
A digital technique for art authentication
Siwei Lyu*, Daniel Rockmore*†, and Hany Farid*‡

Departments of *Computer Science and †Mathematics, Dartmouth College, Hanover, NH 03755

Communicated by David L. Donoho, Stanford University, Stanford, CA, September 1, 2004 (received for review May 13, 2004)

We describe a computational technique for authenticating works
of art, specifically paintings and drawings, from high-resolution
digital scans of the original works. This approach builds a statistical
model of an artist from the scans of a set of authenticated works
against which new works then are compared. The statistical model
consists of first- and higher-order wavelet statistics. We show
preliminary results from our analysis of 13 drawings that at various
times have been attributed to Pieter Bruegel the Elder; these
results confirm expert authentications. We also apply these tech-
niques to the problem of determining the number of artists that
may have contributed to a painting attributed to Pietro Perugino
and again achieve an analysis agreeing with expert opinion.

I t probably was not long after people began paying money for art
that a lucrative business in forging art was born, and it probably

was not too much later that techniques for detecting art forgeries
emerged. Even today, the early techniques for authentication
remain preeminent. By and large, these techniques are based on
‘‘connoisseurship’’ and so rely on the discerning eyes of a few
experts who are steeped in the work and life of the artist in question.
Their opinion may be informed by the ‘‘catalogue raison,’’ which is
the current acknowledged authoritative work on the artist’s oeuvre.
Other desiderata may include provenance that might be traced back
to the artist’s circle or his collectors and makes possible the
comparison of the work’s implicit biography with the histories of
related works or even a detailed analysis of any signature that may
be present. (See ref. 1 for a survey of current techniques.)

In addition to the reliance on the human actor, quantitative
methods can be brought to bear. X-ray analysis can reveal a
painting beneath a painting that can shed light on its origins.
Surface analysis of the painting materials is another approach,
most famously applied in the investigation of the famous ‘‘van
Meerghen forgeries.’’ In this case, the forgery of paintings
attributed to Johannes Vermeer was confirmed by dating the
paintings according to the proportion of a certain lead isotope
in the lead-based paint. An elementary application of differen-
tial equations allowed for the actual isotope content to be
compared with the expected content had the work been painted
in Vermeer’s day (2). This technique marked a first use of
mathematics in the service of art authentication.

With the advent of powerful digital technology, computational
tools may be able to provide new insights into and techniques for
the art and science of art authentication. For example, a fractal
analysis of Jackson Pollock’s drip paintings has revealed interesting
relations between the evolution of Pollock’s aesthetic and the
fractal dimension of his work (3, 4). The analysis also raises the
possibility of using fractal dimension to help authenticate work
attributed to Pollock. Various techniques from machine learning
have been applied to the analysis and classification of ‘‘craquelure,’’
the crack lines that appear over time in a painting (5).

In this paper we present a computational tool for analyzing
prints, drawings, and paintings for use in authentication. Specifi-
cally, we performed a multiscale, multiorientation image decom-
position (e.g., wavelets) of a collection of high-resolution digital
scans of a drawing or painting. This decomposition changes the
basis from functions maximally localized in space (pixels) to one in
which the basis functions are localized not only in space but also in
orientation and scale. A familiar analogy comes from sound, where
the original sound might be transformed into a vector of local

frequency information that reflects how much of each frequency
comprises the original sound over a short time window. We
constructed a compact model of the statistics from such a multi-
scale, multiorientation image decomposition, and we looked for
consistencies or inconsistencies across different drawings or paint-
ings or within a single work. The latter is the so-called ‘‘problem of
many hands’’ in which we try to determine the regions of a
collaborative work that have been accomplished by a single artist.

The analysis produced locally oriented spatial frequency data
and so suggests that the accompanying model captures the subtle
pen and brush strokes characteristic of an artist. Although an
imitation§ may be perceptually similar to an original (i.e., very
much in the ‘‘style of the master’’), the subtle differences in
stroke can reveal the presence of an imitation. In a sense, this
work is a natural successor to the mathematical techniques used
for graphology, or handwriting analysis (6), distilling not just the
characteristic lines and curves of a painter’s literal signature
(which is often part of the process of authentication) but, even
more, moving toward a characterization of the artist’s aesthetic
signature, resident within the line and curve of his or her work.

