrate such quadratic dependency observed on a
synthetic vignetted image, whose vignetting effect are synthetically
added using the generalized Kang-Weiss model (see Section 4 for
experimental details). The red circles are values for Dt

∆iv(v) cor-
responding to ∆ = 1, · · · , 25, and the black dashed curves cor-
respond to pi∆2 for i = 1, 2, 3. Note the strong consistency be-
tween the estimated averaged derivative domain responses and the
quadratic function of ∆ obtained with the true values for (p1, p2, p3).

One approach to combine estimations (p1, p2, p3) based on deriva-
tive operators of different step sizes is to use a weighted least squares
minimization, whose objective functions are given as:

p?1 = argmin
p1

∑
∆

wxx∆

[
Dxx

∆ iv(v) + p1∆2
]2
,

p?2 = argmin
p2

∑
∆

wxy∆

[
Dxy

∆ iv(v) + p2∆2
]2
,

p?3 = argmin
p3

∑
∆

wyy∆

[
Dyy

∆ iv(v) + p3∆2
]2
,

where weights wxx∆ , wxy∆ and wyy∆ are the inverse standard devia-
tions of Dxx

∆ i(v), Dxy
∆ i(v) and Dyy

∆ i(v), respectively, estimated
from the set of natural images as described in Section 3.2. These

xx xy yy

∆ ∆ ∆

Figure 2: Illustration of the quadratic dependency between ∆ and
Dt

∆iv(v) for t ∈ {xx, xy, yy}. Red circles are values for Dt
∆iv(v)

corresponding to ∆ = 1, · · · , 25 estimated from a synthesized vi-
gnetted image of different ∆. Black dashed curves correspond to pi∆

2,
and blue solid curves correspond to p?i∆2, i = 1, 2, 3. See text for more
details.

weighted least squares estimations afford close-form solutions as:

p?1 = −
∑

∆ w
xx
∆ Dxx

∆ iv(v)∆2∑
∆ w

xx
∆ ∆4

, (17)

p?2 = −
∑

∆ w
xy
∆ Dxy

∆ iv(v)∆2∑
∆ w

xy
∆ ∆4

, (18)

p?3 = −
∑

∆ w
yy
∆ Dyy

∆ iv(v)∆2∑
∆ w

yy
∆ ∆4

. (19)

Once solution of p1, p2, p3 are found, we plug it into Eq.(16), and
replace the righthand side with an average over the step size:(

p?1 p?2
p?2 p?3

)(
c1
c2

)
=

(
1
∆

∑
∆ D

x
∆iv(v)

1
∆

∑
∆ D

y
∆iv(v)

)
. (20)

The center of the vignetting function, c, is then the solution to this
simple 2D linear equation.

In summary, Eq.(17)-(19) and (20) provide efficient estimations
of the shape matrix and the center of the vignetting function. In
practice, we observed that the estimation of P using Eq.(17)-(19) is
reasonably accurate, but the estimated c using Eq.(20) has a higher
variance. This may be attributed to that numerically, the weighted
least squares estimation for P is more robust, but the matrix inver-
sion in Eq.(20) is less stable.

4. EXPERIMENTS
In this section, we evaluate the performance and running effi-

ciency of our single image vignetting estimation method in reduc-
ing vignetting effects and identifying source camera/lens combina-
tion.

4.1 Synthetic Vignetted Images
In the first set of experiments, we select 20 RGB JPEG im-

ages of 320 × 480 pixels from the Berkeley image segmentation
database [24] that do not have obvious vignetting effects. We apply
synthesized vignetting function to these images, and then use the
method described in this work to recover the vignetting functions
and the original image. As in this case, we have ground truth for
both the vignetting functions and the original images, these exper-
iments give us a chance to quantitatively evaluate the performance
and running efficiency of the proposed method.

