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Efficient coding transforms that reduce or remove statistical dependencies
in natural sensory signals are important for both biology and engineer-
ing. In recent years, divisive normalization (DN) has been advocated as
a simple and effective nonlinear efficient coding transform. In this work,
we first elaborate on the theoretical justification for DN as an efficient
coding transform. Specifically, we use the multivariate t model to rep-
resent several important statistical properties of natural sensory signals
and show that DN approximates the optimal transforms that eliminate
statistical dependencies in the multivariate t model. Second, we show
that several forms of DN used in the literature are equivalent in their
effects as efficient coding transforms. Third, we provide a quantitative
evaluation of the overall dependency reduction performance of DN for
both the multivariate t models and natural sensory signals. Finally, we
find that statistical dependencies in the multivariate t model and natu-
ral sensory signals are increased by the DN transform with low-input
dimensions. This implies that for DN to be an effective efficient coding
transform, it has to pool over a sufficiently large number of inputs.

1 Introduction

A central principle in the study of biological sensory systems is that they
are adapted to match the statistical properties of the sensory signals in the
natural environments to which they are exposed (Attneave, 1954). The effi-
cient coding hypothesis (Barlow, 1961; Atick, 1992) further suggests that a
sensory system might be understood as a transform that reduces redundan-
cies in the input stimuli. Such efficient coding transforms are of importance
in both biology and engineering: the reduced redundancies in the neural re-
sponses facilitate efficient representations of sensory input for ecologically
relevant tasks such as novelty detection and associative learning (Barlow,
2001). In addition, with the reduced dependencies, sensory signals can be
more efficiently stored, transmitted, and processed.

Starting with the use of second-order decorrelation methods in explain-
ing functional roles of photoreceptors and retinal ganglion cells (Atick &
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Figure 1: A schematic illustration and the definition of the DN transform.

Redlich, 1992; Atick, Li, & Redlich, 1992; Ruderman, Cronin, & Chiao, 1998),
studies in linear efficient coding transforms for natural sensory signals have
led to fruitful developments that culminate in the independent component
analysis (ICA) methodology (Olshausen & Field, 1996; van der Schaaf & van
Hateren, 1996; Bell & Sejnowski, 1997; Lewicki, 2002). These efforts were
widely lauded as a confirmation of the efficient coding hypothesis in the
study of biological perception, as the obtained ICA basis functions closely
resemble the receptive fields of neurons in various cortex areas. In spite of
these successes, early studies suggested that linear transforms may not be
optimal for reducing dependencies in natural sensory signals (Zetzsche &
Barth, 1990; Baddeley, 1996; Zetzsche & Krieger, 1999), which were further
confirmed with observations of strong residual statistical dependencies af-
ter ICA-like linear transforms (Wegmann & Zetzsche, 1990; Simoncelli &
Buccigrossi, 1997) and quantitative evaluations that ICA achieves only a
marginal improvement over principal component analysis (PCA) in reduc-
ing statistical dependencies in natural images (Bethge, 2006). Indeed, there
are statistical dependencies in natural sensory signals that linear transforms
cannot reduce (Lyu & Simoncelli, 2009b; Eichhorn, Sinz, & Bethge, 2009).
This motivates the search for effective nonlinear efficient coding transforms
for natural sensory signals.

Divisive normalization (DN) is a simple nonlinear efficient coding trans-
form that recently has been widely studied (Schwartz & Simoncelli, 2001a;
Valerio & Navarro, 2003a, 2003b; Malo & Laparra, 2010; Lyu, 2010). The
standard form of DN transform we adopt in this work is illustrated schemat-
ically in Figure 1. Here, x = (x1, . . . , xd )′ is a vector describing the responses
of input stimuli projected onto a set of front-end linear basis functions.
These linear basis functions remove first- and second-order local statisti-
cal dependencies and whiten the inputs so that they all have the same
weights when squared and pooled with a semisaturation constant α. The
square root of the pooling is divided from the response of each individ-
ual linear basis function to obtain the final output of the DN transform,
u = (u1, · · · , ud )′.
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In this work, we first elaborate on the theoretical justification of DN as
an efficient coding transform. Specifically, we use the multivariate t model
to represent several important statistical properties of natural sensory sig-
nals and show that DN approximates the optimal transforms that eliminate
statistical dependencies in the multivariate t model. Second, using the multi-
information as a quantitative measure of statistical dependency, we show
that several different forms of DN are equivalent in terms of dependency
reduction. Third, we provide a quantitative evaluation of the overall de-
pendency reduction performance of DN for both the multivariate t models
and natural sensory signals. Finally, we find that statistical dependencies in
the multivariate t model and natural sensory signals are increased by the
DN transform with low input dimensions. This implies that for DN to be
an effective and efficient coding transform, it has to pool over a sufficiently
large number of inputs.

The rest of this article is organized as follows. After reviewing relevant
previous works in section 2, we describe in section 3 some basic statistical
properties of natural sensory signals and demonstrate how these properties
can be captured with the multivariate t model. In section 4, we show that
DN transform approximates the optimal efficient coding transforms for the
multivariate t model. Sections 5 and 6 report the experimental evaluation of
the effectiveness of the DN transform as an efficient coding transform for the
multivariate t models and natural sensory signal data. Section 7 concludes
with discussion and future work. To make the description continuous, we
defer all formal proofs to the appendixes. (A preliminary version of this
work has been presented in Lyu, 2010.)

2 Related Work

In biology, DN is a popular model for many nonlinear behaviors of neural
responses that cannot be well described with the classical linear-nonlinear
Poisson model (Chichilnisky, 2001; Pillow & Simoncelli, 2006). Such non-
linearities can be found in the auditory (Schwartz & Simoncelli, 2001b)
and the olfactory pathways (Olsen, Bhandawat, & Wilson, 2010), as well
as various stages of the visual pathway, including the retina (Shapley &
Enroth-Cugell, 1984; Solomon, Lee, & Sun, 2006), the lateral geniculate nu-
cleus (Mante, Bonin, & Carandini, 2008), the primary visual cortex (Heeger,
1992; Rust, Schwartz, Movshon, & Simoncelli, 2005), and other extrastriate
cortex, such as area MT (Simoncelli & Heeger, 1998) and area IT (Zoccolan,
Cox, & DiCarlo, 2005). In low-level visual perception, DN has been related
to various functional roles, including dynamic gain control (Shapley &
Enroth-Cugell, 1984), decoding activities of neuronal populations (Deneve,
Pouget, & Latham, 1999; Ringach, 2010), neural adaptation (Wainwright,
Schwartz, & Simoncelli, 2002), and visual saliency (Gao & Vasconcelos,
2009). It has also been used to account for high-level perceptual phenomena
such as masking (Foley, 1994; Watson & Solomon, 1997) and attention (Lee
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& Maunsell, 2009; Reynolds & Heeger, 2009). DN is believed to be imple-
mentable with the cortical neurons (Carandini & Heeger, 1994; Carandini,
Heeger, & Senn, 2002), though the specific neural mechanism for such an
implementation is still under debate (see Holt & Koch, 1997).

