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a b s t r a c t

Many problems in computer vision, such as image annotation, can be formulated as multi-label learning
problems. It is typically assumed that the complete label assignment for each training image is available.
However, this is often not the case in practice, as many training images may only be annotated with a
partial set of labels, either due to the intensive effort to obtain the fully labeled training set or the
intrinsic ambiguities among the classes. In this work, we propose a method for multi-label learning that
explicitly handles missing labels. We train classifiers with the multi-label with missing labels (MLML)
learning framework by enforcing the consistency between the predicted labels and the provided labels
as well as the local smoothness among the label assignments. Experiments on three benchmark data sets
in image annotation and one benchmark data set in facial action unit recognition demonstrate the
improved performance of our method in comparison of several state-of-the-art methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In multi-label learning, each example can be associated with
many classes simultaneously. The typical examples include image
annotation [1] and the recognition of facial action units (AUs) in facial
images [2]. More formally, the complete labels of an example x over
m classes, fc1;…; cmg are represented as a vector zAf�1;1gm, where
a positive value indicates that the example belongs to the corre-
sponding class, and a negative value indicates the opposite. The
prediction from an example x to its complete label vector, z, is the
main task of multi-label learning [3].

The majority of previous multi-label learning methods assume
that each example in the training set is associated with a complete
label assignment. However, it is difficult to obtain a complete label
assignment for each training example. For example, when the size of
the candidate classes is large, such as in image annotation (see Fig. 1),
it is costly to acquire the complete label vector for even one training
image. Another possible reason of this difficulty is the ambiguity
among classes, such as in AU recognition. AU is typically labeled by
trained experts, which could be a time-consuming process. Further-
more, due to the ambiguity among AUs such as cheek raiser (AU6) vs.

eye lid tightener (AU7) (see Fig. 2) as well as the poor image quality,
some AUs are difficult to label confidently (the detailed definitions of
all AUs can be found in [2]). A more realistic scenario is that each
image is only provided with a partial label assignment, while the
assignments with other classes are missing (see Fig. 1). To explicitly
accommodate the missing labels, for each input image we introduce
the definition of an incomplete label vector yAf�1;0;1gm: a
nonzero element has the same meaning as in the complete label
vector z, while a zero element corresponds to a label with no
assigned value for this image, i.e., missing label.

The focus of this work is multi-label learning with missing labels
(MLML) of which the primary objective is to derive a parametric
multi-label classifier from input data example x and its incomplete
label vector y. Many previous multi-label learning methods that do
handle missing labels usually do not make a clear distinction
between missing labels and negative labels, i.e., the missing labels
are assigned to the negative value by default [4–6]. However, such a
simple treatment is often ungrounded in the practical applications.
Consider the image annotation example in Fig. 1, label “home” is not
shown in the label list of the image on the left, but we cannot simply
conclude that the image should have a negative value for that label,
because it has a positive value in the available label “house” that has
strong semantic correlation with “home”.

We formulate MLML as an inductive learning problem, which
consists of three terms, including the consistency between the
predicted labels and the provided labels, the smoothness of label
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assignments measured with similarities between examples and
between classes, as well as a ℓ21 norm over the model parameter
to avoid over-fitting. Our algorithm is obtained from the iteratively
re-weighted least squares (IRWLS) [7] method. We demonstrate
the superior performance of our method on two computer vision
problems: one is the annotation of general images, and the other is
the recognition of facial action unit (AU) on facial images. The
main contributions of our work can be summarized as follows:

(i) we describe a new method to handle missing labels in multi-
label learning;

(ii) we present an efficient numerical algorithm to learn the
inductive classifier using the MLML framework;

(iii) we formulate image annotation and AU classification as
multi-label learning with missing label problems, and show
that our method outperforms several state-of-the-art works
on three benchmark data sets.

2. Related works

In the literature of multi-label learning, some recent works have
studied the problem with missing labels. The semi-supervised multi-
label learning (SMSE2) [6] addresses the special case with examples
either fully labeled or completely unlabeled. The weak label learning
(WELL) method [4] focuses on the case where examples only have a
partial set of positive labels available with the rest of the labels
unassigned. Both SMSE2 and WELL assign the missing label values to
zero by default, which coincides with the numerical value assigned to
negative labels. As such, these methods implicitly assume that
missing labels are equivalent to negative labels. This assumption is
made explicitly in the work of multi-label learning with incomplete
class assignment (MLR-GL) [5], where available labels all take positive
values, and the missing labels are assigned to negative values, and
thus becomes a fully labeled multi-label learning problem. However,
as we have argued in Introduction, it is questionable if such an
assumption always holds in actual data sets, and whenever it does
not, treating missing label indiscriminately as negative labels intro-
duce undesirable bias to the learning problem. The recent work of
multi-label learning based on Bayesian compressed sensing (BML-CS)
[10] can be used to solve the MLML problem, but it assumes a
continuous probability model over the binary labels, and the resulting

solution is based on a more costly MCMC algorithm. Moreover, the
labels are assumed to be independently distributed in BML-CS, while
the proposed model naturally incorporates the correlations between
examples and between classes. In another related literature, i.e.,
matrix completion (MC), some recent works [11–13] have been
proposed to handle the MLML problem. Their basic idea is concate-
nating the label matrix and feature matrix into a unified matrix, based
on which the standard matrix completion techniques can be applied
to fill in the missing labels. These works also avoid the label bias.
However, the low rank assumption in MC implicitly implies class
correlations. In contrast, our smoothness assumption explicitly cap-
tures such correlations, and we can also replace the smoothness to
embed other types of correlations. Besides, the proposed efficient
solution only involves matrix multiplication, while the solution to MC
exploits the expensive SVD decomposition.

In the literature of image annotation, in addition to the single label
methods [14–17], some multi-label learning methods have also been
developed, such as [18–24]. However, a common assumption in these
methods is that a complete label assignment for each training image
should be provided. A few works also consider the case of incomplete
labels of training images, such as WELL [4] and MLR-GL [5], which
have been mentioned in the first paragraph of this section.