Analogous techniques already have made their way into the
literary world, where they fall within the discipline of ‘‘stylom-
etry’’ (7). The problem of classification has been applied to
divvying up the attribution of The Federalist Papers between
James Madison and Alexander Hamilton (8) and the determi-
nation of the authorship of the 15th book in the Oz series (9).
Statistical approaches to the question of authentication have
surfaced in the analysis of William Shakespeare’s sonnets (10).
The problem of many hands finds its mirror in a study of the
conjectured multiple authorship of the Old Testament (11).

We began by applying our analysis to the problem of authen-
tication of a collection of 13 drawings that have at one time been
attributed to the famous draftsman Pieter Bruegel the Elder. We
followed with a ‘‘many-hands’’ analysis of a portrait by the great
Renaissance painter Perugino. We closed with a synopsis of the
tools used in the analysis and described the underlying statistical
model. We collected some of the more technical points in an
appendix.

Materials
Bruegel. The Flemish painter and draftsman Pieter Bruegel the
Elder (1525�30–1569) was among the greatest artists of the 16th
century. Of particular beauty and fame are Bruegel’s landscape
drawings. Over time he acquired many imitators; undoubtedly some
simply were eager to work in the style of the great master, whereas
others surely were hoping to pass off their work as Bruegel’s for
monetary gain. Some of these followers and imitators were expert
enough that after being unmasked (or discovered) they became
famous in their own right, e.g., Jacob Savery. Bruegel’s work
recently has been the subject of renewed study and interest (12–14).

Abbreviation: MDS, multidimensional scaling.

‡To whom correspondence should be addressed at: 6211 Sudikoff Laboratory, Department
of Computer Science, Dartmouth College, Hanover, NH 03755. E-mail: farid@cs.
dartmouth.edu.

§Henceforth we will give the benefit of the doubt to the imitator and use the term
‘‘imitation’’ rather than the more charged ‘‘forgery.’’
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As a result, many drawings formerly attributed to Bruegel now are
attributed to others (Table 1).

The delicate line and shading characterizing these works
suggests that their classification according to a wavelet-like
analysis may be both appropriate and fruitful. For our analysis
we digitally scanned (at 2,400 dots per inch) eight authenticated
drawings by Bruegel and five acknowledged Bruegel imitations
from 35-mm color slides (Table 1), which were provided courtesy
of the Metropolitan Museum of Art, New York (13). These color
[red, green, blue (RGB)] images, originally 3,894 � 2,592 pixels,
were cropped to a central 2,048 � 2,048-pixel region, converted
to grayscale¶ (gray � 0.299 R � 0.587 G � 0.114 B), and
autoscaled to fill the full intensity range [0,255]. Fig. 1 shows
examples of an authentic drawing and an imitation.

Each digital image then was subdivided into 64 nonoverlapping
256 � 256-pixel regions. Each of these subimages then was trans-
formed by using a five-level, three-orientation wavelet-like decom-
position (see Methods for details). From this decomposition, a 72
feature vector of coefficient and error statistics was extracted for
each subimage (see Methods). Each drawing then corresponded to
a set of points in this 72-dimensional space. Authentication was
indicated by the distance between these point clouds, with the belief
that works by the same artist would be close together, irrespective
of content, and that an imitation would be relatively far from the
authenticated Bruegels. Thus, we first computed the Hausdorff
distance (15) between all pairs of images (see Appendix A). The
resulting 13 � 13 distance matrix then was subjected to a multidi-
mensional scaling [(MDS) ref. 16] (see Appendix B). Fig. 1 shows the
result of visualizing the original 13 images in a lower-dimensional
space as determined by a MDS analysis.

The circles in Fig. 1 correspond to the authentic drawings, and
the squares correspond to the imitations. For purposes of
visualization, the wire-frame sphere was rendered at the center
of mass of the eight authenticated drawings and with a radius set
to fully encompass all eight data points (in so doing, we assume
knowledge of the authenticated Bruegels). Note that all five

imitations fall well outside the sphere. The distances from the
authenticated Bruegels to the center of the sphere are 0.34, 0.35,
0.55, 0.90, 0.56, 0.17, 0.54, and 0.85. The distances from the
imitations are considerably larger, at 1.58, 2.20, 1.90, 1.48, and
1.33 (the difference in the means of these two distance popu-
lations is statistically significant: P � 1�5, one-way ANOVA).
Even in this space of reduced dimension, there is a clear
difference between the authentic drawings and the imitations.