The synthesized vignetting functions are created using the gen-
eralized Kang-Weiss model, Eq.(3) with three different settings for
the centers and shape matrices as shown in Table 1. Coordinates



Figure 3: Examples of restoring synthetic vignetted images. Left: vignetted image. Middle: restored image. Right: the estimated centers and shape
matrices using their characteristic ellipses. Legend: blue (true vignetting function), black (estimation with Gaussian approximation), red (estimation
with maximum likelihood and Gaussian approximation initialization). This figure is better viewed in color.

for the centers are relative to the origin of the coordinate system at
the image center. The effective focal length in these cases is 100
pixels, which leads to very strong vignetting for the image sizes
used in our experiments as shown in Fig.3. We use the same set of
(α1, · · · , α7) for the geometric component G(v), these values are
obtained from the estimation of real lens vignetting functions.

center shape matrix

setting 1 c1 =

(
0
0

)
P1 = 1

104

(
1 0
0 1

)
setting 2 c2 =

(
−80
−60

)
P2 = 1

104

(
1 0.5

0.5 1.5

)
setting 3 c3 =

(
0
−130

)
P3 = 1

104

(
1 0.6

0.6 1

)
Table 1: Three different settings for the illumination factor part
of the generalized Kang-Weiss vignetting model used in our ex-
periments.

We apply these synthetic vignetting functions to the 20 test im-
ages, where the same vignetting function is applied to each RGB
color channel individually. We then compare the performance of
our algorithm with the previous single image vignetting method
described in [35]3. For our method, we use the Gaussian approx-
imation initialization to the nonlinear maximum likelihood opti-
mization as described in the previous section. For the multi-step
estimation of the center and shape matrix of the vignetting func-
tion in the Gaussian approximation, we use step sizes ∆ from 1 to
25. The nonlinear optimization of Eq.(6) is achieved with function

3Runnable code or high-resolution resulting images for [34] or [35] are not
publicly available. The reported comparison is based on our own imple-
mentation following the description in [35].

fmincon in MATLAB. The complete MATLAB code reproducing
results in this paper can be found at blindreview.

We evaluate the quantity of the images with reduced vignetting
effects using peak-signal-to-noise ratio (PSNR). The unit of PSNR
is deci-bel (dB), for which a higher value suggests better image
quality. We use relative errors to measure the quality of the esti-
mated vignetting function parameters. Specifically, for P we use

rP =
‖P ? − P‖F
‖P‖F

,

where ‖ · ‖F is the Frobenius norm. For the estimated center, c, we
evaluate accuracy with

rc =
‖c? − c‖2
‖c‖2

,

where ‖ · ‖2 is the l2 norm. For the parameters in the geometrical
factor, {αi}ki=1, we use the following error metric:

rα =

√∑k
i=1(α?i − αi)2∑k

i=1 α
2
i

.

The running time is based on an unoptimized MATLAB implemen-
tation of this algorithm on a machine with due core Intel processor
of 2.6GHz and 2GB memory. As the vignetting estimation method
in [35] cannot estimate the center and assume diagonal shape ma-
trix (circular image circle), we also include a variant of our method
where we make use of the knowledge of the center and the shape
matrix (but not the effective focal length). Note that in this case, we
do not need the Gaussian approximation for initialization. We re-
port in Table 2 the performance and running efficiency correspond-
ing to the three settings of the synthetic vignetting functions and
averaged over all 20 test images.



Vignetting function setting 1 in Table 1
PSNR rP rc rα time
(dB) (%) (%) (%) (sec)

method in [35] 28.7 N/A N/A 3.5 58.2
known c and P 28.4 N/A N/A 4.8 56.4

unknown c and P 26.8 0.7 4.1 7.4 64.5
Vignetting function setting 2 in Table 1

PSNR rP rc rα time
(dB) (%) (%) (%) (sec)

method in [35] 25.8 N/A N/A 9.2 57.9
known c and P 28.3 N/A N/A 3.2 53.3

unknown c and P 27.4 1.4 5.5 4.6 62.9
Vignetting function setting 3 in Table 1

PSNR rP rc rα time
(dB) (%) (%) (%) (sec)

method in [35] 25.9 N/A N/A 8.3 59.5
known c and P 28.1 N/A N/A 2.8 56.4

unknown c and P 26.7 1.7 6.1 3.4 64.4

Table 2: Performance and running efficiency comparison of
different experimental settings. See text for details.

