
On Algorithms for Sparse Multi-factor NMF

Siwei Lyu Xin Wang
Computer Science Department
University at Albany, SUNY

Albany, NY 12222
{slyu,xwang26}@albany.edu

Abstract

Nonnegative matrix factorization (NMF) is a popular data analysis method, the
objective of which is to approximate a matrix with all nonnegative components
into the product of two nonnegative matrices. In this work, we describe a new
simple and efficient algorithm for multi-factor nonnegative matrix factorization
(mfNMF) problem that generalizes the original NMF problem to more than two
factors. Furthermore, we extend the mfNMF algorithm to incorporate a regularizer
based on the Dirichlet distribution to encourage the sparsity of the components of
the obtained factors. Our sparse mfNMF algorithm affords a closed form and an
intuitive interpretation, and is more efficient in comparison with previous works
that use fix point iterations. We demonstrate the effectiveness and efficiency of
our algorithms on both synthetic and real data sets.

1 Introduction

The goal of nonnegative matrix factorization (NMF) is to approximate a nonnegative matrix V
with the product of two nonnegative matrices, as V ≈ W1W2. Since the seminal work of [1] that
introduces simple and efficient multiplicative update algorithms for solving the NMF problem, it has
become a popular data analysis tool for applications where nonnegativity constraints are natural [2].

In this work, we address the multi-factor NMF (mfNMF) problem, where a nonnegative matrix V is
approximated with the product of K ≥ 2 nonnegative matrices, V ≈ ∏K

k=1Wk. It has been argued
that using more factors in NMF can improve the algorithm’s stability, especially for ill-conditioned
and badly scaled data [2]. Introducing multiple factors into the NMF formulation can also find
practical applications, for instance, extracting hierarchies of topics representing different levels of
abstract concepts in document analysis or image representations [2].

Many practical applications also require the obtained nonnegative factors to be sparse, i.e., having
many zero components. Most early works focuses on the matrix `1 norm [6], but it has been pointed
out that `1 norm becomes completely toothless for factors that have constant `1 norms, as in the case
of stochastic matrices [7, 8]. Regularizers based on the entropic prior [7] or the Dirichlet prior [8]
have been shown to be more effective but do not afford closed-form solutions.

The main contribution of this work is therefore two-fold. First, we describe a new algorithm for
the mfNMF problem. Our solution to mfNMF seeks optimal factors that minimize the total dif-
ference between V and

∏K
k=1Wk, and it is based on the solution of a special matrix optimization

problem that we term as the stochastic matrix sandwich (SMS) problem. We show that the SMS
problem affords a simple and efficient algorithm consisting of only multiplicative update and nor-
malization (Lemma 2). The second contribution of this work is a new algorithm to incorporate the
Dirichlet sparsity regularizer in mfNMF. Our formulation of the sparse mfNMF problem leads to
a new closed-form solution, and the resulting algorithm naturally embeds sparsity control into the
mfNMF algorithm without iteration (Lemma 3). We further show that the update steps of our sparse

1

mfNMF algorithm afford a simple and intuitive interpretation. We demonstrate the effectiveness and
efficiency of our sparse mfNMF algorithm on both synthetic and real data.

2 Related Works

Most exiting works generalizing the original NMF problem to more than two factors are based on
the multi-layer NMF formulation, in which we solve a sequence of two factor NMF problems, as
V ≈ W1H1, H1 ≈ W2H2, · · · , and HK−1 ≈ WK−1WK [3–5]. Though simple and efficient,
such greedy algorithms are not associated with a consistent objective function involving all factors
simultaneously. Because of this, the obtained factors may be suboptimal measured by the difference
between the target matrix V and their product. On the other hand, there exist much fewer works
directly solving the mfNMF problem, one example is a multiplicative algorithm based on the general
Bregmann divergence [9]. In this work, we focus on the generalized Kulback-Leibler divergence (a
special case of the Bregmann divergence), and use its decomposing property to simplify the mfNMF
objective and remove the undesirable multitude of equivalent solutions in the general formulation.
These changes lead to a more efficient algorithm that usually converges to a better local minimum
of the objective function in comparison of the work in [9] (see Section 6).

As a common means to encouraging sparsity in machine learning, the `1 norm has been incorpo-
rated into the NMF objective function [6] as a sparsity regularizer. However, the `1 norm may be
less effective for nonnegative matrices, for which it reduces to the sum of all elements and can be
decreased trivially by scaling down all factors without affecting the number of zero components.
Furthermore, the `1 norm becomes completely toothless in cases when the nonnegative factors are
constrained to have constant column or row sums (as in the case of stochastic matrices).

An alternative solution is to use the Shannon entropy of each column of the matrix factor as sparsity
regularizer [7], since a vector with unit `1 norm and low entropy implies that only a few of its com-
ponents are significant. However, the entropic prior based regularizer does not afford a closed form
solution, and an iterative fixed point algorithm is described based on the Lamber’s W-function in [7].
Another regularizer is based on the symmetric Dirichlet distribution with concentration parameter
α < 1, as such a model allocates more probability weights to sparse vectors on a probability sim-
plex [8, 10, 11]. However, using the Dirichlet regularizer has a practical problem, as it can become
unbounded when there is a zero element in the factor. Simply ignoring such cases as in [11] can
lead to unstable algorithm (see Section 5.2). Two approaches have been described to solve this prob-
lem, one is based on the constrained concave-convex procedure (CCCP) [10]. The other uses the
psuedo-Dirichlet regularizer [8], which is a bounded perturbation of the original Dirichlet model. A
drawback common to these methods is that they require extra iterations for the fix point algorithm.
Furthermore, the effects of the updating steps on the sparsity of the resulting factors are obscured by
the iterative steps. In contrast, our sparse mfNMF algorithm uses the original Dirichlet model and
does not require extra fix point iteration. More interestingly, the update steps of our sparse mfNMF
algorithm afford a simple and intuitive interpretation.