Perugino. Pietro di Cristoforo Vannucci (Perugino) (1446–1523)
is well known as a portrait and a fresco painter, but perhaps he
is best known for his altarpieces. By the 1490s, Perugino main-
tained workshops in Florence and Perugia, Italy, and he was
quite prolific. Shown in Fig. 2 is the painting ‘‘Madonna with

¶Although converting from color to grayscale results in a significant loss of information, we
did so to make it more likely that the measured statistical features and subsequent
classification were more likely to be based on the artist’s strokes and not on simple color
differences.

Table 1. Authentic and imitation works of art

MMA cat. no. Title Artist

Authentic
3 Pastoral Landscape Bruegel
4 Mountain Landscape with

Ridge and Valley
Bruegel

5 Path through a Village Bruegel
6 Mule Caravan on Hillside Bruegel
9 Mountain Landscape with

Ridge and Travelers
Bruegel

11 Landscape with Saint Jerome Bruegel
13 Italian Landscape Bruegel
20 Rest on the Flight into Egypt Bruegel
Imitation
7 Mule Caravan on Hillside —

120 Mountain Landscape with a
River, Village, and Castle

—

121 Alpine Landscape —
125 Solicitudo Rustica —
127 Rocky Landscape with Castle

and a River
Savery

The first column corresponds to the Metropolitan Museum of Art (MMA)
catalog number in ref. 13. —, unknown.

Fig. 1. Authentic works by Bruegel and imitations. An authentic work (Top)
and an imitation (Middle) (nos. 6 and 7, respectively, in Table 1). (Bottom) The
results of analyzing eight authentic Bruegel drawings (F) and five imitations
(■ ). Note how the imitations lie significantly outside the bounding sphere of
authentic drawings.
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Child’’ by Perugino. As with many of the great Renaissance
paintings, however, it is likely that Perugino only painted a
portion of this work, and apprentices did the rest. To this end,
we wondered whether we could uncover statistical differences
among the faces of the individual characters.

The painting (at the Hood Museum of Art, Dartmouth College)
was photographed by using a large-format camera (8 � 10-inch
negative) and drum-scanned to yield a color 16,852 � 18,204-pixel
image. As in the previous section, this image was converted to
grayscale. The facial region of each of the six characters was
manually localized. Each face then was partitioned into nonover-
lapping 256 � 256-pixel regions and autoscaled into the full-
intensity range (0, 255). This partitioning yielded (from left to right)

189, 171, 189, 54, 81, and 144 regions. The same set of statistics
described in the previous section was collected from each of these
regions. Also as in the previous section, we computed the Haus-
dorff distance (see Appendix A) between all pairs of six faces. The
resulting 6 � 6 distance matrix then was subjected to MDS (see
Appendix B). Fig. 2 shows the result of visualizing the original six
faces in a lower-dimensional space as determined by a MDS
analysis.

The numbered data points correspond to the six faces (from left
to right) in Fig. 2. Note how the three leftmost faces cluster, whereas
the remaining faces are distinct. The average distance between faces
1–3 is 0.61, whereas the average distance between the other faces
is 1.79. This clustering pattern suggests the presence of at least four
distinct hands and is consistent with the views of some art historians
(T. Barton Thurber, Hood Museum, Dartmouth College, personal
communication).