As these results show, when the center and shape matrix of the
vignetting function are known, for the first vignetting function in
Table 1 where the center coincides with the image center and the
shape matrix is diagonal, our method achieves comparable perfor-
mance and running time as the method in [35]. However, when
these conditions do not hold, as for vignetting functions corre-
sponding to setting 2 and setting 3 in Table 1, the estimation ob-
tained with method in [35] becomes much inferior, as the vignetting
function does not centered at the image center, and its shape ma-
trix is not circular. On the other hand, our method can estimate the
center and shape matrix of the vignetting function along with the
geometrical parameters. This advantage comes with only marginal
increase in running time in the full algorithm and slight degradation
in the quality of the restored image.

In the next set of experiments, we test the effect of Gaussian ap-
proximation initialization (Section 3.4) to the overall performance
of vignetting estimation. Specifically, we consider the performance
under three different program settings:

• GA only: using only the Gaussian approximation, Eq.(17)-
(19) and (20), to estimate the center and the shape matrix of
the vignetting function;
• ML+rand: optimizing objective function in Eq.(6) with ran-

dom initial parameter values;
• ML+GA: optimizing object function inEq.(6) with initial shape

matrix and center obtained from the Gaussian approximation
as in GA only case.

We report the performance evaluations and running times corre-
sponding to these three cases and averaged over all three different
settings of synthetic vignetting functions in Table 3. Note that the
Gaussian approximation is the most efficient (most of the running
time actually spent on computing the derivatives with different step
sizes), and provides very precise estimation of the shape matrix
(GA only). On the other hand, when started with random initial
values, the nonlinear optimization is much less effective in terms of
both performance and convergence speed (GA + rand). Note also
that the estimation of vignetting center is relatively less accurate
with the Gaussian approximation initialization, which is compen-
sated by the subsequent nonlinear maximum likelihood estimation.

PSNR rP rc rα time
(dB) (%) (%) (%) (sec)

GA only 20.7 1.2 24.7 N/A 8.2
ML + rand 25.4 8.9 6.3 7.8 56.4
ML + GA 27.2 0.7 4.1 2.4 64.7

Table 3: Performance and running efficiency evaluation for the
Gaussian approximation step in the overall vignetting estima-
tion method.

Fig.3 shows several examples of the restored image from vi-
gnetted images with vignetting functions of the three different set-
tings, with the left column corresponding to the vignetted images,
the central column corresponding to the restored images, and the
right column being the estimated center and shape matrix of the vi-
gnetting function. To better visualize the estimated shape matrix,
we use its characteristic ellipses corresponding to the ensemble of
2D points v satisfying vTPv = 0.5. As these results show, the
Gaussian approximation provides a good estimation of P , but the
estimated center c is much less accurate. On the other hand, to-
gether with the nonlinear maximum likelihood optimization, the
overall algorithm leads to reasonably accurate estimate of the vi-
gnetting function, and vignetting effects are largely removed in the
restored images.

4.2 Real Vignetted Images
Next, we test our method on some real vignetted images. In

these cases, we do not have the original image, and the estimation is
judged by the performance of correcting vignetting effects in these
images using the estimated vignetting function. We should point
out that the real vignetting functions have less severe attenuation of
brightness, compared to the synthetic vignetted images used in the
previous set of experiments, with an effective focal length between
500 to 1000 pixels.

Our first set of real vignetted images are selected from the Berke-
ley database, each with visible vignetting effects. Fig.4 shows
the vignetted image (top row) as well as their correction with our
method (bottom). For these real vignetted images, the vignetting
effects are significantly reduced and the visual appearances are much
improved compared to the original vignetted images. However,
the restoration results are not perfect, with over-correction for im-
ages with complex texture regions (e.g., middle panel of Fig.4).
We speculate that such is the result that the parametric vignetting
model is only an approximation to the true physical vignetting pat-
tern, and complex scene structures may interfere with the nonlinear
optimization.