Because of the prevalence of normalization-type behaviors in biological
sensory systems, DN has become an integral component in theoretical mod-
els describing information encoding of cortical neurons (Ringach, 2010). In
addition, in engineering fields such as image processing and computer vi-
sion, nonlinear image representations based on DN have been applied to
image compression (Malo, Epifanio, Navarro, & Simoncelli, 2006), contrast
enhancement (Lyu & Simoncelli, 2008), image quality metrics (Li & Wang,
2008; Laparra, Muñoz-Mari, & Malo, 2010), and object recognition (Jarrett,
Kavukcuoglu, Ranzato, & LeCun, 2009), all showing significant improve-
ments in performance over linear representations.

In the context of efficient coding theory, the study in Brady and Field
(2000) suggests that DN maximizes the entropy of each output component
to better use the channel capacity. Based on empirical observations, the
seminal work of Schwartz and Simoncelli (2001a) proposes that DN is a
nonlinear efficient coding transform in biological perception that reduces
statistical dependencies in the input natural sensory signals. Subsequently,
this hypothesis was tested in Valerio and Navarro (2003a, 2003b). How-
ever, experiments in these works examined only pairwise dependencies
with mutual information estimated from histograms, a process prone to
biases due to the data binning procedure (Paninski, 2003). The more recent
work of Malo and Laparra (2010) uses a form of DN whose parameters are
obtained from psychophysical experiments. While providing an interesting
alternative perspective, this is only an indirect account for DN as an efficient
coding transform for natural sensory signals.

Recently a general methodology known as radial gaussianization (RG)
has been shown to provide efficient coding transforms for sources with
elliptical symmetric densities that capture local statistical dependencies of
natural sensory signals (Lyu & Simoncelli, 2009b; Sinz & Bethge, 2009). In
these studies, it has been shown that the transformation obtained by RG
can be closely approximated by DN. On the other hand, in spite of better
performance in dependency reduction, the nonlinear transform obtained
from RG has not been fitted to data in biological sensory pathways.

3 Statistical Properties of Natural Sensory Signals and
Multivariate t Model

Sensory signals in natural environments are highly structured and non-
random. These regularities exhibit statistical properties that distinguish
them from the rest of the ensemble of all possible signals. Particularly, in
the bandpass-filtered domains constructed from various linear transforms
consisting of basis functions with localized support in space, frequency,
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Figure 2: Statistical properties of natural images in a bandpass-filtered domain.
(Left) Log marginal distribution. (Middle) Contour plot of the joint distribution
of two responses from filter functions whose centers are separated by 1 pixel in
space. (Right) Each column of the image corresponds to a conditional density
p(x1|x2) of different x2 values, where x1 and x2 are the coordinates of the joint
shown in the middle panel. The three curves correspond to E(x1|x2) (center) and
E(x1|x2) ± std(x1|x2), respectively.

or orientations (such as PCA, ICA, wavelet transform, the receptive fields
of retina gangalion cells or V1 simple cells, or even random bandpass fil-
ters), three distinct statistical characteristics have been widely observed for
natural sounds and images (see Figure 2):

1. Pooling over space, the responses have symmetric supergaussian dis-
tributions with high kurtosis (Burt & Adelson, 1981; Field, 1987).

2. Joint densities of pairs of neighboring responses exhibit elliptically
symmetric contours of equal probability (Wegmann & Zetzsche,
1990). Note that such joint densities can be “sphericalized” by a
linear whitening operation that eliminates second-order statistical
dependency.

3. The conditional distributions of one response given the values of
a neighboring response, p(x1|x2), have a bow-tie shape (Simoncelli
& Buccigrossi, 1997), which can be described using the conditional
means and variances (Lyu, 2009), as

E(x1|x2) ≈ ax2, and var(x1|x2) ≈ b + cx2
2 , (3.1)

where a , b, c are parameters obtained from data.

These statistical dependencies are beyond second order and cannot be effec-
tively reduced by any linear transform (Lyu & Simoncelli, 2009b; Eichhorn
et al., 2009). But they can be approximately and concisely captured with
the multivariate t model (Kotz & Nadarajah, 2004), which has been used in
modeling local statistics of natural images (Welling, Hinton, & Osindero,
2002; Roth & Black, 2005; Chantas, Galatsanos, Likas, & Saunders, 2008).
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Figure 3: Properties of the multivariate t models. (Left) Log marginal distribu-
tion. (Middle) Contour plot of the pairwise joint distribution. (Right) Dashed
curves correspond to E(x1|x2) (center) and E(x1|x2) ± std(x1|x2) of the optimally
fitted multivariate t-model to pairs of adjacent bandpass-filtered responses of a
natural image. The solid curves are the same as in the right panel of Figure 2.

Formally, assuming zero mean, the probability density function of a d-
dimensional multivariate t vector is

pt(x;α, β) = αβ� (β + d/2)

πd/2�(β)
√

det(�)

(
α + x′�−1x

)−β−d/2
,

where α > 0 and β ≥ 1 are known as the scale and shape parameters, re-
spectively. �(β) = ∫ ∞

0 uβ−1 exp(−u) du is the standard gamma function. �

is a symmetric and positive definite matrix, proportional to the covariance
matrix when x has finite second-order statistics (which is not true when
β = 1, which corresponds to a Cauchy distribution). The multivariate t
model is a generalization of the gaussian model, and when α, β → ∞ and
α/(β − 1) = const, x converges in distribution to a gaussian random vector
with zero mean and covariance matrix α�

2(β−1) . Parameters α, β, and � can
be estimated from data using maximum likelihood (see appendix B).

The marginal distributions of a multivariate t model are one dimensional
t densities (also known as the Student-t model; see Figure 3, left), which
are symmetric and nongaussian with high kurtosis; the pairwise marginal
distributions of a multivariate t model are two-dimensional t models, which
are elliptical and nongaussian (see Figure 3, middle panel) (Kotz & Nadara-
jah, 2004). The following result states that the dependencies shown in the
conditional densities of natural sensory signals are the result of an intrinsic
property of the multivariate t model (the lemma is proved in appendix A):

Lemma 1 (Zellner, 1971.) For a d-dimensional multivariate t vector x with zero
mean and parameters α, β, and �, denote x\i as the vector formed by excluding
the ith element from x and �\i,\i as the submatrix of � corresponding with rows
and columns of indices {1, . . . , d} \ i , �\i,i as the vector formed by the ith column
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of � without its ith element, and �i,i as the ith diagonal of �. Then we have

E(xi |x\i ) = �′
\i,i�

−1
\i,\i x\i , (3.2)

var(xi |x\i ) = �i,i − �′
\i,i�

−1
\i,\i�\i,i

2β + d − 3

(
α + x′

\i�
−1
\i,\i x\i

)
. (3.3)