In AU recognition, some existing methods train a binary model
with respect to each single class, such as [25–27,9]. The drawback
of these methods is the ignorance of the relationships among
different AU classes. Some recent models are developed to embed
the spatial or temporal relationships among AUs, such as [28–33].

A similar learning problem with MLML, called multi-instance
multi-label problem (MIML), has also been applied in image annota-
tion [34–36] and scene classification [37,38]. Both MIML and MLML
consider multi-label problems, but there exist two significant differ-
ences between them. For clarity, we take the image classification as
the example. Firstly, their tasks are different. MIML aims to predict
both image-level and region-level labels, while MLML only focuses on
image-level label prediction. Secondly, in terms of predicting the
image-level labels, MIML can be seen as supervised learning, while
MLML can handle the missing labels.

3. Multi-label learning with missing labels

We start with a general setting of the MLML problem. We assume
that the data are represented as matrix X ¼ ðx1;…; xnÞ, where each

Fig. 1. Two examples of image annotation from the ESP Game data [8]. The symbol ‘✓’ denotes the positive label, while ‘� ’ indicates the negative label. The labels not in the
tagging list are missing labels. Take the left image as an example, “house” and “tree” are its positive labels, while “blue” and “forest” are negative labels. All other labels are
missing labels. Note that in missing labels, some are actually positive labels, such as “green” and “home”, as well as some negative labels, such as “cartoon” and “hat” (see the
right image). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. An illustration of the ambiguity among AUs [2,9]. Under each facial image, its ground-truth AU labels are annotated (only the AU labels of interest are shown, while
other AU labels are ignored): ‘✓’ indicates the positive label, while ‘� ’ denotes the negative label. Two groups show different ambiguities: (left) the ambiguity between AU6
(cheek raiser) and AU7 (eye lid tightener); (right) the ambiguity between AU23 (lip tightener) and AU24 (lip presser). Due to such ambiguities, some facial images in CKþ
database [9] are not labeled with respect to some AU classes.
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example is a d-dimensional column vector. Each example can be
associated with m different classes fc1;…; cmg, and we are also
provided with an available label matrix Y ¼ ðy1;…; ynÞ with
yiAf�1;0; þ1gm�1, whose meanings are as described previously.
The definition of Y allows for the inclusion of completely labeled
examples, i.e., yiAf71gm�1, or unlabeled examples, i.e., yiAf0gm�1,
or examples with only partial positive or negative labels, i.e.,
yiAfþ1;0gm�1 or f�1;0gm�1 respectively.

Our objective is learning a mapping function based on the data X
and the provided labels Y, to predict the labels of unlabeled testing
examples based on the label consistency and smoothness. Specifi-
cally, we want to learn the mapping function f θi ðxjÞ ¼ θT

i hðxjÞ, where
θiARd0�1 denotes the parameter corresponding to the class ci. hðxjÞ
is a general feature function that maps the original d-dimensional
data to the d0�dimensional feature. It will be specified in experi-
ments. Given the mapping function, the predicted label Zij can be
determined through a sign function, i.e., Zij ¼ sgnðθT

i hðxjÞÞ: sgnðaÞ ¼ 1
if a40; sgnðaÞ ¼ �1 if ar0.1

To achieve this goal, we leverage two assumptions, the label
consistency and the label smoothness. Firstly, we require Zij ¼ Yij

whenever Yija0, in other words, the predicted complete labels
should be consistent with the available label matrix whenever label i
is provided for example xj. On the other hand, for Zij where the label
information is missing in the available label matrix, i.e., Yij ¼ 0, we
will “fill” in their values using two smoothness assumptions:

(i) Example-level smoothness: If the features of two images xi and
xj are similar, then their labels represented by the correspond-
ing columns of matrix Z, Z�i and Z�j, should also be close.

(ii) Class-level smoothness: If two classes ck and cl have close
semantic meanings, then their instantiations in the overall
data set X, represented by the corresponding rows of matrix Z,
Zk� and Zl�, should also be similar.

We formulate the MLML problem as an optimization problem that
maximizes the label smoothness and the label consistency
simultaneously.

3.1. Label smoothness

Example-level smoothness: The example-level similarity is com-
puted using a measure defined over each pair of examples and
kept in a symmetric positive definite matrix VY with VY ði; jÞ
¼K1ðxi; xjÞ, where the similarity kernel function K1ð�; �Þ is defined
as follows [6]:

K1ðxi; xjÞ ¼
e� Jxi �xj J 2=εiεj ; ia j

0; i¼ j;

(
; ð1Þ

where εi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jxi�xh J2

q
and xh is the h-th nearest neighbor of xi.

2

With the example similarity matrix, the example-level smooth-
ness of the complete label matrix Z is measured by

SY ðZÞ ¼
1
2

Xm
k ¼ 1

Xn
i;j

VY ði; jÞ
Zkiffiffiffiffiffiffiffiffiffiffi
dY ðiÞ

p � Zkjffiffiffiffiffiffiffiffiffiffi
dY ðjÞ

p
 !2

; ð2Þ

where the normalization term dY ðiÞ ¼
Pn

j VY ði; jÞ makes SYðZÞ
invariant to the different scaling factors of the elements of VY

[40]. The above formula can be further simplified by the introduc-
tion of the normalized Laplacian matrix LY ¼ I�D�1=2

Y VYD
�1=2
Y

with DY ¼ diagðdY ð1Þ;…; dY ðnÞÞ, to
SY ðZÞ ¼ trðZLYZT Þ: ð3Þ

Class-level smoothness: The similarities between classes are
intrinsic to their semantic meanings. When such similarities are
available from other sources, we can use them to construct the
class similarity matrix VC which embeds the semantic similarities
between the classes C. However, if such information is absent, we
can exploit the co-occurrence relationships among classes, which
can be computed based on the available label matrix Y, as did in
[6]. Specifically, we define an m�m nonnegative matrix VC, as
VCði; jÞ ¼K2ðY i�;Y j�Þ, in which the kernel function K2 is defined as
follows [6]:

K2ðY i�;Y j�Þ ¼
e�ð1� 〈Y i� ;Y j�〉= JY i� J � JY j� J Þ=ðεni εnj Þ; ia j

0; i¼ j;

(
ð4Þ

where the kernel size εni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 〈Y i�;Yh�〉=ðJY i� J � JYh� J Þ

q
. Y i� is a

sub-vector of Yi�, i.e., Y i� ¼ ðYi1;Yi2;…;YilÞ, where l denotes the
number of training examples, and Yi� is the i-th row vector of Y.
Using the class similarity matrix, we measure the class-level
smoothness of Z with

SCðZÞ ¼
1
2

Xn
k ¼ 1

Xm
i;j

VCði; jÞ
Zikffiffiffiffiffiffiffiffiffiffi
dCðiÞ

p � Zjkffiffiffiffiffiffiffiffiffiffi
dCðjÞ

p
 !2

; ð5Þ

where dCðiÞ ¼
Pm

j VCði; jÞ normalizes the factor so that SCðZÞ is not
affected by the different scaling factors of the elements of VC. Similar
to the previous case, we simplify SCðZÞ by first introducing the
normalized Laplacian matrix, i.e., LC ¼ I�D�1=2

C VCD
�1=2
C with diag-

onal matrix DC ¼ diagðdCð1Þ;…;dCðmÞÞ, and rewriting the above
formula as [40]

SCðZÞ ¼ trðZTLCZÞ: ð6Þ

3.2. MLML objective function

Combining the two smoothness measures as well as the label
consistency term, we formulate the MLML problem as the solution
to the following optimization problem:

arg min
Θ

Xm;n

i;j

ℓθi
ðYij;hðxjÞÞþβ trðZLYZT Þþγ trðZTLCZÞ; ð7Þ

where the two pre-set parameters β and γ control the trade-off
between the loss function and two smoothness terms, and can be
tuned by cross validation.

We use the hinge loss function ℓθi
ðYij;hðxjÞÞ ¼maxð0;1�

Yijθ
T
i hðxjÞÞ to enforce the consistency between the predicted label

and the provided label Yij. However, this loss function and the sign
function in the definition of Zij in the smoothness terms are non-
differentiable, which makes the numerical optimization of (7) difficult.
To alleviate this, we introduce two relaxations to the original problem
(7). First the hinge loss function ℓθi ðYij;hðxjÞÞ is approximated by a
convex differentiable loss function, as follows:

ℓθi
ðYij;hðxjÞÞ � � log

1

1þexpð�Yijθ
T
i hðxjÞÞ

 !
: ð8Þ

Second, the sign function sgnðθT
i hðxjÞÞ is approximated as

sgnðθT
i hðxjÞÞ � 2σðθT

i hðxjÞÞ�1A ½�1;1�; ð9Þ
where σðaÞ ¼ 1=ð1þexpð�aÞÞ denotes the sigmoid function. These
two relaxations are illustrated in Fig. 3. Moreover, the ℓ2;1 norm with
respect to Θ¼ ðθ1;…;θmÞARd0�m is used to find sparse representa-
tions based on the features. Note that we do not require each
individual feature coefficient to be sparse. Each θi may still be dense,
but for each data, only a small fraction of Θ will be relevant [41]. As a

1 Note that there is a little difference with the original definition of the sign
function, as we set sgnð0Þ ¼ �1. Because a possible case is f θi

ðxjÞ ¼ 0, i.e., it fails to
predict the label. In this case we just set the predicted label as a negative label,
based on the knowledge that most labels are negative in most real applications.

2 As per the suggestion in [39], we set h¼7.
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result, our problem becomes learning Θ by minimizing

Xm
i

Xn
j

log ð1þeð�Yijθ
T
i hðxjÞÞÞþβtrðẐ LY Ẑ

T ÞþγtrðẐ T
LCẐ Þþηj jΘj j 2;1;

ð10Þ

where Ẑ ¼ ½2σðΘThðXÞÞ�1�A ½�1;1�m�n and hðXÞ ¼ ðhðx1Þ;…; hðxnÞÞ
ARd0�n. The ℓ2;1 norm is defined as j jΘj j 2;1 ¼

Pdþ1
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i θ

2
i ðjÞ

q
,

where θ2
i ðjÞ denotes the j-th entry of θi.

3.3. Learning

We solve (10) with the iteratively re-weighted least squares
(IRWLS) method to handle the non-differentiable ℓ2;1 term [7,41].
Specifically, we use the fact jaj ¼minu40

1
2 a2=uþu
� �

to replace the
ℓ2;1 term as

arg min
Θ;u40

JΘðXÞþ
η
2

Xd0
j ¼ 1

Pm
i ¼ 1 θ

2
i ðjÞ

uj
þuj

 !
; ð11Þ

where u¼ ðu1;…;ud0 Þ0ARd0�1, and Jθi ðXÞ denotes the first three
terms in (10). Eq. (11) is solved with coordinate descent, by
iteratively minimizing each of the unknown variables, i.e., Θ and
u, until convergence.

The optimal solution to u is thus un

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i θ
2
i ðjÞ

q
; j¼ 1;…; d0.

Given the fixed u, the parameters θ1;…;θm can be learned
sequentially. Specifically, to optimize θi, we seek the solution to
the following problem:

arg min
θi

Jθi
ðXÞþη

2
θT
i diagðuÞ�1θi; ð12Þ

which is solved by gradient descent. Specifically, the gradient of
the above objective function w.r.t. θi is given by

∇θi ¼ η � diagðuÞ�1θiþ2
Xn
j ¼ 1

hðxjÞ � σijð1�σijÞ �
4βffiffiffiffiffiffiffiffiffiffi
dY ðjÞ

p
 

� 2σij�1ffiffiffiffiffiffiffiffiffiffi
dY ðjÞ

p Xn
r

VY ðj; rÞ�
Xn
r

VY ðj; rÞð2σir�1Þffiffiffiffiffiffiffiffiffiffiffi
dY ðrÞ

p
" #

þ 2γffiffiffiffiffiffiffiffiffiffi
dCðiÞ

p 2σij�1ffiffiffiffiffiffiffiffiffiffi
dC ðiÞ

p
"

�
Xm
ra i

VCði; rÞ�
Xm
ra i

VCði; rÞð2σrj�1Þffiffiffiffiffiffiffiffiffiffiffi
dCðrÞ

p
#!