We also compare the vignetting reduction result using our method
with that of using Canon’s Peripheral Illumination Correction (PIC).
PIC is a new functionality provided in the most recent high-end dig-
ital cameras manufactured by Canon. The digital processor on the
camera chip stores optical characteristics of 26 Canon’s most pop-
ular stock lenses. Together with the lens parameters, including the
aperture, shutter speed, exposure and distance setting at the time
of shooting, PIC automatically computes brightness compensation
for the captured image in real time. The left image in Fig.5 shows
an image with considerable vignetting effects. This image is taken
with with a Canon EOS 5D camera with an EF 200mm 1:2.8L II
USM lens at an aperture f/8. The image is courtesy of Canon USA
Inc. For efficient processing, this image is downsampled by fac-
tor 4. And the middle one is the result with the brightness fall-
off fixed with PIC. On the right is the correction result using the
method described in this work. Our method largely remove the vi-



Figure 4: Examples from the Berkeley database with strong vignetting effects (top) and their corrections with our method (bottom).

gnetting effect, and the result is comparable with Canon’s built-in
vignetting correction function that uses settings of camera/lens in-
cluding aperture, exposure, shutter speed and focal length at the
time of capturing.

4.3 Identifying Source Lens/Camera
As described in Section 3, we test the estimated vignetting func-

tion from a single image to identify different source camera/lens
combinations. Even though our method can only provide the op-
timal fitting of the actual vignetting pattern with the generalized
Kang-Weiss model, the hope is that the parameters in the estimated
models are still sufficiently discriminative to differentiate different
camera/lens models.

We now describe our experimental settings. To reflect the variety
of cameras and lenses, we use two semi-professional digital SLR
cameras, Canon EOS 50D and Nikon D300, and two point-and-
shoot cameras, Canon PowerShot SD940 and Nikon CoolPix S640.
These cameras are chosen for comparable features (e.g., image sen-
sor sizes and shooting ranges). For the SLR cameras, we combine
them with different lenses. Specifically, for Canon EOS 50D, we
use two types of lens: Canon EF 28-135mm f/3.5-5.6 IS USM and
EF-S 18-200mm f/3.5-5.6 IS. For Nikon D300, we have one lens
type, Nikon 18-105mm f/3.5-5.6G ED VR AF-S DX Nikkor Auto-
focus lens. For simplicity, we will denote hereafter the two Canon
lenses as C1 and C2, and the Nikon lens as N1 in the subsequent
text.

We take 200 outdoor images using each of these camera/lens
combinations. For the SLR cameras, with each type of lenses, the
images are taken with maximum focal length, and with two dif-
ferent aperture settings, f/4 and f/8. The images are taken with
the cameras automatically choosing shutter speed (aperture prior-
ity mode). The vignetting compensation mechanism, if applicable,
is turned off, so we can analyze the effect of our algorithm. The two
point-and-shoot cameras have built-in lenses, and we are not able to
directly control the aperture or the focal length. In these cases, we
try to focus the camera to an object as far away as possible, and let
the cameras to choose automatically for the aperture, exposure and
shutter speed. All images are in lossless JPEG format. To simplify
the computation, we convert all color images into grayscale using

standard luminance transform. This experimental setting results in
a total of 1600 images.

We then run the described vignetting estimation method to each
of these 1600 images. From each of the estimated vignetting func-
tions, we construct a 10 dimensional feature vector consisting of
(p1, p2, p3, α1, · · · , α7), i.e., the components in the shape matrix
and the parameters of the geometric factors in the Kang-Weiss vi-
gnetting model. We then separate the 1600 feature vectors into two
sets, each with 800 feature vectors corresponding to an equal seg-
mentation of images of each specific camera/lens combination. We
use one set of 800 vignetting feature vectors as training data to con-
struct a nearest neighbor classifier, and test the obtained classifier
on the remaining 800 feature vectors. The top table in Fig.6 shows
the confusing matrix on the classification of the testing 800 feature
vectors. It suggests that these features are adequate for differenti-
ating the source camera/lens combinations of the test images, with
the best performance achieved with the SLR cameras. On the other
hand, the performance on the point-and-shoot cameras are limited
due to the lack of control over the lens parameters, especially the
changes in the effective focal lengths. Note also that these features
are particular effective distinguishing lenses of different manufac-
tures (in this case, Canon and Nikon), as relatively smaller classifi-
cation errors exist for different models.