Two special cases of this result are of particular interest. First, for d = 2,
equations 3.2 and 3.3 reduce to equation 3.1, which leads to the bow-tie
shapes of the conditional distributions. In addition, if second-order de-
pendencies in the input signal are removed with a whitening operation,
where � becomes an identity matrix, the resulting model is the isotropic
multivariate t density,

pt(x;α, β) = αβ� (β + d/2)
πd/2�(β)

(
α + x′x

)−β−d/2
,, (3.4)

for which equations 3.2 and 3.3 are simplified to E(xi |x\i ) = 0 and
var(xi |x\i ) ∝ α + x′

\i x\i , respectively. This result is used in section 5.1

4 Justification

With the multivariate t model capturing important statistical dependen-
cies exhibited in natural sensory signals in the bandpass-filtered domains,
according to the efficient coding principle, we seek a transform that can
effectively reduce such statistical dependencies. Since second-order depen-
dencies can be trivially removed with a whitening transform, we focus
on the isotropic multivariate t model, equation 3.4. However, the residual
statistical dependencies in the isotropic multivariate t model cannot be fur-
ther reduced with any linear transform (Lyu & Simoncelli, 2009b; Eichhorn
et al., 2009).

To find a simple nonlinear transform that removes statistical dependency
in the isotropic multivariate t model, we note that the isotropic gaussian
distribution is the only isotropic model with mutually independent com-
ponents (Kac, 1939; Nash & Klamkin, 1976). Naturally, if we can obtain a
transform that can map an isotropic multivariate t vector x to an isotropic
gaussian vector u, then all statistical dependencies embodied in p(x) are
eliminated. In the following, we describe two different approaches that
“gaussianize” an isotropic multivariate t vector; the former is based on
the equivalency of the multivariate t model as a gaussian scale mixture
(GSM), and the latter is based on radial gaussianization (RG). As we will
show, both transforms can be closely approximated with the DN transform,
which justifies its role in dependency reduction.
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4.1 Via the GSM Equivalency of the t Model. It is well known that
the multivariate t model is a gaussian scale mixture (GSM) (Andrews &
Mallows, 1974). Specifically, a d-dimensional isotropic multivariate t vector
x with parameters α and β can be decomposed into the product of two
independent random variable, as

x = u · √
z, (4.1)

where u is a d-dimensional isotropic gaussian vector with zero mean and
unit component variance and z > 0 is an inverse gamma random variable
with density p(z) = αβ

2β�(β) z−β−1 exp(− α
2z ).

With equation 4.1, one approach to map x to a gaussian random vector
is simply u = x/

√
z. However, as z is a latent variable to which we do not

have direct access, this transform is not realizable. But it can be approxi-
mated by substituting the actual value of z with its estimator based on x.
Common choices of estimator include the maximum a posteriori (MAP) es-
timator ẑMAP = arg maxz p(z|x) and the Bayesian least squares (BLS) estima-
tor ẑBLS = argminẑ Ez|x((ẑ − z)2) = Ez|x(z|x). The following lemma, proved in
appendix A, shows that both the MAP and BLS estimators for the latent z
in an isotropic multivariate t model have similar analytical forms:

Lemma 2. For a d-dimensional isotropic multivariate t vector x with zero mean
and parameters (α, β), the three estimators of the latent variable z in its equivalent
GSM definition are:

1. ẑMAP = 1
2β+d+2 (α + x′x)

2. ẑBL S = 1
2β+d−2 (α + x′x)

3. ẑALT = (
Ez|x (1/z|x)

)−1 = 1
2β+d (α + x′x)

If we ignore the scaling factors (which has no effect on the statistical depen-
dencies measured by multi-information; see section 5.1), all three estimators
have the form of α + x′x. If we then replace

√
z with

√
α + x′x in the optimal

gaussianization transform, we obtain a nonlinear transform of x as

φ(x) = x√
α + x′x

= ‖x‖
√

α + ‖x‖2

x
‖x‖ , (4.2)

which is the standard form of the DN transform as shown in Figure 1. (We
discuss the relation of this standard form of the DN transform with other
alternative definitions in section 5.1.)

It should be mentioned that similar connections between GSM and DN
have been noted previously (Wainwright & Simoncelli, 2000; Schwartz,
Sejnowski, & Dayan, 2005). On the other hand, the use of the multi-
variate t model (a special case of GSM) has the advantage that we can
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exactly compute the dependency reduction achieved with DN, as we show
in section 5.2.

4.2 Via Radial Gaussianization. Radial gaussianization (RG) (Lyu & Si-
moncelli, 2009b; Sinz & Bethge, 2009) is a deterministic nonlinear transform
that maps random vectors with isotropic nongaussian density models to
isotropic gaussian vectors. The key component in RG is a nonlinear function
ψ(r ) of the L2 norms of input vector, which transform the radial marginal
distribution, p(r ), of the source isotropic model to that of an isotropic gaus-
sian model. The overall gaussianization transform is then constructed by
modifying the radial component of vector x as φ(x) = ψ(‖x‖)x/‖x‖.

In particular, the radial marginal distribution of an isotropic gaussian
model with variance 1/α is a χ density with d degrees of freedom, as

pχ (r ) = αd/2rd−1

(2π)d/2 exp
(

−αr2

2

)
,

and the radial marginal distribution of an isotropic multivariate t model is

pt(r ) = αβ�(β + d/2)
πd/2�(β)

rd−1

(α + r2)β+d/2 .

To simplify the discussion, we assume that the isotropic multivariate t
model has unit variance, which further implies that α = 2(β − 1). Under
RG, we seek nonlinear map ψ(·) so that r ∼ pt and ψ(r ) ∼ pχ . when the
rules of changing variables are used, ψ(r ) is determined with equation
pχ (ψ(r ))

∣∣ψ ′(r )
∣∣ = pt(r ), which, after expanding all the terms, becomes

αd/2ψd−1(r )
(2π)d/2 exp

(
−αψ2(r )

2

) ∣∣ψ ′(r )
∣∣

= αα/2+1�(α/2 + 1 + d/2)
πd/2�(α/2 + 1)

rd−1

(α + r2)α/2+1+d/2 . (4.3)

Although equation 4.3 does not have a closed-form solution, the following
lemma, proved in the appendix, shows that its solution can be approximated
with the radial nonlinear transform in DN.

Lemma 3. For small r, the dominant term on the right-hand side of equation 4.3,
has an approximation, as

rd−1

(α + r2)α/2+1+d/2
≈ exp

(
−α

2
r2

α + r2

)
α− α

2 r d−1

(α + r2)d/2+1
. (4.4)

With this approximation, equation 4.3 has the solution ψ̂(r ) = r/
√

α + r2.
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Figure 4: DN approximation to the RG transform. (Left) Illustration of the
approximation in equation 4.4 for different d and β values. Dashed curves are
the left hand side of equation 4.4, and solid curves are the right hand side of
equation 4.4. (Right) Radial maps ψ(r ) of DN (solid) and RG (dashed) for an
isotropic multivariate t vector. The RG transform is obtained nonparametrically
with density transform (Lyu & Simoncelli, 2009b).