�
Xn
j

½1�σðYijθ
T
i hðxjÞÞ�YijhðxjÞ; ð13Þ

where σij is the shorthand notation for the sigmoid function
σðθT

i hðxjÞÞ. Then at the t-th iteration, θi is updated with gradient
descent as follows:

θðtþ1Þ
i ¼ θt

i �αt∇θ
t
i ; ð14Þ

where the step size αt is determined by an optimal step size search
based on the Armijo rule [42]. The detailed derivations of the
above learning process can be found in 5.

4. Experiments

4.1. Data sets

We evaluate the proposed method on three benchmark data
sets in image annotation and AU recognition. Specifically, the used
data sets include

(i) Image annotation: The three widely used data sets, ESP Game
[8], MIR Flickr [43] and NUS-WIDE-Lite [44], are adopted in
our experiments. With a similar setting as [5], we delete the
images of few positive labels and some rare classes. Specifi-
cally, in ESP Game, we delete the images with less than
5 positive labels and the classes that exist in less than 300
images. Then ESP Game consists of 10,457 images with 54
classes, including 9418 training and 1039 testing images. In
MIR Flickr, images with less than 3 positive labels and classes
that exist in less than 300 images are deleted. Then 10,199
images with 47 classes are remained, including 5137 training
images and 5062 testing images. In NUS-WIDE-Lite, images
with less than 7 positive labels and classes that exist in less
than 150 images are deleted, then 2456 images with 23 classes
are remained. The positive label proportions in the whole
ground-truth label matrix are 11.88%, 5.30% and 29.4% in ESP
Game, MIR Flickr and NUS-WIDE-Lite respectively. In ESP
Game and MIR Flickr, each image is represented by the RGB
features in a 4096-dimensional vector [45].3 In NUS-WIDE-
Lite, each image is represented by a 265-dimensional vector,
which consists of three types of features: 64-dimensional color
histogram; 73-dimensional edge direction histogram; 128-
dimensional wavelet texture.4 For the above three data sets,
the Euclidean distance is used as the distance between images.
The original dimension is reduced by PCA, in order to reduce
the computational cost.

(ii) AU recognition: The benchmark data set in AU recognition, the
Extended Cohn-Kanade (CKþ) database [9] is adopted. 327
facial images with 16 most frequent AU classes (including AU
1, 2, 4, 5, 6, 7, 9, 12, 14, 15, 17, 20, 23, 24, 25, and 27) are chosen
from the whole database. The positive label proportion in the
whole ground-truth label matrix is 24.94%. Each facial image is
described by a 201-dimensional column vector, which is

−3 −1 1 3

0

2

4

Yij* θi
T h(x j)

lo
ss

max{0, 1 −Yijθi
T h(x j)}

log(1+exp( −yijθi
T h(x j)))

−5 5

−1

0

1

θ
i
T h(x

j
)

sgn(θ
i
T h(x

j
))

2σ(θ
i
T h(x

j
))−1

Fig. 3. (left) The hinge loss function and its relaxation; (right) the sign function and its relaxation.

3 The features are downloaded from ‘http://lear.inrialpes.fr/people/guillaumin/
data.php’.

4 The features are download from ‘http://lms.comp.nus.edu.sg/research/NUS-
WIDE.htm’.
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cascaded by four types of features: 102-dimensional vector of
the locations of 51 facial feature points; 40-dimensional
texture features; 30-dimensional appearance features; 29-
dimensional shape features.

The basic statistics of above data sets are summarized in Table 1.
For NUS-WIDE-Lite and AU data, we randomly partition the whole
data set to 5 uniform folds, and 4 folds are used as the training set
while the remaining one is used as the testing set. Consequently we
obtain 5 results. We further repeat this process 5 runs to obtain
different partitions. Then we will obtain 25 results in total. Finally the
mean and the standard deviation of the evaluation scores (the
evaluation metrics will be specified later) of the 25 results are
computed as the outputs. For all data sets, to simulate different
scenarios with missing labels, we create training sets with varying
portions of available labels, from 20% (i.e., 80% missing labels) to 100%
(i.e., no missing labels). In each case, the missing labels are randomly
chosen and removed from the ground-truth label matrix of the
training data. We perform the experiments 5 runs to obtain different
missing labels. In all cases, the experimental results of the testing sets
are reported, which are summarized as the mean and standard
deviation.

4.2. Experiment settings

Initializations: The initialization of the parameters Θ in the
proposed method is performed as follows: for each single class, a
logistic regression with the ℓ1 norm is trained (implemented by
the built-in function “lassoglm” in Matlab software), then the
learned θi is used as the initialization of our model parameter.
The feature function hðxjÞ is simply specified as ½1; xj� in our expe-
riments, then d0 ¼ dþ1. Parameters β, γ and η in Eq. (10) are tuned
by cross validation with the range ½10�2;102�, ½10�2;102� and
½10�2;103� respectively.