Methods
Our methodology makes use of a decomposition of images by using
basis functions that are localized in spatial position, orientation, and
scale (e.g., wavelets). These sorts of expansions have proven ex-
tremely useful in a range of applications (e.g., image compression,
image coding, noise removal, and texture synthesis). One reason for
this utility is that such decompositions exhibit statistical regularities
that can be exploited (17–19). Described below is one such decom-
position and a set of statistics collected from this decomposition.�

The decomposition is based on separable quadrature mirror
filters (20–22). As illustrated in Fig. 3, this decomposition splits the
frequency space into multiple scales and orientations. This decom-
position is accomplished by applying separable low-pass and high-
pass filters along the image axes, generating a vertical, horizontal,
diagonal, and low-pass subband. For example, the horizontal sub-
band is generated by convolving with the high-pass filter in the
horizontal direction and the low-pass filter in the vertical direction,

�We also have experimented with both Laplacian and steerable pyramid decompositions.
Results from a steerable pyramid (with eight orientation subbands) were similar to the
results included above (which use only three orientation subbands). Furthermore, the
Laplacian pyramid generally gave poor results. So, although it seems that oriented
subbands are necessary, it also seems that a finer tuning of orientation is not necessary for
this particular task.

Fig. 3. An idealized multiscale and orientation decomposition of frequency
space. From top to bottom, levels are 0, 1, and 2. From left to right are
low-pass, vertical, horizontal, and diagonal subbands.

Fig. 2. How many hands contributed to this painting? (Upper) ‘‘Madonna
with Child’’ by Perugino. (Lower) The results of analyzing the Perugino
painting. The numbered data points correspond to the six faces (from left to
right). Note how the three leftmost faces (1–3) cluster, whereas the remaining
faces (4–6) are distinct. This clustering pattern suggests the presence of at
least four distinct hands.
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the diagonal band is generated by convolving with the high-pass
filter in both directions, etc. Subsequent scales are created by
subsampling the low-pass subband by a factor of two and recursively
filtering. The vertical, horizontal, and diagonal subbands at scale i �
1, . . . , n are denoted as Vi(x, y), Hi(x, y), and Di(x, y), respectively.
Fig. 4 Right and Left shows a three-level decomposition of the
scanned Perugino work, respectively.

Given this image decomposition, the statistical model is
composed of the mean, variance, skewness, and kurtosis of the
subband coefficients at each orientation and at scales i � 1, . . . ,
n � 2. These statistics characterize the basic coefficient distri-
butions. To capture the higher-order correlations that exist
within this image decomposition, these coefficient statistics are
augmented with a set of statistics based on the errors in an
optimal linear predictor of coefficient magnitude.

As described in ref. 19, the subband coefficients are correlated
to their spatial, orientation, and scale neighbors. For purposes of
illustration, consider first a vertical band, Vi(x, y), at scale i. A
linear predictor for the magnitude of these coefficients in a
subset of all possible neighbors may be given by

�Vi�x, y�� � w1�Vi�x � 1, y�� � w2�Vi�x � 1, y��

� w3�Vi�x, y � 1�� � w4�Vi�x, y � 1��

� w5�Vi�1�x
2

,
y
2�� � w6�Di�x, y��

� w7�Di�1�x
2

,
y
2��, [1]

where wk denotes scalar weighting values, and ��� denotes mag-
nitude. This particular choice of spatial, orientation, and scale
neighbors was used in our earlier work on detecting traces of

digital tampering in images.** Here, we employed an iterative
brute-force search (on a per-subband and per-image basis) for
the set of neighbors that minimizes the prediction error within
each subband.

Consider again the vertical band, Vi(x, y), at scale i. We con-
strained the search of neighbors to a 3 � 3 spatial region at each
orientation subband and at three scales, namely, the neighbors

Vi�x � cx, y � cy�, Hi�x � cx, y � cy�,

Di�x � cx, y � cy�,

Vi�1�x
2

� cx,
y
2

� cy�, Hi�1�x
2

� cx,
y
2

� cy�,

Di�1�x
2

� cx,
y
2

� cy�,

Vi�2�x
4

� cx,
y
4

� cy�, Hi�2�x
4

� cx,
y
4

� cy�,

Di�2�x
4

� cx,
y
4

� cy�,

with cx � {�1,0,1} and cy � {�1,0,1}, and, of course, excluding
Vi(x, y). From these 80 possible neighbors, the iterative search
begins by finding the single most predictive neighbor [e.g.,
Vi�1(x�2 � 1, y�2)].†† This neighbor is held fixed, and the next

**Farid, H. & Lyu, S. IEEE Workshop on Statistical Analysis in Computer Vision (in conjunc-
tion with Computer Vision and Pattern Recognition), June 17–23, 2003, Madison, WI.