With the approximated solution ψ̂(r ), the overall signal transform is
constructed as

φ(x) = ψ(‖x‖)
x

‖x‖ = ‖x‖
√

α + ‖x‖2

x
‖x‖ ,

which again leads to the standard form of the DN transform, equation 4.2.
The left panel of Figure 4 demonstrates the approximation of equation 4.4

with different values of d and α. The right panel of the figure compares the
optimal RG solution obtained by nonparametric estimation (for details, see
Lyu & Simoncelli, 2009b), and the approximated solution ψ̂(r ). As this plot
shows, for small r values, the two transforms agree with each other, and the
difference between the two solutions is quite small. On the other hand, the
two transforms are fundamentally different for inputs with large magni-
tudes, as DN saturates at 1, whereas RG transform increases unboundedly.
This shows the the suboptimality of DN as a gaussianization (and hence
efficient coding) transform for the multivariate t models.

5 Evaluation on Multivariate t Models

We have established DN as an approximation to the optimal efficient coding
transforms of the multivariate t model. However, for two important rea-
sons, we still need to precisely quantify the effectiveness of DN in reducing
statistical dependencies. First, as seen in section 4, the DN transform is an
approximation to the optimal transform that eliminates statistical depen-
dencies in a multivariate t model. Furthermore, the multivariate t model
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itself is a proxy model of natural sensory signals. Therefore, we need a
quantitative evaluation of the effectiveness of the DN transform in reducing
statistical dependencies of natural sensory signals to confirm its usefulness
as an efficient coding transform.

We start with this section by applying DN to the isotropic multivariate
t models, whose closed-form density allows a precise computation of the
statistical dependencies reduced by the DN transform. In the next section,
we apply the DN transform to natural sensory signal data, estimate the
dependency reduction, and compare the results with those predicted from
the optimally fitted multivariate t model.

Subsequently, we employ the multi-information (MI) (Studeny &
Vejnarova, 1998), also known as total variation (Watanabe, 1960) or mul-
tivariate constraint (Garner, 1962), as a quantitative measure of statistical
dependencies in multivariate random variables. MI is a multivariate gen-
eralization of the mutual information (Cover & Thomas, 2006) between a
pair of variables. For a d-dimensional random vector x with joint density
p(x), its MI is the Kullback-Leibler (KL) divergence (Cover & Thomas,
2006) between the joint model and the product of marginals of all its
components:

I (x)=KL

(

p(x)

∥∥∥∥∥

d∏

k=1

p(xk)

)

=
∫

x
p(x) log

(

p(x)

/
d∏

k=1

p(xk)

)

dx. (5.1)

MI is always nonnegative, and I (x) = 0 if and only if the components of x are
mutually independent. An important property of MI is that for a transform
of x defined as φ(x) = (φ1(x1), . . . , φd (xd ))′, where {φk(·)}d

k=1 are univariate
and continuously differentiable functions, we have I (x) = I (φ(x)). This is a
direct result of the change of variable procedure on the probability distri-
butions of continuous random variables.

5.1 Equivalent Forms of DN. We have focused on the standard form
of the DN transform in equation 4.2, but there are several alternative forms
of the DN transform that are frequently used in the literature. In particular,
we list three other forms of DN in terms of their effects on the individual
elements of the output vector, as

� si = x2
i

α + x′x
(Heeger, 1992)

� vi = xi√
α + x′

\i x\i

(Schwartz & Simoncelli, 2001a)

� ti = x2
i

α + x′
\i x\i

(Wainwright et al., 2002)
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However, the outputs of these DN transforms have the same MI as
that of equation 4.2. Hence, they are all equivalent as efficient coding
transforms.

To better see this, first recall the property of the MI that it is invari-
ant to any continuously differentiable element-wise transform. The three
alternative DN transforms are related to the standard DN form by continu-
ously differentiable transforms that map between corresponding elements.
Specifically, denoting the output of the standard DN form by u, the output
of the first DN transform can be expressed as an element-wise square of u
as si = u2

i . The origin of the second form of DN is a division of xi with the
conditional standard deviation of xi given the remaining components in x
(see section 3). In this case, we have

vi = xi√
α + x′

−i x−i
= xi√

α + x′x − x2
i

= xi/
√

α + x′x
√

1 − x2
i /(α + x′x)

= ui√
1 − u2

i

,

which is an element-wise nonlinear transformation of u. Finally, the same
is true for the third form of the DN transform, as ti = v2

i = u2
i /(1 − u2

i ).

5.2 MI of t Model and Its DN Transform. We next evaluate the effec-
tiveness of DN in reducing statistical dependencies in the isotropic multi-
variate t model by a direct comparison of their MIs. In doing so, we need
the closed-form density of the DN transformed multivariate t vector, as the
following result shows (see appendix A for the proof):

Lemma 4 (Costa, Hero, & Vignat, 2003). If x ∈ Rd has an isotropic multivariate
t density with parameter (α, β), then its DN transform, u = φ(x), is in the d-
dimensional unit hypersphere (‖u‖ ≤ 1), and has density as

p(u) = � (β + d/2)
πd/2�(β)

(
1 − u′u

)β−1
. (5.2)

The density of equation 5.2 is known as the isotropic multivariate r model
(Costa et al., 2003). Similar to the multivariate t models, the multivariate r
models approaches to gaussians with β → ∞. One particular property that
distinguishes the multivariate r model from the multivariate t or gaussian
models is that it has a finite support, which is the inside of a hypersphere
corresponding to ‖u‖ ≤ 1.

One particular important property of the multivariate t and r models is
that their entropy are in closed form. We summarize these results in the
following lemma (proved in appendix A):
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Lemma 5 (Costa et al., 2003; Guerrero-Cusumano, 1996). The differential entropy
of a d-dimensional isotropic multivariate t vector x with parameters (α, β) is

H(x) = d
2

log απ + log �(β)

− log �

(
β + d

2

)
+

(
β + d

2

) [



(
β + d

2

)
− 
 (β)

]
, (5.3)

where 
(β) is the digamma function defined as 
(β) = d
dβ

log �(β). The differ-
ential entropy of its DN transform, u = φ(x), which is a d-dimensional r vector,
is

H(u) = d
2

log π + log �(β)

− log �

(
β + d

2

)
+ (β − 1)

[



(
β + d

2

)
− 
 (β)

]
. (5.4)

A direct result of the closed-form differential entropy of the multivariate
t and r models is that their MIs also have closed forms (the corollary is
proved in appendix A):

Corollary 1. The MI of a d-dimensional isotropic multivariate t vector x with
parameters (α, β) is

I (x) = (d − 1) log �(β) − d log �(β + 1/2) + log �(β + d/2)

−(d − 1)β
(β) + d(β + 1/2)
(β + 1/2) − (β + d/2)
(β + d/2),

where 
(β) is the digamma function defined as 
(β) = d
dβ

log �(β). The MI of its
DN transform, u = φ(x), which is a d-dimensional r vector, is

I (u) = d log �(β + (d − 1)/2) − log �(β) − (d − 1) log �(β + d/2)

+ (β − 1)
(β) + (d − 1)(β + d/2 − 1)
(β + d/2)

− d(β + (d − 3)/2)
(β + (d − 1)/2).