Evaluation metrics: As the predicted continuous labels can be
seen as a ranking list of each sample, we adopt two widely used
performance metrics for multi-label ranking, namely, average
precision (AP) [46] and area under ROC curve (AUC) [5]. Specifi-
cally, AP is calculated as follows [46]:

AP¼ 1
n

Xn
i

1

jSi j
X
sr A Si

j fstASi j rankðxi; stÞorankðxi; srÞgj
rankðxi; srÞ

; ð15Þ

where Si denotes the set of ground-truth positive classes of sample
xi, and rankðxi; stÞ represents the rank order of class st in the label
ranking list of xi. AUC [5] measures the total area under ROC curve
(true positive rate vs. false positive rate) of all classes. Specifically,
given the label ranking list for each sample, the first k classes are
treated as positive, while others are treated as negative. Through
varying k from 1 to m (the number of classes), the ROC curve of all
classes is gained. Higher values of both metrics represent better
performances. Note that both metrics are the overall evaluations of
the label ranking list, hence the score corresponding to each class
is not calculated.

Comparisons: We compare the proposed method with several
previous works on multi-label learning with missing labels and image
annotation, including SMSE2 [6], MLR-GL [5] and MC-Pos [12]. We

implement SMSE2 in Matlab and adopt the publicly available code
MLR-GL. The code of MC-Pos is provided by its authors. We make our
best effort to adjust the parameters in these methods as suggested in
the original papers. We also include two baselines: one is learning the
logistic regression with ℓ1 norm (it is also the initialization method of
our algorithm, as mentioned above), and the other is learning a binary
SVM5 classifier, for each single class independently. They both only use
the labeled examples as the training set in each individual class, while
the images with missing labels are ignored. Besides, we evaluate the
influences of the example-level and class-level smoothness in the
objective function (7), by setting β¼ 0 and γ ¼ 0 respectively. They are
denoted as MLMLβ ¼ 0 and MLMLγ ¼ 0.

4.3. Results

Image annotation: The results of the image annotation task are
shown in Tables 2–4. On ESP Game data, the proposed method
MLML gives better results than other methods in most cases. On MIR
Flickr data, the performance of MLML is better results than other
methods in the cases of high label proportions, while is worse when
the label proportion is low. Then possible reasons include when the
label proportion is low, the computed class correlations based on
concurrency are likely to be far from the ground-truth class correla-
tions. Consequently the performance of MLML may be harmed by
such a poor class correlation. Besides, compared with MC-Pos, the
proposed inductive model may be more sensitive to the unbalanced
label distribution problem. On NUS-WIDE-Lite data, the proposed
method MLML also performs better than other methods in most
cases. The comparisons between MLML and MLMLβ ¼ 0, MLMLγ ¼ 0

are also presented. On ESP Game, MLMLβ ¼ 0 performs better than
MLML in some cases. It demonstrates that the example-level
smoothness does not provide the positive information to help MLML.
The possible reason is that the Euclidean distance in K1 is not the
best choice to reveal the example-level correlations on this data. The
performance is expected to be further improved by exploiting more
sophisticated distances. On MIR Flickr, MLML does not show con-
sistent superiority to MLMLβ ¼ 0 and MLMLγ ¼ 0. This demonstrates
that the influences of example-level and class-level smoothness
depend on label distribution and the provided label proportion.
Moreover, the overall performance of all methods on these two data
sets is not very high. It may be due to the simple image features and
the image distance used in our experiments. However, it is fair
enough to compare the performance of different methods. The
comparisons on NUS-WIDE-Lite show that MLMLγ ¼ 0 performs
better than MLML in the cases of low provided label proportions.
The possible reason is when many missing labels exist, the computed
kernel K2 is far from the ground-truth semantic dependencies
among classes. As such, it may harm the model performance.
Furthermore, the symbol “–” in Tables 2, 3 and 5 indicates that the
method does not work or is inapplicable in the corresponding case.
Specifically, SMSE is developed for semi-supervised learning. Some
annotation results are shown in Table 6.

Table 1
Data statistics

Data set Example Class Feature Avg. posi.-class/example Avg. posi.-example/class Posi. label proportion (%)

ESP Game [8] 10,457 54 4096 6.41 1242.2 11.88
MIR Flickr [43] 10,199 47 4096 1.22 540.39 5.30
NUS-WIDE-Lite [44] 2456 23 265 6.76 722.13 29.40
AU [9] 327 16 201 3.99 81.5 24.94

5 The SVM classifiers are trained with the LIBSVM package [47] with parameters
estimated by cross-validation.
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AU recognition: The results on the AU data are presented in
Table 5. The proposed method MLML outperforms than other
methods in most cases. When the label proportion is 20%, the
result of MLML is slightly lower than the result of SVM. The

possible reason is the class-level smoothness (see Eq. (4)). When the
label proportion is low, the computed similarities between classes may
be inaccurate. This point is also proved by the comparison between
MLML and MLMLγ ¼ 0. It suggests that exploiting a more robust class-

Table 2
AP and AUC results on ESP Game data (mean(std)%), see texts for details. The best result in each column is highlighted in bold.

Methods AP AUC

20% 40% 80% 100% 20% 40% 80% 100%

Logistic-ℓ1 29.28(0.56) 28.52(0.27) 27.27(1.12) 27.83(0.00) 70.93(0.29) 70.21(1.21) 68.63(0.53) 70.19(0.00)
SVM [47] 19.74(1.80) 18.00 (0.20) 18.77(0.15) 19.58(0.00) 60.77(0.90) 56.57(1.01) 53.51(2.18) 54.56(0.00)
SMSE2 [6] – – – 23.50(0.00) – – – 67.16(0.00)
MLR-GL [5] 27.18(1.14) 26.53(0.43) 26.09(0.56) 26.24(0.00) 69.84(0.10) 69.79(0.46) 69.59(0.16) 69.28(0.00)
MC-Pos [12] 28.57(0.07) 25.60(0.22) 24.53(0.07) 24.60(0.00) 68.70(0.17) 66.56(0.01) 62.21(0.05) 63.14(0.00)

MLMLβ ¼ 0 29.93(0.87) 29.42(0.22) 29.46(0.67) 29.49(0.00) 71.04(0.45) 71.16(0.83) 70.96(0.25) 71.15(0.00)
MLMLγ ¼ 0 29.89(0.11) 29.26(0.55) 29.12(0.22) 29.38(0.00) 71.21(0.69) 70.95(0.44) 70.87(0.33) 70.98(0.00)
MLML 29.97(0.87) 29.75(0.27) 29.74(0.38) 29.67(0.00) 71.14(0.61) 70.94(0.28) 71.05(0.28) 71.05(0.00)

Table 3
AP and AUC results on MIR Flickr data (mean(std)%), see texts for details. The best result in each column is highlighted in bold.