3 Basic Definitions

We denote 1m as the all-one column vector of dimension m and Im as the m-dimensional identity
matrix, and use V ≥ 0 or v ≥ 0 to indicate that all elements of a matrix V or a vector v are
nonnegative. Throughout the paper, we assume a matrix does not have all-zero columns or rows. An
m× n nonnegative matrix V is stochastic if V T1m = 1n, i.e., each column has a total sum of one.
Also, for stochastic matrices W1 and W2, their product W1W2 is also stochastic. Furthermore, an
m × n nonnegative matrix V can be uniquely represented as V = SD, with an n × n nonnegative
diagonal matrix D = diag(V T1m) and an m× n stochastic matrix S = V D−1.

For nonnegative matrices V and W , their generalized Kulback-Leibler (KL) divergence [1] is de-
fined as

d(V,W) =

m∑
i=1

n∑
j=1

(
Vij log

Vij
Wij
− Vij +Wij

)
. (1)

2

We have d(V,W) ≥ 0 and the equality holds if and only if V = W 1. We emphasize the following
decomposition of the generalized KL divergence: representing V and W as products of stochastic
matrices and diagonal matrices, V = S(V)D(V) and W = S(W)D(W), we can decompose d(V,W)
into two terms involving only stochastic matrices or diagonal matrices, as

d(V,W)=d
(
V, S(W)D(V)

)
+ d

(
D(V), D(W)

)
=

m∑
i=1

n∑
j=1

Vij log

[
S

(V)
ij

S
(W)
ij

]
+ d

(
D(V), D(W)

)
.

(2)Due to space limit, the proof of Eq.(2) is deferred to the supplementary materials.

4 Multi-Factor NMF

In this work, we study the multi-factor NMF problem based on the generalized KL divergence.
Specifically, given an m × n nonnegative matrix V , we seek K ≥ 2 matrices Wk of dimensions
lk−1 × lk for k = 1, · · · ,K, with l0 = m and lK = n that minimize d(V,

∏K
k=1Wk), s.t., Wk ≥ 0.

This simple formulation has a drawback as it is invariant to relative scalings between the factors:
for any γ > 0, we have d(V,W1 · · ·Wi · · ·Wj · · ·WK) = d(V,W1 · · · (γWi) · · · (1

γWj) · · ·WK).
In other words, there exist infinite number of equivalent solutions, which gives rise to an intrinsic
ill-posed nature of the mfNMF problem.

To alleviate this problem, we constrain the first K − 1 factors, W1, · · · ,WK−1, to be stochastic
matrices, and differentiate the notationns with X1, · · · , XK−1. Using the property of nonnegative
matrices, we represent the last nonnegative factor WK as the product of a stochastic matrix XK

and a nonnegative diagonal matrix D(W). As such, we represent the nonnegative matrix
∏K
k=1Wk

as the product of a stochastic matrix S(W) =
∏K
k=1Xk and a diagonal matrix D(W). Similarly,

we also decompose the target nonnegative matrix V as the product of a stochastic matrix S(V)

and a nonnegative diagonal matrix D(V). It is not difficult to see that any solution from this more
constrained formulation leads to a solution to the original problem and vice versa.

Applying the decomposition in Eq.(2), the mfNMF optimization problem can be re-expressed as

min
X1,··· ,XK ,D(W)

d
(
V,
(∏K

k=1Xk

)
D(V)

)
+ d

(
D(V), D(W)

)
s.t. XT

k 1lk−1
= 1lk , Xk ≥ 0, k = 1, · · · ,K,D(W) ≥ 0.

As such, the original problem is solved with two sub-problems, each for a different set of variables.

The first sub-problem solves for the diagonal matrix D(W), as:

min
D(W)

d
(
D(V), D(W)

)
, s.t. D(W) ≥ 0.

Per the property of the generalized KL divergence, its solution is trivially given by D(W) = D(V).

The second sub-problem optimizes the K stochastic factors, X1, · · · , XK , which, after dropping
irrelevant constants and rearranging terms, becomes

max
X1,··· ,XK

m∑
i=1

n∑
j=1

Vij log

(
K∏
k=1

Xk

)
ij

, s.t. XT
k 1lk−1

= 1lk , Xk ≥ 0, k = 1, · · · ,K. (3)

Note that Eq.(3) is essentially the maximization of the similarity between the stochastic part of V ,
SV with the stochastic matrix formed as the product of the K stochastic matrices X1, · · · , XK ,
weighted by DV .

4.1 Stochastic Matrix Sandwich Problem

Before describing the algorithm solving (3), we first derive the solution to another related problem
that we term as the stochastic matrix sandwich (SMS) problem, from which we can construct a
solution to (3). Specifically, in an SMS problem one minimizes the following objective function
with regards to an m′ × n′ stochastic matrix X , as

1In computing the generalized KL divergence, we define 0 log 0 = 0 and 0
0
= 0.

3

max
X

m∑
i=1

n∑
j=1

Cij log (AXB)ij , s.t. XT1m′ = 1n′ , X ≥ 0, (4)

where A and B are two known stochastic matrices of dimensions m×m′ and n′ × n, respectively,
and C is an m× n nonnegative matrix.