As the gamma and the digamma functions can be evaluated to high
precision, we can compute I (x) and I (u) directly. Figure 5 shows the surface
plot of I (x) and I (u) after normalization by the data dimension as functions
of model parameter β and data dimension d. We observe that when β

increases, dependencies in both models decrease, as both the multivariate t
model and the multivariate r model approach to gaussian has zero MI. On
the other hand, while the MI of the multivariate t model tends to increase
with data dimensions, it is not always so for the multivariate r model.
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Figure 5: Surface plot of the unit MI normalized by the data dimension for
the isotropic multivariate t model (left) and the isotropic multivariate r model
(right) with different β and d values.

5.3 Dependency Reduction with DN. With these results, we can com-
pute the change of MI per dimension of the input, �I/d = (I (x) − I (u))/d ,
as a function of β and d. The left column of Figure 6 shows �I/d , and the
right column shows �I/I (x), which is the MI change relative to the raw
statistical dependencies in x. For d > 4, MI are reduced after DN is applied
to the multivariate t models. The reduction increases with data dimension-
ality for fixed β values (middle row, Figure 6) and decreases with increased
shape parameter β for the fixed data dimension (bottom row, Figure 6).
The dependencies reduced with the DN transform are also reflected by the
gaussianization effect of its outputs. Shown in the top row of Figure 7 are
1D marginal densities of the DN transformed multivariate t vectors with
β = 1.1 and different dimensions. As it shows, for higher data dimension,
(e.g., d = 10), the marginal distribution becomes quite close to the gaussian
model.

However, when d ≤ 4, the changes in MI are consistently negative for all
β values, indicating that the outputs of the DN transform have increased
statistical dependencies compared to the inputs. One intuitive explanation
is that the small number of components in low-dimensional x leads to infe-
rior estimations of the latent variable z, and thus a weaker gaussianization
effect (Schwartz, Sejnowski, & Dayan, 2006). This can be further confirmed
with the marginal distributions of the DN-transformed multivariate t vec-
tors of different dimensions (top row, Figure 7). The marginal distributions
for low-dimensional inputs (e.g., d = 2) are quite different from a gaussian.

Another interpretation may be obtained by observing the two-
dimensional projections of the DN-transformed multivariate t vectors of
different dimensions (bottom row, Figure 7). As the plots show, for low-
dimensional inputs (e.g., d = 2), a significant fraction of the 2D projections
are around the unit circle, which is the boundary of support of the corre-
sponding 2D r distribution. Samples near this boundary have strong sta-
tistical dependencies (e.g., knowing one has a coordinate near ±1, we can
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Figure 6: (Left column). Absolute change of MI normalized by the data dimen-
sionality, �I/d . (Right column). Same plots for relative changes of MI, �I/I (x).
The top row shows surface plots with the full range of data dimensions (d) and
the shape parameter of (β). The middle and bottom rows show slices of the
corresponding surface plots in the top row for fixed β and d, respectively.

predict that the other component has a coordinate close to 0.0), while sam-
ples in the central region are closer to being gaussian distributed and less
dependent. For low-dimensional data, the increased dependencies near the
boundary may counteract the reduced dependencies of the central region;
hence, the net effect is an increased MI. On the other hand, for a higher
data dimension (e.g., d = 10), the majority of the projected samples are far-
ther away from the unit circle, with weakened dependencies caused by the
boundary constraint; hence the overall dependencies are reduced.
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Figure 7: (Top) Marginal densities in the log domain of the components of the
DN transformation of an isotropic multivariate t vector (solid curves), com-
pared with gaussian densities (dahsed curves) of the same mean and standard
deviation. (Bottom) Two-dimensional projections of the DN transformation of
1000 isotropic multivariate t samples. The three columns correspond to different
data dimensions.

6 Evaluation on Natural Sensory Signals

We next evaluate the effectiveness of dependency reduction of the DN
transform on natural sensory signals. Not relying on a parametric proba-
bilistic model, we achieve this directly with data in a nonparametric manner.
However, nonparametric estimation of entropy and MI from data may be
difficult, as straightforward estimation using histograms are prone to strong
biases (Paninski, 2003), and this may be further exacerbated by the curse of
dimensionality for high-dimensional data. Nevertheless, direct estimation
of MI in our case is not necessary, as we only need to compute the difference
of MI between data x and its DN transform u:

�I =
d∑

k=1

(H(xk) − H(uk)) + H(u) − H(x). (6.1)

Here we use the equivalent definition of MI in terms of the differential
entropy as I (x) = ∑d

k=1 H(xk) − H(x). H(u) and H(x) are related by

H(u) = H(x) −
∫

x
p(x) log

∣∣∣∣det
(

∂φ(x)
∂x

)∣∣∣∣ dx,
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where the Jacobian determinant of the standard form of DN transform is

det
(

∂φ(x)
∂x

)
= α

(α + x′x)d/2+1 .

Replacing these results back to equation 6.1, we have

�I =
d∑

k=1

(H(xk) − H(uk)) + log α −
(

d
2

+ 1
) ∫

x
p(x) log (α + x′x) dx.

(6.2)

The first term computes the total difference between differential entropy
of corresponding components of x and u. The entropy of each component
is estimated with the nonparametric m-spacing entropy estimator (Vasicek,
1976) (see appendix C). The last term in equation 6.2 is the expectation of
log (α + x′x) with regard to p(x), which can be well approximated with aver-
ages over a sufficient number of samples from p(x). The only free parameter
is α, which we determine by a direct search for a value that maximizes the
resulting �I over a range of values. We test this nonparametric estimation
of �I with samples from the isotropic multivariate t model and compare
the results with the theoretical values computed using lemma 1. Figure 8
shows two cases of this comparison—one with fixed β in the model and
varying d values and the other with fixed d and varying β values. As
these results show, the nonparametric estimations are very close to the
the theoretical ground-truth values, justifying their uses in the subsequent
experiments.