Methods AP AUC

20% 40% 80% 100% 20% 40% 80% 100%

Logistic-ℓ1 23.94(0.48) 25.42(1.32) 24.42(0.55) 24.43(0.00) 59.73(0.42) 60.31(0.25) 59.81(0.36) 60.38(0.00)
SVM [47] 18.25(0.71) 19.96(1.13) 18.30(0.72) 18.92(0.00) 53.50(4.62) 55.05(1.38) 52.27(2.38) 54.85(0.00)
SMSE2 [6] – – – 21.00(0.00) – – – 58.29(0.00)
MLR-GL [5] 26.48(0.12) 26.33(0.25) 25.81(0.08) 25.72(0.00) 60.17(0.22) 59.64(0.44) 58.59(0.01) 58.31(0.00)
MC-Pos [12] 26.43(0.08) 26.56(0.21) 22.45(0.07) 22.37(0.00) 59.61(0.01) 60.12(0.44) 59.89(0.41) 59.64(0.00)

MLMLβ ¼ 0 24.42 (0.46) 26.46 (0.46) 25.61(0.18) 26.51(0.00) 59.98(0.34) 60.42(0.22) 60.20(0.49) 60.41(0.00)
MLMLγ ¼ 0 24.45(0.82) 26.42(0.79) 24.22(0.15) 24.88(0.00) 60.13(0.77) 60.66(0.13) 59.82(0.35) 60.46(0.00)
MLML 24.46(0.37) 26.41(0.29) 25.83(0.17) 26.56(0.00) 60.10(0.45) 60.84(0.26) 60.10(0.25) 60.45(0.00)

Table 4
AP and AUC results on NUS-WIDE-Lite data (mean(std)%), see texts for details. The best result in each column is highlighted in bold.

Methods AP AUC

20% 40% 80% 100% 20% 40% 80% 100%

Logistic-ℓ1 82.77(0.11) 83.67(0.07) 84.17(0.04) 84.34(0.03) 88.59(0.27) 89.56(0.12) 90.02(0.05) 90.19(0.05)
SVM [47] 82.97(0.09) 83.54(0.05) 84.10(0.07) 84.27(0.08) 88.87(0.08) 89.48(0.03) 89.95(0.05) 90.11(0.03)
SMSE2 [6] – – – 84.40(0.06) – – – 90.16(0.05)
MLR-GL [5] 80.50(0.14) 82.16(0.09) 83.35(0.03) 83.64(0.04) 87.06(0.09) 88.41(0.05) 89.32(0.04) 89.57(0.03)
MC-Pos [12] 81.48(0.05) 81.35(0.08) 81.53(0.02) 81.51(0.03) 87.46(0.16) 87.27(0.09) 87.44(0.02) 87.49(0.03)

MLMLβ ¼ 0 83.08(0.05) 83.86(0.09) 84.41(0.04) 84.48(0.02) 89.11(0.06) 89.84(0.06) 90.27(0.03) 90.31(0.01)
MLMLγ ¼ 0 83.10(0.07) 83.95(0.01) 84.47(0.05) 84.48(0.01) 89.18(0.13) 89.87(0.11) 90.29(0.08) 90.28(0.01)
MLML 83.08(0.08) 83.91(0.01) 84.49(0.02) 84.56(0.07) 89.00(0.11) 89.91(0.02) 90.32(0.02) 90.34(0.08)

Table 5
AP and AUC results on AU data (mean(std)%), see texts for details. The best result in each column is highlighted in bold.

Methods AP AUC

20% 40% 80% 100% 20% 40% 80% 100%

Logistic-ℓ1 78.11(0.59) 83.75(0.03) 87.64(0.12) 88.26(0.33) 86.80(0.08) 90.22(0.42) 93.59(0.12) 94.06(0.13)
SVM [47] 81.05(0.94) 85.30(0.85) 88.18(0.75) 89.03(0.46) 89.49 (0.51) 92.06 (0.45) 92.53 (0.26) 94.03 (0.16)
SMSE2 [6] – – – 85.74(0.06) – – – 92.41(0.12)
MLR-GL [5] 79.14(1.60) 83.33(0.35) 86.47(0.39) 87.43(0.52) 88.90(0.69) 91.50 (0.19) 93.12 (0.21) 93.42 (0.26)
MC-Pos [12] 78.28(0.31) 83.37(0.33) 87.90(0.26) 90.04(0.20) 87.66(0.19) 90.86(0.38) 93.78(0.23) 94.57(0.16)

MLMLβ ¼ 0 79.93(0.27) 84.72(0.52) 89.18(0.10) 89.68(0.16) 88.83(0.82) 92.02(0.31) 94.47(0.14) 94.77(0.09)
MLMLγ ¼ 0 81.01(0.39) 85.07(1.06) 87.40(0.49) 89.83(0.03) 89.59(0.11) 92.11(0.68) 93.51(0.33) 94.89(0.22)
MLML 80.98(0.91) 85.49(0.48) 89.27(0.53) 90.17(0.49) 89.15(0.18) 92.19(0.99) 94.09(0.26) 94.89(0.02)
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level smoothness independent of the provided labels may further boost
the performance of MLML. This will be explored in our futurework. The
predicted labels on some facial images are shown in Table 7.