We also investigate the relative effects of the two types of fea-
tures in the feature vector, especially, the classification performance
with only parameters from the geometrical factors. Shown in the
bottom of Fig.6 is the confusion matrix for the same testing set,
but the nearest neighbor classifier is constructed with only the 7
parameters in the geometrical components, i.e., (α1, · · · , α7). As
the effective focal length (the shape matrix) is discounted, classi-
fication errors among same camera/lens combination but with dif-
ferent apertures become worse. On the other hand, classification
errors on the point-and-shoot cameras seem to be effectively im-
proved. These are all due to the fact that the reduced feature set
uses only geometrical characteristics of the lenses to distinguish
different camera/lens combinations.

5. CONCLUSION
In this work, we have presented a new single image vignetting es-



Figure 5: Vignetting correction results for images with physical vignetting. Left: a vignetted image captured with a Canon EOS 50D camera.
(Courtesy of Canon USA, Inc.) Middle: image with vignetting corrected using Canon’s Peripheral Illumination Correction tool. Right: vignetting
corrected with our method.

Canon C1 f/4 Canon C1 f/8 Canon C2 f/4 Canon C2 f/8 Canon PS Nikon N1 f/4 Nikon N1 f/8 Nikon CP
Canon C1 f/4 61 17 12 1 4 3 1 1
Canon C1 f/8 19 55 6 9 11 0 0 0
Canon C2 f/4 12 7 58 10 12 1 0 0
Canon C2 f/8 7 14 11 63 4 0 1 0
Canon PS 2 13 12 9 43 7 6 5
Nikon N1 f/4 0 0 1 0 1 59 24 15
Nikon N1 f/8 0 1 0 3 1 13 70 12
Nikon CP 1 1 1 0 12 21 18 46

Canon C1 f/4 Canon C1 f/8 Canon C2 f/4 Canon C2 f/8 Canon PS Nikon N1 f/4 Nikon N1 f/8 Nikon CP
Canon C1 f/4 43 38 4 3 7 2 1 2
Canon C1 f/8 32 37 12 9 9 0 1 0
Canon C2 f/4 11 7 39 33 5 1 2 2
Canon C2 f/8 8 10 28 42 11 0 0 1

Canon PS 5 7 8 9 67 2 1 1
Nikon N1 f/4 2 1 2 2 3 45 36 9
Nikon N1 f/8 3 13 4 2 3 29 42 4

Nikon CP 0 0 1 3 2 9 11 74

Figure 6: Confusion matrices (in percentage) for the classification of the 8 camera/lens combinations using nearest neighbor classifier
and features from the estimated vignetting functions using our method. (Top) Confusion matrix using the full 10 dimensional feature
vector. (Bottom) Confusion matrix using only 7 parameters from the geometric components of the Kang-Weiss model. See text for
more details.

timation method, and show its effectiveness to identify camera/lens
combination of an image. Our method is based on a parametric
model of the vignetting function and regular statistical properties
of natural images. We start by log transforming the vignetted im-
age and then working in the discrete derivative domains. Based
on properties of the mean discrete derivative responses of natural
images with no vignetting effect, we reformulate vignetting correc-
tion as maximum likelihood estimation of the vignetting function
parameters. We further describe a simple and efficient method that
uses a Gaussian approximation to the vignetting function to pro-
vide good initial values for the nonlinear maximum likelihood es-
timation. Compared to previous single image vignetting correction
methods [34, 35], our method does not require image segmentation
or the vignetting function to be centered at the image center, and
it also works when the vignetting function has an elliptical shape.
Empirical evaluations of the proposed method using synthesized
and real vignetted images show significant gain in both perfor-
mance and running efficiency. Further, in digital image forensics,
optical characteristics of a lens can be used for its identification. As
the vignetting function are specific for different lenses, our prelim-
inary evaluations show that the estimated vignetting functions can
be used to identify stock lenses.

There are several directions we would like to further pursue based

on our current work. First, we are currently working on to fur-
ther quantify the performance of the vignetting function features in
identifying camera/lenss using a much larger and comprehensive
databases, and including more different camera/lens models. Also,
we are interested in combining the features described in this work
with other lens (e.g., chromatic aberrations [16]) and camera fea-
tures (e.g., [6, 12, 18]) for more reliable authentication of digital
images.
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