We note that (4) is a convex optimization problem [12], which can be solved with general numerical
procedures such as interior-point methods. However, we present here a new simple solution based
on multiplicative updates and normalization, which completely obviates control parameters such as
the step sizes. We first show that there exists an “auxiliary function” to log (AXB)ij .
Lemma 1. Let us define

Fij(X; X̃) =

m′∑
k=1

n′∑
l=1

AikX̃klBlj(
AX̃B

)
ij

log

(
Xkl

X̃kl

(
AX̃B

)
ij

)
,

then we have Fij(X; X̃) ≤ log (AXB)ij and Fij(X;X) = log (AXB)ij .

Proof of Lemma 1 can be found in the supplementary materials.

Based Lemma 1 we can develop an EM style iterative algorithm to optimize (4), in which, starting
with an initial values X = X0, we iteratively solve the following optimization problem,

Xt+1 ← argmax
X:XT 1m′=1n′ ,X≥0

m∑
i=1

n∑
j=1

CijFij(X;Xt) and t← t+ 1. (5)

Using the relations given in Lemma 1, we have:∑
i,j

Cij log (AXtB)ij =
∑
i,j

CijFij(Xt;Xt) ≤
∑
i,j

CijFij(Xt+1;Xt) ≤
∑
i,j

Cij log (AXt+1B)ij ,

which shows that each iteration of (5) leads to feasible X and does not decrease the objective func-
tion of (4). Rearranging terms and expressing results using matrix operations, we can simplify the
objective function of (5) as∑

i,j

CijFij(X; X̃) =

m′∑
k=1

n′∑
l=1

Mkl logXkl + const, (6)

where
M = X̃ ⊗

[
AT
(
C �

(
AX̃B

))
BT
]
, (7)

where ⊗ and � correspond to element-wise matrix multiplication and division, respectively. A
detailed derivation of (6) and (7) is given in the supplemental materials. The following result shows
that the resulting optimization has a closed-form solution.
Lemma 2. The global optimal solution to the following optimization problem,

max
X

m′∑
k=1

n′∑
l=1

Mkl logXkl, s.t. XT1m′ = 1n′ , X ≥ 0, (8)

is given by
Xkl =

Mkl∑
kMkl

.

Proof of Lemma 2 can be found in the supplementary materials.

Next, we can construct a coordinate-wise optimization solution to the mfNMF problem (3) that
iteratively optimizes each Xk while fixing the others, based on the solution to the SMS problem
given in Lemma 2. In particular, it is easy to see that for C = V ,

• solving for X1 with fixed X2, · · · , XK is an SMS problem with A = Im, X = X1 and
B =

∏K
k=2Xk;

• solving for Xk, k = 2, · · · ,K − 1, with fixed X1, · · · , Xk−1, Xk+1, · · · , XK is an SMS
with A =

∏k−1
k′=1Xk′ , X = Xk, and B =

∏K
k′=k+1Xk′ ;

• and solving for XK with fixed X1, · · · , XK−1 is an SMS problem with A =
∏K−1
k=1 Xk,

X = XK and B = In.
In practice, we do not need to run each SMS optimization to converge, and the algorithm can be
implemented with a few fixed steps updating each factor in order.

It should be pointed out that even though SMS is a convex optimization problem guaranteed with
a global optimal solution, this is not the case for the general mfNMF problem (3), the objective
function of which is non-convex (it is an example of the multi-convex function [13]).

4

5 Sparse Multi-Factor NMF

Next, we describe incorporating sparsity regularization in the mfNMF formulation. We assume that
the sparsity requirement is applied to each individual factor in the mfNMF objective function (3), as

max
X1,··· ,XK

∑
i,j

Vij log

(
K∏
k=1

Xk

)
ij

+

K∑
k=1

`(Xk), s.t. XT
k 1lk−1

= 1lk , Xk ≥ 0, (9)

where `(X) is the sparsity regularizer that is larger for stochastic matrix X with more zero entries.
As the overall mfNMF can be solved by optimizing each individual factor in an SMS problem, we
focus here on the case where the sparsity regularizer of each factor is introduced in (4), to solve

max
X

∑
i,j

Cij log (AXB)ij + `(X), s.t. XT1m′ = 1n′ , X ≥ 0. (10)

5.1 Dirichlet Sparsity Regularizer

As we have mentioned, the typical choice of `(·) as the matrix `1 norm is problematic in (10), as
‖X‖1 =

∑
ij Xij = n′ is a constant. On the other hand, if we treat each column of X as a point on

a probability simplex, as their elements are nonnegative and sum to one, then we can induce a sparse
regularizer from the Dirichlet distribution. Specifically, a Dirchilet distribution of d-dimensional
vectors v : v ≥ 0,1Tv = 1 is defined asDir(v;α) = Γ(dα)

Γ(α)d

∏d
k=1 v

α−1
k , where Γ(·) is the standard

Gamma function2. The parameter α ∈ [0, 1] is the parameter that controls the sparsity of samples –
smaller α corresponds to higher likelihood of sparse v in Dir(v;α).