4.4. Top-5 accuracy of each class

In above evaluations, the results are calculated based on the label
ranking list of all classes. To evaluate the performance of each class, in
the following we show the results evaluated by the top-5 accuracy, in
the case of 100% label proportion. Specifically, for the label ranking list
of each testing example, we assign the first five classes as positive
classes, while all other classes as negative. Hence we obtain a discrete
label matrix. Based on this matrix, we compute the average top-5
accuracy, which equals to the fraction of the correct prediction labels
in ground-truth label matrix. The corresponding results of different
algorithms are summarized in Table 8.

The top-5 accuracy of each class is also shown in Fig. 4. Note that
all compared algorithms, including the proposed MLML algorithm,
show poor performance on ESP Game and MIR Flickr data. We
believe that the main reason is the extremely unbalanced label
distribution, i.e., the positive labels are significantly less than the
negative labels. As shown in Table 1, the positive label percentage are
only 11.88% and 5.30% in ESP Game and MIR Flickr respectively.
Actually, the unbalanced label distribution is a typical problem in
multi-label learning. This motivates us to design more robust model,
such as the weighted model. This will be explored in our future work.

4.5. Computational complexity and convergence

The computational complexity of the proposed algorithm and
other compared algorithms are summarized in Table 9. The main
computational cost of our algorithm is the computation of ∇θi (see
Eq. (13)), which only involves matrix multiplication. Its computa-
tional complexity is OðnðmþnþdÞÞ. Moreover, by setting VY and VC

as sparse matrix, the complexity can be further reduced

significantly. As θ1;…;θm are learned sequentially, the overall
complexity of the proposed algorithm is OðmnðmþnþdÞÞ. It is
comparable with MLR-GL, and is much faster than other algo-
rithms. However, when the number of candidate classes m is large,
the complexity of MLML will be high. This is why we only choose a
part of candidate classes in above experiments. To alleviate this
problem, the label space reduction can be exploited to be combined
with our current model. This will be explored in our future work.

The convergence curves of the proposed algorithm on all data
sets are shown in Fig. 5. Considering the number of classes in each
data set, the proposed algorithm often converges in a small
number of iterations. It guarantees the computational efficiency
of our algorithm.

4.6. Discussions

According to the above results, we find that in different
proportions of missing labels, the performances of MLML seem
to be inconsistent. Indeed in Section 1 we have demonstrated that

Table 6
Examples of testing images from the ESP Game and MIR Flickr data with the predicted positive labels of different methods. The correct labels are highlighted in bold.

Images Ground-truth Logistic-ℓ1 SVM [47] SMSE2 [6] MLR-GL [5] MC-Pos [12] MLML

black, blue, grass,
hair, hat, man,
people

black, blue, white,
tree, sky, man,
hair

blue, water, painting,
tree, gray, sky, white

blue, man, red,
green, white,
woman, tree

blue, man, red,
woman, green,
people, hair

water, sky, blue,
white, sea, tree,
ocean

man, white, blue,
hair, people, black,
woman

explore, sky,
nikon, blue, clouds

green, blue, red,
explore, sky,
yellow

green, blue, flower,
white, interestingness,
beach

explore, sky, blue,
nikon, clouds,
nature

explore, green, blue,
sky, nature, nikon

explore, sky, blue,
nature, clouds

explore, sky, blue,
clouds, nature,
nikon

Table 7
Examples of testing images from the AU data with the predicted positive labels of different methods. The correct labels are highlighted in bold.

Images Ground-truth Logistic-ℓ1 SVM [47] SMSE2 [6] MLR-GL [5] MC-Pos [12] MLML

AU14 AU4 AU25 AU1 AU1 AU4 AU14

AU1, AU4, AU15,
AU17

AU4, AU17, AU1,
AU15

AU1, AU20, AU4,
AU25

AU1, AU25, AU2,
AU5

AU1, AU4, AU17,
AU15

AU4, AU7, AU1, AU5 AU4, AU17, AU1,
AU15

AU1, AU2, AU4,
AU5, AU14, AU20,
AU25

AU25, AU5, AU1,
AU20, AU4, AU2,
AU14

AU20, AU25, AU1,
AU5, AU2, AU6,
AU12

AU25, AU4, AU1,
AU20, AU5, AU7,
AU6

AU25, AU1, AU20,
AU4, AU5, AU12,
AU14

AU25, AU5, AU4,
AU20, AU1, AU12,
AU6

AU25, AU5, AU20,
AU1, AU4, AU2,
AU14

Table 8
Comparisons on the average top-5 accuracy (%) of different algorithms. The best
result in each column is highlighted in bold.

Methods Data sets

ESP Game MIR Flickr NUS-WIDE-Lite AU

Logistic-ℓ1 19.69 7.48 81.82 70.76
SVM [47] 13.13 5.64 81.93 70.77
SMSE2 [6] 15.48 6.20 80.76 63.25
MLR-GL [5] 19.87 6.80 82.16 68.45
MC-Pos [12] 20.45 7.07 79.06 60.42

MLMLβ ¼ 0 21.58 7.78 82.01 71.46
MLMLγ ¼ 0 21.46 7.48 82.10 71.25
MLML 21.62 7.78 82.08 71.49
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MLML method can avoid the label bias (i.e., treating missing labels
as negative labels directly), which exists in some compared
methods, such as SMSE2, WELL and MLR-GL. However, this
advantage cannot always guarantee that when the amount of
missing labels increases, the performance of MLML becomes better
than other methods. We believe that the reason is the perfor-
mance of MLML is not only influenced by the amount of missing
labels, but is also influenced by other factors, including the
percentage of positive labels in the ground-truth label matrix, as
well as the initial parameters from binary logistic regression.
Specifically, firstly when many missing labels exist, the computed
class-level dependency based on the provided label vector (i.e., K2,
see Eq. (4)) may be far from the true semantic dependencies
among classes. Secondly, when many missing labels exist, the
binary logistic regression, which only exploits the labeled exam-
ples in each class, may not provide good initial parameters for
MLML. These two points may harm the performance of MLML.
Thirdly, if the positive label percentage is very low, such as the
8.83% in MIR Flickr, the label bias may not significantly harm the
performance of other methods. Because treating missing as
negative labels will bring in many correct negative labels, while
the number of wrong labels (treating the ground-truth positive
labels as negative labels) is small. As a result, the benefit from the
correct labels may compensate the harm from the wrong labels.