††Integer rounding is used when computing the spatial positions of a parent, e.g., x�2
or x�4.

Fig. 4. The absolute values of the subband coefficients at three scales and three orientations (the residual low-pass subband is shown in the upper left corner)
(Right) for the Perugino painting (Left).
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most predictive neighbor is found. This process is repeated five
more times to find the optimally predictive neighborhood. On
the kth iteration, the predictor coefficients (w1, . . . , wk) are
determined as follows. Let the vector V� contain the coefficient
magnitudes of Vi(x, y) strung out into a column vector, and the
columns of the matrix Q contain the chosen neighboring
coefficient magnitudes also strung out into column vectors.
The linear predictor then takes the form

V� � Qw� , [2]

where the column vector w� � (w1, . . . , wk)T. The predictor coef-
ficients are determined by minimizing the quadratic error function:

E�w� � � 	V� � Qw� 
2. [3]

This error function is minimized by differentiating with respect
to w� :

dE�w� �/dw� � 2QT	V� � Qw� 
, [4]

setting the result equal to zero and solving for w� to yield

w� � �QTQ��1QTV� . [5]

The log error in the linear predictor then is given by

E� v � log2�V� � � log2� �Qw� �� . [6]

Once the full set of neighbors is determined, additional statistics
are collected from the errors of the final predictor, namely, the
mean, variance, skewness, and kurtosis. This entire process is
repeated for each oriented subband, and at each scale i � 1, . . . ,
n � 2, where at each subband a new set of neighbors is chosen
and a new linear predictor is estimated.

For an n-level pyramid decomposition, the coefficient statis-
tics consist of 12(n � 2) values, and the error statistics consist of
another 12(n � 2) values, for a total of 24(n � 2) statistics. These
values represent the measured statistics of an artist’s style and
are used to classify or cluster drawings or paintings.

As stated above, after the computation of the feature vectors,
MDS was used to project the original 72-dimensional feature
vectors into a three-dimensional subspace. Features with no
discriminating power (e.g., the means) therefore will play no role
in the lower-dimensional embedding.

Discussion
We have presented a computational tool for digitally authenti-
cating or classifying works of art. This technique looks for
consistencies or inconsistencies in the first- and higher-order
wavelet statistics collected from drawings or paintings (or por-

tions thereof). We showed preliminary results from our analysis
of 13 drawings either by or in the style of Pieter Bruegel the
Elder as well as a painting by Perugino. We expect these
techniques, in collaboration with existing physical authentica-
tion, to play an important role in the field of art forensics.

Appendix A: Hausdorff Distance
The Hausdorff distance is a distance metric defined on two sets
of vectors, X and Y. The metric, H(�,�) is defined as

H�X,Y� � max�h�X ,Y� , h�Y ,X�� ,

where h(�,�) is defined as

h�X,Y� � max
x��X

� min
y��Y

d�x� ,y��� .

Here d(�,�) can be any distance metric defined on the vector space
subsuming X and Y. In our case, we use Euclidean distance d(x�,
y�) � ��x��y�)T(x��y�).

Appendix B: MDS
MDS is a popular method to visualize high-dimensional data.
Given n vectors {x�1, . . . , x�n}, where x�i � �m, the goal of MDS
is to find a lower-dimensional embedding for these data that
minimally distorts their pairwise distances. Denote the n � n
distance matrix as Dij � d(x�i, x�j), where d(�,�) is a distance metric
in �m. The most common such metric is Euclidean distance
defined as d(x�i, x�j) � ��x�i�x�j)T(x�i�x�j).

Given the pairwise symmetric distance matrix, the classic
(metric) MDS algorithm is given by the following steps:

1. Let Aij � �1
2

Dij
2.

2. Let B � HAH, where H � In�1
n
u�u� T, In is a n � n identity

matrix, and each component of the n-dimensional vector u�
is 1.

3. Compute the eigenvectors, e�1, . . . , e�n, and corresponding
eigenvalues, �1, . . . , �n, of matrix B, where �1 � �2 � . . . �
�n.

4. The new, lower-dimensional representation of the original
data, x�i, are then given by x��i � [e�1(i)] e�2(i) . . . e�m� (i)] where
e�k(i) denotes the ith component of the vector, and in our
examples m� � 3.
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