Incorporating a Dirichlet regularizer with parameter αl to each column ofX and dropping irrelevant
constant terms, (10) reduces to3

max
X

m∑
i=1

n∑
j=1

Cij log (AXB)ij +

m′∑
k=1

n′∑
l=1

(αl − 1) logXkl, s.t. XT1m′ = 1n′ , X ≥ 0. (11)

As in the case of mfNMF, we introduce the auxiliary function of log(AXB)ij to form an upper-
bound of (11) and use an EM-style algorithm to optimize (11). Using the result given in Eqs.(6) and
(7), the optimization problem can be further simplified as:

max
X

m′∑
k=1

n′∑
l=1

(Mkl + αl − 1) logXkl, s.t. XT1m′ = 1n′ , X ≥ 0. (12)

5.2 Solution to SMS with Dirichlet Sparse Regularizer

However, a direct optimization of (12) is problematic when αl < 1: if there existsMkl < 1−αl, the
objective function of (12) becomes non-convex and unbounded – the term (Mkl + αl − 1) logXkl

approaches ∞ as Xkl → 0. This problem is addressed in [8] by modifying the definition of the
Dirichlet regularizer in (11) to (αl − 1) log(Xkl + ε), where ε > 0 is a predefined parameter. This
avoids the problem of taking logarithm of zero, but it leads to a less efficient algorithm based on an
iterative fix point procedure. In addition, the fix point algorithm is difficult to interpret as its effect
on the sparsity of the obtained factors is obscured by the iterative steps.

On the other hand, notice that if we tighten the nonnegativity constraint to Xkl ≥ ε, the objective
function of (12) will always be finite. Therefore, we can simply modify the optimization of (12) the
objective function to become infinity, as:

max
X

m′∑
k=1

n′∑
l=1

(Mkl + αl − 1) logXkl, s.t. XT1m′ = 1n′ , Xkl ≥ ε, ∀k, l. (13)

The following result shows that with a sufficiently small ε, the constrained optimization problem in
(13) has a unique global optimal solution that affords a closed-form and intuitive interpretation.

2For simplicity, we only discuss the symmetric Dirichlet model, but the method can be easily extended to
the non-symmetric Dirichlet model with different α value for different dimension.

3Alternatively, this special case of NMF can be formulated as C = AXB + E, where E contains inde-
pendent Poisson samples [14], and (11) can be viewed as a (log) maximum a posteriori estimation of column
vectors of X with a Poisson likelihood and symmetric Dirichlet prior.

5

case 1 case 2 case 3
Mkl

k k

X̂kl

1� ↵l

Mkl

k k

X̂kl

1� ↵l

Mkl

k k

X̂kl
1� ↵l

Figure 1: Sparsification effects on the updated vectors before (left) and after (right) applying the algorithm
given in Lemma 3, with each column illustrating one of the three cases.

Lemma 3. Without loss of generality, we assume Mkl 6= 1 − αl,∀k, l4. If we choose a constant
ε ∈

(
0, minkl{|Mkl+αl−1|}

m′maxkl{|Mkl+αl−1|}

)
, and for each column l define Nl = {k|Mkl < 1− αl} as the set of

elements with Mkl + αl − 1 < 0, then the following is the global optimal solution to (13):

• case 1. |Nl| = 0, i.e., all constant coefficients of (13) are positive,

X̂kl =
Mkl + αl − 1∑
k′ [Mk′l + αl − 1]

, (14)

• case 2. 0 < |Nl| < m′, i.e., the constant coefficients of (13) have mixed signs,

X̂kl = ε · δ [k ∈ Nl] +
(1− |Nl|ε) [Mkl + αl − 1]∑

k′ {[Mk′l + αl − 1] · δ [k′ 6∈ Nl]}
· δ [k 6∈ Nl] , (15)

where δ(c) is the Kronecker function that takes 1 if c is true and 0 otherwise.

• case 3. |Nl| = m′, i.e., all constant coefficients of (13) are negative,

X̂kl = (1− (m′−1)ε) ·δ
[
k = argmax

k′∈{1,··· ,m′}
Mk′l

]
+ ε ·δ

[
k 6= argmax

k′∈{1,··· ,m′}
Mk′l

]
. (16)

Proof of Lemma 3 can be found in the supplementary materials. Note that the algorithm provided in
Lemma 3 is still valid when ε = 0, but the theoretical result of it attaining the global optimum of a
finite optimization problem only holds for ε satisfying the condition in Lemma 3.

We can provide an intuitive interpretation to Lemma 3, which is schematically illustrated in Fig.1
for a toy example. For the first case (first column of Fig.1) when all constant coefficients of (13) are
positive, it simply reduces to first decrease everyMkl by 1−αl and then renormalize each column to
sum to one, Eq.(14). This operation of reducing the same amount from all elements in one column
of M has the effect of making “the rich get richer and the poor get poorer” (known as Dalton’s 3rd
law), which increases the imbalance of the elements and improves the chances of small elements
to be reduced to zero in the subsequent steps [15]5. In the second case (second column of Fig.1),
when the coefficients of (13) have mixed signs, the effect of the updating step in (15) is two-fold.
For Mkl < 1 − αl (first term in Eq.(15)), they are all reduced to ε, which is the de facto zero. In
other words, components below the threshold 1 − αl are eliminated to zero. On the other hands,
terms with Mkl > 1−αl (second term in Eq.(15)) are redistribute with the operation of reduction of
1− αl followed by renormalization. In the last case when all coefficients of (13) are negative (third
column of Fig.1), only the element corresponding to Mkl that is closest to the threshold 1 − αk, or
equivalently, the largest of all Mkl, will survive with a non-zero value that is essentially 1 (first term
in Eq.(16)), while the rest of the elements all become extinct (second term in Eq.(16)), analogous to
a scenario of “survival of the fittest”. Note that it is the last two cases actually generating zero entries
in the factors, but the first case makes more entries suitable for being set to zero. The thresholding
and renormalization steps resemble algorithms in sparse coding [16].