Moreover, we also observe that in many cases the performance
superiority of MLML is not very significant over the compared

methods. We believe that there are three possible reasons. Firstly,
MLML can be seen as an extension of linear logistic regression model.
The linear model may limit the performance of MLML. It inspires us to
make kernelization of MLML, which is expected to further enhance
the performance. Secondly, the class-level dependency K2 depends on
the provided labels of the specific data. It inspires us to explore and
exploit some other types of dependencies independent of the pro-
vided labels, which is expected to make the performance of MLML
more robust. Last, the example-level dependency K1 depends on the
hand-crafted image features. In terms of image-based problems,
visually similar images may not always lead to the closeness of labels.
This semantic gap may harm the model performance. It inspires us to
extract or learn more informative features to describe the semantic
meaning of the image, based on saliency detection [48] or deep
learning [49].

5. Conclusions and future work

In this paper, we introduce a new formulation and solution to
multi-label learning with missing labels, and demonstrate its
effectiveness on two computer vision applications, image annota-
tion and AU recognition. Different from the existing methods, our
model explicitly takes account of missing labels and systematically
incorporates the label consistency and smoothness into the solu-
tion. Experiments on three benchmark data sets have verified the
efficacy of the proposed method.

As future work, there are several directions we would like to
further study. First, in our current work we only adopt the simple
concurrency in the class-level smoothness and the simple Eucli-
dean distance in example-level smoothness. Other types of class
correlations and image distances have been explored in many
existing works in the literature of multi-label learning and image
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Fig. 4. Top-5 accuracy on of the proposed algorithm on different data sets.

Table 9
Computational complexities of different algorithms.

Algorithm SMSE2 [6] MLR-GL [5] MC-Pos [12] MLML

Complexity Oðn3Þ Oðmn2Þ Oðmn2þn3Þ OðmnðmþnþdÞÞ
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annotation respectively [50,51]. Combined with these works, the
performance of our model is expected to be further improved.
Second, we only use the linear logistic regression in our model.
However, our model can be kernelized by setting different feature
functions hðxjÞ. The kernelized model is expected to handle the
data with more complex distributions. Third, as discussed in
Section 4, the proposed MLML model still suffers from two
problems: one is the scalability to the large scale class space,
and the other is the unbalanced label distribution. They could be
alleviated by label space reduction and the weighted model
respectively. Fourth, sometimes the soft labels (labels with uncer-
tainty) occur in particular scenarios, such as the AU intensity .
Handling and predicting such soft labels can be seen as regression
problems, such as [52]. As the discrete label Zij is approximated by
a continuous curve (see Eq. (9) and Fig. 3) in our learning process,
our method can directly handle the provided soft labels and also
output soft labels. As such it is a potential direction to extend our
method for the multi-label regression problems. Last, we will also
explore other applications of MLML, such as image denoising,
image segmentation and scene classification.

Conflict of interest

None declared.

Acknowledgments

The work was mostly completed when the first author was a
visiting student at Rensselaer Polytechnic Institute (RPI), sup-
ported by a scholarship from China Scholarship Council (CSC).
We thank CSC and RPI for their support. Qiang Ji is supported in
part by a grant from the US National Science Foundation (NSF, No.

1145152). Siwei Lyu is supported in part by the US National Science
Foundation Research Grant (CCF-1319800) and the National
Science Foundation Early Faculty Career Development (CAREER)
Award (IIS-0953373). Bao-Gang Hu and Baoyuan Wu are sup-
ported in part by the National Natural Science Foundation of China
(NSFC, No. 61273196).

Appendix A: optimization of the MLML objective function

For convenience, we firstly repeat the objective function (see
Eq. (11) in Section 3.3 of the main paper) as follows:

arg min
Θ;u40

JΘðXÞþ
η
2

Xd
j ¼ 1

Pm
i ¼ 1 θ

2
i ðjÞ

uj
þuj

 !
: ð16Þ

In more detail, the above objective function can be expanded as
follows (in the following, we will use σij as the shorthand notation
for σðθT

i hðxjÞÞÞ:

arg min
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where θiðjÞ denotes the j-th entry of θi. This problem is solved with
coordinate descent, with iteratively updating Θ and u, until
convergence.
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Fig. 5. Illustrations of the convergence rate of the proposed algorithm. One iteration number corresponds to one update step of θi (see Eq. (19)).
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.1. Given Θ, learning u

The optimal solution to u can be easily gained by setting the
gradient of (17) w.r.t. u to be zero, as follows:

�
Pm

i ¼ 1 θ
2
i ðjÞ

u2
j

þ1¼ 0; with uj40⟹un

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i ¼ 1

θ2
i ðjÞ

vuut : ð18Þ

.2. Given u, learning Θ

Given the fixed u, the last term of Eq. (17) becomes

Xd0
j ¼ 1

Pm
i ¼ 1 θ

2
i ðjÞ

uj
þuj

 !
¼
Xm
i ¼ 1
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uj

þ
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j ¼ 1
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¼
Xm
i ¼ 1

θT
i diagðuÞ�1θiþ

Xd0
j ¼ 1

uj:

Obviously this part becomes a weighted least squares. Further-
more, when all other parameters Θ=θi and u are fixed, the
objective function with respect to θi becomes

arg min
θi

β
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ð19Þ
Next, denote the four terms in (19) as A;B;C, and D. Then their
respective gradient w.r.t. θi are as follows:
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Combining the above four terms, i.e., ∇θi ¼ ∂A=∂θiþ∂B=∂θi

þ∂C=∂θiþ∂D=∂θi, we obtain

∇θi ¼ η � diagðuÞ�1θiþ2
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Using ∇θi, θi can be updated by gradient descent with a line search
based on Armijo rule. Then θ1;…;θm are learned sequentially.
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