6.1 Experiments with Natural Audio and Image Data. We next per-
form experiments with natural audio and image data. For audio data, we
use 10 sound clips of animal vocalization and recordings in natural environ-
ments, which have a sampling frequency of 44.1 kHz and a typical length
of 15 to 20 seconds. These sound clips are preprocessed with a bandpass
gamma-tone filter of 3 kHz center frequency (Johannesma, 1972). For im-
age data, we use the central 1024 × 1024 cropped regions of 20 images of
linearized intensities from the van Hateren database (van der Schaaf & van
Hateren, 1996), which are taken from natural scenes such as woods and
parks. As a preprocessing step, the intensities of the image data are first
subject to a global logarithm nonlinearity, log I (x) − C0, as in Bethge (2006),
where C0 is a constant so that the adjusted log intensities of an image have
mean 0. The logarithm transform loosely simulates the nonlinear intensity
transforms found in the cone photoreceptors in vertebrates (McCann, 2005).
The images are then convolved with an isotropic bandpass filter obtained
from an unoriented steerable pyramid (Simoncelli & Freeman, 1995) that
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Figure 8: Comparison of theoretical prediction of MI reduction for an isotropic
multivariate t model (solid curves) with the nonparametric estimation using
equation 6.2, with random samples drawn from the multivariate t models
(dashed curves). The left plot corresponds to samples drawn from fixed β = 1.10
and different data dimensions, and the right plot corresponds to those drawn
from a model of d = 10 and varying β.

Figure 9: Mean and standard deviation of the estimated shape parameter β on
natural sound data sets and natural image data sets with different dimensions.

captures an annulus of frequencies in the Fourier domain ranging from π/4
to π radians per pixel, followed by a proper downsampling. We then extract
adjacent samples using localized 1D temporal (for audios) or 2D spatial (for
images) windows of different sizes. These data are vectorized and whitened
to have second-order dependencies removed.

We fit isotropic multivariate t models to data using the maximum like-
lihood estimation (described in appendix B). Shown in Figure 9 are the
means and standard deviations of the estimated shape parameter β of dif-
ferent sizes of local windows for audio and image data, respectively (α
is determined as α = 2(β − 1) for isotropic multivariate t model fitted to
whitened data with identity covariance matrix). As these plots show, the
estimated β values are typically close to 1, reflecting their high kurtosis.
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Figure 10: Unit MI changes (�I/d) on natural sound data sets and natural
image data sets with different dimensions. The solid curve corresponds to the
theoretical value obtained with lemma 1; the dashed curve is the nonparametric
estimation with equation 4.2.

Furthermore, β decreases as the dimensionality increases, indicating an
increasing trend of nongaussianity.

Based on the fitted isotropic multivariate t model, we compute the MI
difference predicted by the fitted multivariate t model (see lemma 1) and
compared the results with the nonparametric estimation of MI difference
in Figure 10. The solid curves correspond to theoretical predictions, and
dashed curves are results from nonparametric estimations. In both cases,
we report average MI difference over all sounds or images to remove biases
of individual samples.

The nonparametric estimations of MI differences after applying DN to
natural sensory data are in accordance with their predictions from the mul-
tivariate t models. Both results suggest strong positive correlation of the
effectiveness of dependency reduction of DN with data dimension. Fur-
thermore, as observed in the previous section, the multivariate t model
predicts that DN increases statistical dependency for small input dimen-
sions; similar observations hold for natural sensory signal data. There are
also several distinct differences between the two sets of results. First, the
predictions based on the multivariate t model tend to overestimate the MI
difference achieved by the DN transform. More important, as the data di-
mension increases, the nonparametric estimations of MI difference seem
to have a decreasing trend, even though multivariate t model predictions
tend to keep increasing with data dimension. One important reason for
such behaviors is the fact that the multivariate t model is still insufficient to
represent all statistical properties of natural sensory signals, even though
it is mathematically convenient and encapsulates some important types
of statistical dependencies. A particular characteristic of natural sensory
signals is that the statistical dependencies among their bandpass-filtered
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Figure 11: Experimental results with a simple direct cosine transform prepro-
cessing on the image data. (Left) Mean and standard deviation of the estimated
shape parameter β. (Right) Unit MI changes (�I/d).

responses weaken as their separations increase: responses that are far away
from each other tend to be less dependent (Wainwright & Simoncelli, 2000;
Lyu & Simoncelli, 2009a). This transition of statistical dependency cannot
be effectively captured by the multivariate t model, as any pair of com-
ponents in an isotropic multivariate t vector, regardless of their relative
positions, has the same dependencies. The lack of ability to represent less
dependent or independent components using multivariate t models may
explain the difference of the model predictions and nonparametric estima-
tions of DN’s effect in dependency reduction, particularly for large local
patches.

The prefiltering of audio and image data is to gently restrict them to
the bandpass-filtered domain, where the statistical properties described
in section 3 are present. We observe that the results are robust to different
choices of bandpass filters. In Figure 11, we show results for image data with
different preprocessing. Instead of using filters from unoriented steerable
pyramid, we apply a direct cosine transform to these blocks and separate the
DC component. The AC components are further whitened and transformed
with DN. The left panel of Figure 11 shows the estimated shape parame-
ters on this data set, and the right panel shows the corresponding depen-
dency reduction estimated by change of MI per dimension as in Figure 10.
Note that these results are qualitatively consistent with those in
Figure 10.

7 Discussion

In this work, we have presented an analysis justifying divisive normaliza-
tion as an efficient coding transform for natural sensory signals. We use
the multivariate t model to capture several important statistical properties
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of natural sensory signals in the bandpass-filtered domains. DN then
emerges as an approximation to two different optimal nonlinear transforms
that eliminate statistical dependencies in the multivariate t model. Though
focusing on one specific form of the DN transform, we show that several
alternative forms of DN are equivalent in terms of their effects in depen-
dency reduction. In addition, we use the analytical form of the multivariate
t model to provide a precise quantification of the statistical dependencies
reduced by the DN transform, which are used as a theoretical prediction
of the actual performance of DN on natural sensory signal data. Moving to
real natural sensory signal data, we provide a simple method to estimate
the dependency reduction with DN nonparametrically. Our analyses con-
firm DN as an effective and efficient coding transform for natural sensory
signals in bandpass-filtered domains. In the experiments, we observe a pre-
viously unreported phenomenon that when the input has low dimensions,
DN increases statistical dependencies for both the multivariate t models
and natural sensory signal ensemble.

In this work, we also studied radial gaussianization analytically in the
context of the multivariate t model and derived an explicit expression that
directly yields DN as an approximation to it. One distinct characteristic of
the form of the DN transform is that the output saturates for large inputs
(see the right panel of Figure 4), while the RG map is monotonically increas-
ing. On one hand, this elucidates that DN cannot be the optimal efficient
coding transform for any isotropic source model. On the other hand, the
DN transform seems more plausible for a biological sensory system, as the
inputs and outputs to sensory neurons are always bounded. One interest-
ing open question is whether DN will emerge as an optimal solution to the
efficient coding objective with ecological constraints.

Finally, our analyses are based on DN of equation 4.2 and its several
equivalent forms, which are all based on the L2 norm of the input vectors.
More flexible forms of the DN transform use the general Lp norms and allow
the denominator and the numerator to have different degrees. Such general
forms of the DN transform are more flexible. We envision and are working
on a similar analysis of the dependency reduction effects of such general
forms of the DN transform, using a generalized multivariate t model based
on Lp norms (Sinz & Bethge, 2009)).