6 Experimental Evaluations

We perform experimental evaluations of the sparse multi-factor NMF algorithm using synthetic and
real data sets. In the first set of experiments, we study empirically the convergence of the multi-
plicative algorithm for the SMS problem (Lemma 2). Specifically, with several different choices of

4It is easy to show that the optimal solution in this case isXkl = 0, i.e., setting the corresponding component
in X to zero. So we can technically ignore such elements for each column index l.

5Some early works (e.g., [11]) obtain simpler solution by setting negative Mk′l + αl − 1 to zero followed
by normalization. Our result shows that such a solution is not optimal.

6

10
0

10
1

10
2

10
3

10
4

10
5

m=20,n=20
m’=10,n’=10

itr #

ob
j.

fu
n

pgd
mult

10
0

10
1

10
2

10
3

10
4

10
5

m=90,n=50
m’=20,n’=5

itr #

ob
j.

fu
n

pgd
mult

10
0

10
1

10
2

10
3

10
4

10
5

m=200,n=100
m’=50,n’=25

itr #

ob
j.

fu
n

pgd
mult

10
0

10
1

10
2

10
3

10
4

10
5

m=1000,n=200
m’=35,n’=15

itr #

ob
j.

fu
n

pgd
mult

Figure 2: Convergences of the SMS objective function with multiplicative update algorithm (mult solid curve)
and the projected gradient ascent method (pgd dashed curve) for different problem sizes.

(m,n,m′, n′), we randomly generate stochastic matrices A (m × m′) and B (n′ × n), and non-
negative matrix C (m × n). We then apply the SMS algorithm to solve for the optimal X . We
compare our algorithm with a projected gradient ascent optimization of the SMS problem, which
updates X using the gradient of the SMS objective function and chooses a step size to satisfy the
nonnegative and normalization constraints. We do not consider methods that use the Hessian ma-
trix of the objective function, as constructing a general Hessian matrix in this case have prohibitive
memory requirement even for a medium sized problem. Shown in Fig.2 are several runs of the two
algorithms starting at the same initial values, as the the objective function of SMS vs. the number of
updates of X . Because of the convex nature of the SMS problem, both algorithms converge to the
same optimal value regardless of the initial values. On the other hand, the multiplicative updates for
SMS usually achieve two order speed up in terms of the number of iterations and typically about 10
times faster in running time when compared to the gradient based algorithm.

In the second set of experiments, we evaluate the performance of the coordinate-update mfNMF
algorithm based on the multiplicative updating algorithm of the SMS problem (Section 4.1). Specif-
ically, we consider the mfNMF problem that approximates a randomly generated target nonnegative
matrix V of dimensionm×nwith the product of three stochastic factors,W1 (m×m′),W2 (m′×n′),
and W3 (n′×n). The performance of the algorithm is evaluated by the logarithm of the generalized
KL divergence for between V and W1W2W3, of which lower numerical values suggest better per-
formances. As a comparison, we also implemented a multi-layer NMF algorithm [5], which solves
two NMF problems in sequence, as: V ≈ W1Ṽ and Ṽ ≈ W2W3, and the multiplicative update
algorithm of mfNMF of [9], both of which are based on the generalized KL divergence. To make
the comparison fair, we start all three algorithms with the same initial values.

m,n,m′, n′

50,40,30,10 200,100,60,30 1000,400,200,50 5000,2000,100,20
multi-layer NMF [5] 1.733 2.595 70.526 183.617
multi-factor NMF [9] 1.431 2.478 66.614 174.291

multi-factor NMF (this work) 1.325 2.340 62.086 161.338

Table 1: Comparison of the multi-layer NMF method and two mfNMF methods for a three factor with different
problem sizes. The values correspond to the logarithm of generalized KL divergence, log d(V,W1W2W3).
Lower numerical values (in bold font) indicate better performances.

The results of several runs of these algorithms for different problem sizes are summarized in Table
1, which show that in general, mfNMF algorithms lead to better solutions corresponding to lower
generalized KL divergences between the target matrix and the product of the three estimated factors.
This is likely due to the fact that these algorithms optimize the generalized KL divergence directly,
while multi-layer NMF is a greedy algorithm with sub-optimal solutions. On the other hand, our
mfNMF algorithm consistently outperforms the method of [9] by a significant margin, with on
average 40% less iterations. We think the improved performance and running efficiency are due
to our formulation of the mfNMF problem based on stochastic matrices, which reduces the solution
space and encourage convergence to a better local minimum of the objective function.

We apply the sparse mfNMF algorithm to data converted from grayscale images from the MNIST
Handwritten Digits data set [17] that are vectorized to column vectors and normalized to have total
sum of one. All vectorized and normalized images are collected to form the target stochastic ma-
trix V , which are decomposed into the product of three factors W1W2W3. We also incorporate the
Dirichlet sparsity regularizers with different configurations. For simplicity, we use the same param-
eter for all column vectors in one factor. The threshold is set as ε = 10−8/n where n is the total
number of images. Shown in Fig.3 are the decomposition results corresponding to 500 vectorized
20 × 20 images of handwritten digit 3, that are decomposed into three factors of size 400 × 196,

7

W1 W2 W1W2 W3 W1W2W3

Figure 3: Sparse mfNMF algorithm on the handwritten digit images. The three rows correspond to three cases
as: α1 = 1, α2 = 1, α3 = 1, α1 = 1, α2 = 1, α3 = 0.99, α1 = 1, α2 = 0.99, α3 = 0.99, respectively. See
texts for more details.

196× 100, and 100× 500. The columns of the factors are reshaped to shown as images, where the
brightness of each pixel in the figure is proportional to the nonnegative values in the corresponding
factors. Due to space limit, we only show the first 25 columns in each factor. All three factorization
results can reconstruct the target matrix (last column), but they put different constraints on the ob-
tained factors. The factors are also visually meaningful: factor W1 contains low level components
of the images that when combined with factor W2 forms more complex structures. The first row
corresponds to running the mfNMF without sparsity regularizer. The two rows below correspond
to the cases when the Dirichlet sparsity regularizer is applied to the third factor and to the second
and third factor simultaneously. Compare with the corresponding results in the non-sparse case,
the obtained factors contain more zeros. As a comparison, we also implement mfNMF algorithm
using a pseudo-Dirichlet sparse regularizer [8]. With similar decomposition results, our algorithm
is typically 3− 5 times faster as it does not require the extra iterations of a fix point algorithm.

7 Conclusion

We describe in this work a simple and efficient algorithm for the sparse multi-factor nonnegative
matrix factorization (mfNMF) problem, involving only multiplicative update and normalization. Our
solution to incorporate Dirichlet sparse regularizer leads to a closed form solution and the resulting
algorithm is more efficient than previous works based on fix point iterations. The effectiveness and
efficiency of our algorithms are demonstrated on both synthetic and real data sets.

There are several directions we would like to further explore. First, we are studying if similar
multiplicative update algorithm also exists for mfNMF with more general similarity norms such
as Csizar’s divergence [18], Itakura-Saito divergence, [19], α-β divergence [20] or the Bregmann
divergence [9]. We will also study incorporating other constraints (e.g., value ranges) over the
factors into the mfNMF algorithm. Last, we would like to further study applications of mfNMF
in problems such as co-clustering or hierarchical document topic analysis, exploiting its ability to
recover hierarchical decomposition of nonnegative matrices.

Acknowledgement

This work is supported by the National Science Foundation under Grant Nos. IIS-0953373, IIS-
1208463 and CCF-1319800.

8

References
[1] Daniel D. Lee and H. Sebastian Seung. Algorithms for nonnegative matrix factorization. In Advances in

Neural Information Processing Systems (NIPS 13), 2001. 1, 2

[2] A. Cichocki, R. Zdunek, A.H. Phan, and S. Amari. Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, 2009. 1

[3] Seungjin Choi Jong-Hoon Ahn and Jong-Hoon Oh. A multiplicative up-propagation algorithm. In ICML,
2004. 2

[4] Nicolas Gillis and Fran cois Glineur. A multilevel approach for nonnegative matrix factorization. Journal
of Computational and Applied Mathematics, 236 (7):1708–1723, 2012. 2

[5] A Cichocki and R Zdunek. Multilayer nonnegative matrix factorisation. Electronics Letters, 42(16):947–
948, 2006. 2, 7

[6] Patrik O. Hoyer and Peter Dayan. Non-negative matrix factorization with sparseness constraints. Journal
of Machine Learning Research, 5:1457–1469, 2004. 1, 2

[7] Bhiksha Raj Madhusudana Shashanka and Paris Smaragdis. Sparse overcomplete latent variable decom-
position of counts data. In NIPS, 2007. 1, 2

[8] Martin Larsson and Johan Ugander. A concave regularization technique for sparse mixture models. In
NIPS, 2011. 1, 2, 5, 8

[9] Suvrit Sra and Inderjit S Dhillon. Nonnegative matrix approximation: Algorithms and applications.
Computer Science Department, University of Texas at Austin, 2006. 2, 7, 8

[10] Jussi Kujala. Sparse topic modeling with concave-convex procedure: EMish algorithm for latent dirichlet
allocation. In Technical Report, 2004. 2

[11] Jagannadan Varadarajan, Rémi Emonet, and Jean-Marc Odobez. A sequential topic model for mining
recurrent activities from long term video logs. International Journal of Computer Vision, 103(1):100–
126, 2013. 2, 6

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2005. 4

[13] P. Gahinet, P. Apkarian, and M. Chilali. Affine parameter-dependent Lyapunov functions and real para-
metric uncertainty. IEEE Transactions on Automatic Control, 41(3):436–442, 1996. 4

[14] Wray Buntine and Aleks Jakulin. Discrete component analysis. In Subspace, Latent Structure and Feature
Selection Techniques. Springer-Verlag, 2006. 5

[15] N. Hurley and Scott Rickard. Comparing measures of sparsity. Information Theory, IEEE Transactions
on, 55(10):4723–4741, 2009. 6

[16] Misha Denil and Nando de Freitas. Recklessly approximate sparse coding. CoRR, abs/1208.0959, 2012.
6

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. 7

[18] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. Csiszar’s divergences for non-negative matrix fac-
torization: Family of new algorithms. In Independent Component Analysis and Blind Signal Separation,
pages 32–39. Springer, 2006. 8

[19] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative matrix factorization with the itakura-
saito divergence: With application to music analysis. Neural Computation, 21(3):793–830, 2009. 8

[20] Andrzej Cichocki, Rafal Zdunek, Seungjin Choi, Robert Plemmons, and Shun-Ichi Amari. Non-negative
tensor factorization using alpha and beta divergences. In Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, volume 3, pages III–1393. IEEE, 2007. 8

[21] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983. 13

9

A Proofs

A.1 Proof of Eq.(2)

We prove the result by directly expanding the terms based on the definition of the generalized KL
divergence, as:

d(V,W) =

m∑
i=1

n∑
j=1

(
Vij log

Vij
Wij
− Vij +Wij

)