Appendix A: Proof

A.1 Proof of Lemma 1. To prove the lemma, we use the basic fact
that the multivariate t model is a gaussian scale mixture with an inverse
gamma scaling variable. Specifically, we can express the joint distribution
as p(x) = ∫

z p(x|z)p(z)dz, where p(x|z) is a gaussian distribution with zero
mean and covariance matrix z�, while p(z) is an inverse gamma distribution
with parameter (α, β).
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The conditional mean of xi given x\i is then given by

E(xi |x\i ) =
∫

xi

xi p(xi |x\i ) dxi =
∫

xi
xi p(x) dxi

p(x\i )
=

∫
xi ,z

xi p(x, z) dxi dz
∫

xi ,z
p(x, z) dxi dz

=
∫

z p(z)p(x\i |z) dz
∫

xi
xi p(xi |x\i , z) dxi

∫
z p(z)p(x\i |z) dz

.

With the property of gaussian distributions (Feller, 1968), we note that
p(xi |x\i , z) is a 1D gaussian density, whose mean and variance are
�′

\i,i�
−1
\i,\i x\i and z(�i,i − �′

\i,i�
−1
\i,\i�\i,i ), respectively. Therefore, we have

E(xi |x\i ) = E(xi |x\i , z) = �′
\i,i�

−1
\i,\i x\i .

Next, we compute the conditional variance:

var(xi |x\i ) =
∫

xi

(xi − E(xi |x\i ))2 p(xi |x\i ) dxi

=
∫

z p(z)p(x\i |z) dz
∫

xi
(xi − E(xi |x\i , z))2 p(xi |x\i , z) dxi

∫
z p(z)p(x\i |z) dz

= (
�i,i − �′

\i,i�
−1
\i,\i�\i,i

)
∫

z zp(z)p(x\i |z) dz
∫

z p(z)p(x\i |z) dz
.

The ratio in the last step can be further simplified if we notice that

∫
z zp(z)p(x\i |z) dz
∫

z p(z)p(x\i |z) dz
=

∫
z zpγ −1 (z;α, β)N (x\i/

√
z) dz

∫
z pγ −1 (z;α, β) dzN (x\i/

√
z) dz

= α�(β − 1)
2�(β)

∫
z pγ −1 (z;α, β − 1)N (x\i/

√
z) dz

∫
z pγ −1 (z;α, β) dzN (x\i/

√
z) dz

= α

2(β − 1)

∫
z pγ −1 (z;α, β − 1)N (x\i/

√
z) dz

∫
z pγ −1 (z;α, β) dzN (x\i/

√
z) dz

.

Notice that the numerator is the GSM form of a multivariate t model of the
d − 1 dimension with parameter α and β − 1, while the denominator is a
multivariate t model of the d − 1 dimension with parameters α and β, so
the last step can be further simplified as

α

2(β − 1)

αβ−1�(β−1+(d−1)/2)
π (d−1)/2�(β−1)

(
α + x′

\i�
−1
\i,\i x\i

)−(β−1)−(d−1)/2

αβ�(β+(d−1)/2)
π (d−1)/2�(β) (α + x′

\i�
−1
\i,\i x\i )−β−(d−1)/2

,
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which, after simplifying the terms, becomes E(x2
i |x\i ) = 1

2β+d−3 (α +
x′

\i�
−1
\i,\i x\i ). Collecting all terms together, we have

var(xi |x\i ) = �i,i − �′
\i,i�

−1
\i,\i�\i,i

2β + d − 3
(α + x′

\i�
−1
\i,\i x\i ).

A.2 Proof of Lemma 2.

Corollary 2. The mean and mode of the inverse gamma density, pγ −1 (z;α, β) =
αβ

2β�(β) z−β−1 exp(− α
2z ), is α

2(β−1) and α
2(β+1) , respectively. Furthermore, the mean of

1/z with regard to the inverse gamma density is 2β/α.

Proof. For the mean of the inverse gamma density, we have

∫ ∞

0
zpγ −1 (z;α, β)dz =

∫ ∞

0
z · αβ

2β�(β)
z−β−1 exp

(
− α

2z

)
dz

= αβ

2β�(β)

∫ ∞

0
z−β exp

(
− α

2z

)
dz.

Using the property of the gamma function, the last integral equals
(a/2)−(β−1)�(β − 1). As �(β)/�(β − 1) = β − 1, we show that the mean is
α/[2(β − 1)].

Next, the mode of the inverse gamma density corresponds to the z value
with the maximum log density, which is given by

log pγ −1 (z;α, β) = log αβ − log 2β�(β) − (β + 1) log z − α

2z
,

whose derivative with regard to z is − β+1
z + α

2z2 . Setting the derivative to
0 and solving for z, we obtain the mode of the inverse gamma density as
α/[2(β + 1)].

Finally, the mean of 1/z in the inverse gamma density is defined as

∫ ∞

0
z−1 pγ −1 (z;α, β)dz = αβ

2β�(β)

∫ ∞

0
z−β−2 exp

(
− α

2z

)
dz.

Using the property of the gamma function, we find that the last integral
equals (a/2)−(β+1)�(β + 1). Putting this result back and using the property
of the gamma function that �(β + 1)/�(β) = β, we simplify the result to
2β/α.

Now we turn to prove lemma 2. We first show that the posterior density
of z in the multivariate t model is also an inverse gamma density, as we
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have

p(z|x;α, β) = p(x, z;α, β)
pt(x;α, β)

=
1

(2π )d/2zd/2 exp
(− 1

2z x′x
)

αβ

2β�(β) z−β−1 exp
(− α

2z

)

αβ�(β+d/2)
πd/2�(β)

1
(α+x′x)β+d/2

.

Rearranging terms, we have

p(z|x;α, β) = (α + x′x)β+d/2

2β+d/2� (β + d/2)
z−β−d/2−1 exp

(
− 1

2z

(
α + x′x

))
,

which is an inverse gamma density with (α + x′x, β + d/2). The result is
immediate with corollary 2.

A.3 Proofs of Lemma 3. We first prove equation 6.4. The first-order
Taylor series approximation of function x log x for x ≥ 1 is x log x ≈ x − 1.
Replacing with x = 1 + u, we have log(1 + u) ≈ 1 − 1

1+u = u
1+u . Next, set u =

r2/α. We have log(α + r2) ≈ log α + r2

α+r2 , so − α
2 log(α + r2) ≈ − α

2 log α −
α
2

r2

α+r2 , or (α + r2)−
α
2 ≈ α− α

2 exp(− α
2

r2

α+r2 ).
Next, replace the right-hand side of equation 6.3 with 6.4. Dropping

scaling factors, we now show that ψ(r ) = r√
α+r2 provides a solution to the

resulting differential equation. This is achieved by replacing ψ ′(r ) = α
(α+r2)3/2

on the left-hand side of equation 6.3. Merging similar terms, we have

ψ(r )d−1 exp
(

−αψ2(r )
2

)
|ψ ′(r )|

= rd−1

(α + r2)(d−1)/2
exp

(
− αr2

2(α + r2)

)
α

(α + r2)3/2 ,

which equates the left-hand side of equation 6.3 with the approximation of
its right-hand side with equation 6.4.