=

m∑
i=1

n∑
j=1

(
Vij log

D
(V)
jj S

(V)
ij

D
(W)
jj S

(W)
ij

− Vij +D
(W)
jj S

(W)
ij

)

=

m∑
i=1

n∑
j=1

(
Vij log

S
(V)
ij

S
(W)
ij

+ Vij log
D

(V)
jj

D
(W)
jj

− Vij +D
(W)
jj S

(W)
ij

)

=

m∑
i=1

n∑
j=1

Vij log
S

(V)
ij

S
(W)
ij

+

m∑
i=1

n∑
j=1

(
D

(V)
jj S

(V)
ij log

D
(V)
jj

D
(W)
jj

− Vij +D
(W)
jj S

(W)
ij

)

=

m∑
i=1

n∑
j=1

Vij log
S

(V)
ij

S
(W)
ij

+

n∑
j=1

(
D

(V)
jj log

D
(V)
jj

D
(W)
jj

−D(V)
jj +D

(W)
jj

)

=

m∑
i=1

n∑
j=1

Vij log
S

(V)
ij

S
(W)
ij

+ d
(
D(V), D(W)

)
.

Furthermore, we have

m∑
i=1

n∑
j=1

Vij log
S

(V)
ij

S
(W)
ij

=

m∑
i=1

n∑
j=1

Vij log
S

(V)
ij D

(V)
jj

S
(W)
ij D

(V)
jj

= d
(
V, S(W)D(V)

)

A.2 Proof of Lemma 1

Note that AikX̃klBlj ≥ 0 and
∑
k,l

AikX̃klBlj

(AX̃B)
ij

= 1, the inequality part can be easily proved with an

application of the Jensen’s inequality, as:

∑
k,l

AikX̃klBlj

(AX̃B)
ij

log

(
Xkl

X̃kl

(
AX̃B

)
ij

)
=
∑
k,l

AikX̃klBlj

(AX̃B)
ij

log

(
AikXklBlj

AikX̃klBlj

(
AX̃B

)
ij

)
≤

log

(∑
k,l

AikX̃klBlj

(AX̃B)
ij

AikXklBlj

AikX̃klBlj

(
AX̃B

)
ij

)
= log

(∑m′

k=1

∑n′

l=1AikXklBlj

)
= log(AXB)ij .

Furthermore, the equality holds when X = X̃ as

∑
k,l

AikXklBlj
(AXB)ij

log

(
Xkl

Xkl
(AXB)ij

)
= log (AXB)ij

∑
k,l

AikXklBlj
(AXB)ij

= log (AXB)ij .

10

A.3 Derivation of Eqs. (6) and (7)

We prove the result by explicitly expanding the terms, as:∑
i,j CijFij(X; X̃) =

∑
i,j Cij

∑
k,l

AikX̃klBlj

(AX̃B)
ij

log

(
Xkl

X̃kl

(
AX̃B

)
ij

)
=
∑
k,l

∑
i,j Cij

AikX̃klBlj

(AX̃B)
ij

logXkl + const

=
∑
k,l X̃kl logXkl

∑
i,j

AikCijBlj

(AX̃B)
ij

+ const

=
∑
k,l X̃kl logXkl

∑
i,j A

T
ki(C � (AX̃B))ijB

T
jl + const

=
∑
k,l X̃kl logXkl

[
AT (C � (AX̃B))BT

]
kl

+ const

=
∑
k,l logXkl

[
X̃ ⊗

(
AT (C � (AX̃B))BT

)]
kl

+ const
=
∑
k,lMkl logXkl + const.

A.4 Proof of Lemma 2

We first introduce Lagrangian multiplier for each equality constraint ηl in the optimization problem,
and form the Lagrangian as:

m′∑
k=1

n′∑
l=1

Mkl logXkl −
n′∑
l=1

ηl

 m′∑
k=1

Xkl − 1

 .

Taking derivative of the Lagrangian with regards to each Xkl and solving the equation when setting
the result to zero yield Xkl = Mkl

ηl
. Further considering the constraint

∑m′

k=1Xkl = 1, we have

ηl =
∑m′

k=1Mkl.

A.5 Proof of Lemma 3

We re-express Lemma 3 using a simplified notation. As in the original Lemma, the solution to
each column of X is independent, we will then focus here on one particular column denoted as an
m′-dimensional nonnegative vector x. Furthermore, we use all positive c1, · · · , cm′ to represent
|Mkl + αl − 1| while make their signs explicit. The reformulated lemma is given in the following.

Lemma 4. For constants ci > 0, i = 1, · · · ,m′ and 0 < ε ≤ mini=1,··· ,m′{ci}
m′maxi=1,··· ,m′{ci}

, we define

f(x) = −
m−∑
i=1

ci log xi +

m′∑
j=m−+1

cj log xj , (17)

then the solution to the following optimization problem

max
x

f(x) s.t.
m′∑
i=1

xi = 1 and xi ≥ ε, (18)

is given by

• when m− = 0,
x?i =

ci∑m′

j=1 cj
; (19)

• when 0 < m− < m′,

x?i =

{
ε i = 1, · · · ,m−

(1−m−ε)ci∑m′
j=m−+1

cj
i = m− + 1, · · · , n ; (20)

• when m− = m′

x?i =

{
1− (m′ − 1)ε i = argminj{cj , j = 1, · · · , n}

ε otherwise . (21)

11

Proof. We proof each of the three cases in the Lemma.

• m− = 0. We consider first dropping the inequality constraints in (18), which reduces to
a convex programming problem. By introducing the Lagrangian multiplier to the equality
constraint, we can obtain its unique and global optimal solution which is given by (19).
Further, as

ε ≤ mini=1,··· ,m′ {ci}
m′maxi=1,··· ,m′ {ci}

≤ ci∑m′

j=1 cj
= x?i ,

and
∑m′

i=1 x
?
i = 1, this solution satisfies all constraints of (18), therefore it is also the

optimal solution to (18).

• 0 < m− < m′. We first introduce a set of new variables as xi = y · x̃i for i = m− +

1, · · · ,m′, which satisfies that
∑m′

i=m−+1 x̃i = 1 and x̃i > 0. Correspondingly, we have

y =
∑m′

i=m−+1 xi. Furthermore, f(x) can be decomposed as

f(x) = −
m−∑
i=1

ci log xi + c̃ log y +

m′∑
j=m−+1

cj log x̃j ,

where c̃ =
∑m′

j=m−+1 cj . We now define two separate optimization problems with regards
to two separate sets of variables, as

max
x̃i:i=m−+1,··· ,m′

m′∑
i=m−+1

ci log x̃i s.t.
m′∑

i=m−+1

x̃i = 1 and x̃i ≥ 0, (22)

and

max
y,xi:i=1,··· ,m−

−
m−∑
i=1

ci log xi + c̃ log y s.t.
m−∑
i=1

xi + y = 1, y ≥ 0 and xi ≥ ε. (23)

We then take the following steps to prove the main result

1. obtain optimal solution to (22);
2. obtain optimal solution to (23);
3. combining the results of step 1 & 2 we can obtain a feasible solution to (18);
4. Because the objective of (18) is upper-bounded by the objectives of (22) and (23), the

feasible solution of step 3 is optimal for (18).

First, the optimal solution to (22) is x̃?i = ci∑m′
j=m−+1

cj
, as it is exactly the first case of the

Lemma. Next, we show that y? = 1 −m−ε and x?i = ε for i = 1, · · · ,m− is an optimal
solution to (23). This solution is feasible, as we have

y? = 1−m−ε ≥ 1−m′ε ≥ 1− mini=1,··· ,m′ {ci}
maxi=1,··· ,m′ {ci}

≥ 0

On the other hand, for any set of feasible solution (y, x1, · · · , xm−), from the constraint
that xi ≥ ε, we have y = 1−∑m−

i=1 xi ≤ 1−m−ε = y?, and
m−∑
i=1

ci log
xi
x?i

+ c̃ log
y?

y
=

m−∑
i=1

ci log
xi
ε

+ c̃ log
1−m−ε

y
≥ 0,

or

c̃ log y? −
m−∑
i=1

ci log x?i ≥ c̃ log y −
m−∑
i=1

ci log xi,

which shows that (y?, x?1, · · · , x?m−) leads to a greater value of the objective function of
(23) in comparison to any feasible solution, and is the optimal solution to the problem.

From the optimal solution of (22) and (23), we can obtain x?i = ε for i = 1, · · · ,m−, and
x?i = y ·x̃?i = (1−m−ε)ci∑m′

j=m−+1
cj

for i = m−+1, · · · ,m′. Furthermore, for i = m−+1, · · · ,m′,
we have

12

ε ≤ mini′=1,··· ,m′ {ci′}
m′maxi′=1,··· ,m′ {ci′}

≤ ci

m−ci +
∑m′

j=m−+1 cj
,

which, after arranging the terms, leads to x?i = (1−m−ε)ci∑m′
j=m−+1

cj
≥ ε. Therefore the solution

given by (20) is also a feasible solution to (18).

• m− = n. We first show by contradiction that the optimal solution to (18) in this case has
to coincide with one vertex of the simplex determined by the constraints, i.e., ∃i such that
xi = 1 − (m′ − 1)ε and xj = ε for j 6= i. We first show that any vertex of the constraint
simplex is a feasible solution, for which we only need to show 1 − (m′ − 1)ε ≥ ε, or
ε ≤ 1

m′ . This is indeed the case as we have ε ≤ mini=1,··· ,n{ci}
nmaxi=1,··· ,n{ci} ≤

1
m′ .

Now suppose that an optimal solution x? to (18) in this case is not a vertex of the constraint
simplex. We form a linear programming problem that

max
x

(x− x?)T∇f(x?) + f(x?) s.t.
m′∑
i=1

xi = 1 and xi ≥ ε. (24)

We denote the optimal solution to (24) as x̃, which has to be a vertex of the constraint
simplex, due to the property of general linear programing optimization [21]. As such we
have

(x̃− x?)T∇f(x?) + f(x?) ≥ f(x?).

Furthermore, as f(x) = −∑m′

i=1 ci log xi is a first order differentiable concave function,
it is lower bounded by the first order linear approximation, so we have f(x̃) ≥ (x̃ −
x?)T∇f(x?) + f(x?) ≥ f(x?), which contradicts with the fact that x? is the optimal
solution of f(x) satisfying all constraints.

Having established the fact that the optimal solution to (24) when m− = n has to be one
of the vertices of the constraint simplex, the objective function always takes value as

−ci log(1−m−1ε)−
∑
j 6=i

cj log ε = −ci log
1−m−1ε

ε︸ ︷︷ ︸
constant

−
m′∑
j=1

cj log ε︸ ︷︷ ︸
constant

,

the maximum of which is obtained when i = argminj=1,··· ,m′{cj}.

13