A.4 Proofs of Lemma 4. The relation between densities of transformed
random vector gives that p(x) = p(φ(x)) det(Jφ(x)) or p(u) = p(x) 1

det(Jφ (x)) .
Using the Jacobian determinant of the DN transform, we have

p(u) = αβ�(β + d/2)
πd/2�(β)

(α + x′x)d/2 + 1

α(α + x′x)β + d/2 = αβ−1�(β + d/2)
πd/2�(β)

1
−(α + x′x)β−1 .

(A.1)



2966 S. Lyu

Next, note that

u = x√
α + x′x

⇒ u′u = x′x
α + x′x

⇒ ‖x‖ =
√

α‖u‖√
1 − u′u

.

Therefore, as x/‖x‖ = u/‖u‖, we have x =
√

αu√
1−‖u‖2

. Replacing this with

equation A.1, we have

p(u) = αβ−1� (β + d/2)
πd/2�(β)

1
(
α + αu′u

1−u′u

)β−1 = � (β + d/2)
πd/2�(β)

(1 − u′u)β−1.

A.5 Proof of Lemma 5. The entropy of a multivariate t and r models is
in closed form (Costa et al., 2003), and we provide the derivation here for
completeness of this work.

Evaluating H(x). We first expand H(x) based on its definition as

H(x) = d
2

log π − β log α + log �(β) − log �(β + d/2)

+ (β + d/2)
∫

x
log(α + x′x)pt(x;α, β) dx. (A.2)

To compute the last term in equation A.2, we use the normalizing property
of the multivariate t model as

∫

x

(
α + x′x

)−β−d/2dx = πd/2�(β)
αβ� (β + d/2)

.

Taking the derivative with regard to β to both sides, we have

−
∫

x

(
α + x′x

)−β−d/2 log(α + x′x)dx = ∂

∂β

(
πd/2�(β)

αβ� (β + d/2)

)
.

Multiplying −αβ� (β + d/2)/πd/2�(β) on both sides, we obtain

∫

x
log(α + x′x)pt(x;α, β) dx = − ∂

∂β

(
πd/2�(β)

αβ� (β + d/2)

)
αβ� (β + d/2)

πd/2�(β)

= ∂

∂β
log

αβ� (β + d/2)
�(β)

= log α + 
(β + d/2) − 
(β).

Replacing the integral in the last term in equation A.2 with log α + 
(β +
d/2) − 
(β), we have proved equation 5.3.
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Evaluating H(u). Similar to the previous case, we first expand H(u) as

H(u) = d/2 log π + log �(β) − log �(β + d/2)

− (β − 1)
∫

u
pτ (u;β) log

(
1 − u′u

)
+ du. (A.3)

We compute the integral in equation A.3 by the normalizing property of the
multivariate r model. We start with

πd/2�(β)
�(β + d/2)

=
∫

u

(
1 − u′u

)β−1
+ du.

Next, taking the derivatives with regard to β and multiplying �(β+d/2)
πd/2�(β) , we

have

�(β + d/2)
�(β)

d
dβ

�(β)
�(β + d/2)

= �(β + d/2)
πd/2�(β)

d
dβ

∫

u

(
1 − u′u

)β−1
+ du

=
∫

u

�(β + d/2)
πd/2�(β)

(
1 − u′u

)β−1
+ log

(
1 − u′u

)
+ du

=
∫

u
pτ (u;β) log

(
1 − u′u

)
+ du.

We can further simplify

�(β + d/2)
�(β)

d
dβ

�(β)
�(β + d/2)

= d
dβ

log
�(β)

�(β + d/2)
=
(β) − 
(β + d/2).

Putting this result in equation A.3, we have proved equation 5.4.

A.6 Proof of Corollary 1. First, using the relation between differential
entropy and MI, we have

I (x) =
d∑

k=1

H(xk) − H(x). (A.4)

To compute MI, we need to compute the joint differential entropy for mul-
tivariate t and r models and the differential entropy for each component of
the multivariate t and r vectors. The former are direct results of lemma 5,
which can be obtained using the fact that each component of a multivariate
t vector x has a one-dimensional t density and equation 5.3, so we have

H(xi ) = 1
2

log απ + log �(β) − log �(β + 1/2)

+ (β + 1/2) [
 (β + 1/2) − 
 (β)] . (A.5)
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Furthermore, the marginal density of each element, ui, in a multivariate r
vector is a one-dimensional r model with parameter β + (d − 1)/2 (Elderton,
1953), as

pτ (ui ;β) = β + (d − 1)/2√
π

(1 − u2
i )β−1+(d−1)/2

+

Applying this to equation 5.4, the differential entropy of ui is given as
(Zografos, 1999)

H(ui ) = 1
2

log π + log �

(
β + d − 1

2

)
− log �

(
β + d

2

)

+
(

β + d − 3
2

) [



(
β + d

2

)
− 


(
β + d − 1

2

)]
. (A.6)

I (x) and I (u) are obtained by combining equations 5.3, 5.4, A.5, and A.6
into equation A.4.

Appendix B: Maximum Likelihood Fitting of Multivariate t Model

We briefly describe the maximum likelihood fitting the multivariate t model
to using data x1, . . . , xN, which have been centered and whitened. Enforc-
ing an identical covariance matrix and using the GSM equivalence of the
multivariate t model, we have

I =
∫

x
xxT pt(x;α, β)dx

=
∫

z
pγ −1 (z;α, β)dz

∫

x
xxTN (x/

√
z)dx = α

2(β − 1)
I,

the last step of which is based on fact 2. Immediately, we have α =
2(β − 1), which means that we only need to estimate β. Replacing this
result, the average log likelihood of the multivariate t model, L(β) =
1
N

∑N
n=1 log pt(xn; 2(β − 1), β), becomes

L(β) = β log 2(β − 1) + log �(β + d/2) − d
2

log π

− log �(β) − β + d/2
N

N∑

n=1

log(2(β − 1) + xT
n xn).

Optimal β is the root of the nonlinear equation d
dβ

L(β) = 0, which is ob-
tained numerically by the Newton-Raphson procedure.
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Appendix C: m-spacing Entropy Estimator

Let z1 ≤ · · · ≤ zN be the sorted set of N independent and identically dis-
tributed samples of scalar random variable z. With an integer m = O(

√
N),

the m-spacing entropy estimation of H(z) is defined as

Ĥ(z1, . . . , zN) = 1
N

N−m∑

i=1

log
(

N
m

[zi+m − zi ]
)

− 
(m) + log(m),

where 
(x) = d
dx log �(x) is the digamma function. The m-spacing estimator

is strongly consistent—P
(
limm→∞,m/N→0 Ĥ(z1, . . . , zN) = H(z)

) = 1.
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