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Abstract

Probabilistic Latent Semantic Analysis (PLSA) is a popular data analysis method

with the objective to discover the underlying semantic structure of input data.

In this work, we describe a method for probabilistic topic analysis in image

and text based on a new representation of graph-regularized PLSA (GPLSA).

In GPLSA, data entities are mapped to an undirected graph, where similari-

ties between topic compositions on the graph are measured by the divergence

between discrete probabilities. Such divergence is essentially incorporated as a

graph-regularizer that augments the original PLSA algorithm. Furthermore, we

extend the GPLSA algorithms to multiple data modalities based on the connec-

tions between data entities of each modality. We propose efficient multiplica-

tive iterative algorithms for GPLSA with three popular regularizers, namely

`1, `2 and symmetric KL divergences. In each case, we derive simple efficient

numerical solutions that require only matrix arithmetic operations during the

optimization. Experimental results demonstrate the efficacy of GPLSA over

state-of-the-art methods.
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1. Introduction

Probabilistic topic modeling, which aims to discover hidden thematic struc-

tures in large archival documents and to annotate a large document corpus with

thematic information, has been studied extensively in recent years. Typically, a

connection is established between the high-dimensional word distribution vec-5

tors of the documents and the lower-dimensional topic vectors, where the se-

mantic properties of these words and documents can be expressed in terms of

probabilistic topic models. Two basic probabilistic topic models are the proba-

bilistic latent semantic analysis (PLSA) [1] and latent Dirichlet allocation (LDA)

[2]. Topic analysis has wide range of applications including activity detection10

[3], image analysis [4], pattern recognition [5, 6, 7, 8], natural scene categories

[9], video processing [10, 11, 12], information retrieval [13, 14], document analy-

sis [15, 16], and co-authorship network analysis [17, 18, 19], multiple modalities

learning, instead of single modality topic analysis, the tasks in topic analysis

of multiple modalities attempt to learn dependencies between these modalities15

[20, 21, 22].

A simple treatment in probabilistic topic modeling is to assume all the topics

to be independent from each other. However, in many application domains, the

relation between topics are complicated and can be modeled more precisely with

a graph. For instance, social networks (such as the Facebook) operate based on a20

huge set of user profiles and friendship connections; publication archives such as

the Digital Bibliography and Library Project (DBLP) contain a vast authorship

network. Several recent works [23, 24] have considered the integration of a graph

structure with topic modeling in terms of regularizer to restrict the relations

among the learned topics to be consistent with the graph structure. However,25

The works of [23, 24] focus on single mortality modelling and the learned topic

representations in [24] usually do not afford explicit probabilistic interpretations.

Other approaches rely on Bayesian inference performed on the topic network

suffers from increased complexity problems for learning and inference [25, 26].

In this work, we study efficient algorithms for the graph-regularized prob-30
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abilistic latent semantic analysis (GPLSA) for probabilistic topic modeling.

GPLSA is capable of handling both single- or multiple- modalities of data by

introducing a graph structure into the PLSA topic modeling. In our general for-

mulation of GPLSA, the data entries are defined on a graph encoding the seman-

tic relations among the data entries, and the graph regularizers are in the form35

of the divergences between the discrete probability distributions corresponding

to the composition of topics from each data entry. Our formulation enables the

entries with the same semantic to smooth out their effects with each other. We

propose efficient algorithms for the learning of topics and their compositions

using three widely used divergence definitions, namely, `1, `2 and symmetric40

KL divergences. GPLSA optimization is casted as the minimization of the un-

derlying divergences, which encourages similarities between topic compositions

of each data entry and its nearest neighbors on the graph. Our algorithm is

efficient because the optimization steps consist of only simple matrix operations

and the derivation of scalar nonlinear equations. Our GPLSA algorithms also45

afford theoretical guarantee of convergence, unlike other state-of-the-art works

[27, 28]. We apply the GPLSA algorithms in image clustering, cross-modal re-

trieval and multi-lingual topic analysis applications on public benchmarks for

evaluation and comparison. Experimental results show noticeable improvements

of GPLSA against other state-of-the-art methods.50

Main contributions of this work are summarized in the following:

(1) We propose efficient algorithms for graph-regularized PLSA (GPLSA)

as a general framework for single- or multi- modality topic analysis, where

the graph regularizer is based on the divergence between discrete probability

distributions. Similarities between topics are enforced in a joint latent space55

constraint by the graph, and topic distributions are enhanced by their nearest

neighbors on the graph.

(2) We also study L1 graph regularizer in this problem, which has not been

studied in the previous works. We show improved results for the `1 regularizer

over the baseline. When using `2 divergence as the regularizer, our GPLSA60

algorithm is more efficient and with a convergence guarantee than the exist-
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ing method based on GNMF [24]. We further describe a new algorithm using

symmetric KL divergences as the regularizer, and demonstrate that it is more

effective compared to the `2 divergence.

(3) The proposed algorithms extend naturally probabilistic topic analysis65

of a single modality to multiple modalities. Our method enables capturing

of similarities between documents across modalities, by learning a joint latent

space for documents of different modalities. Our topic learning representation

leverages the compatible yet complementary conceptual themes among each

modality. Thus it is more effective than other methods relying on features70

derived from direct concatenation of modalities.

An early version of this work focusing on multi-modal learning was published

in [29]. This paper improves our previous work in the following aspects. (1) We

derive the efficient algorithms for the GPLSA problem in a general framework

based on the extended works. We also provide in depth motivations and full75

technical details. In this regard, our previous work of [29] can be considered as

a special case of the general formulation in this paper. (2) We provide simple

efficient numerical solutions that require only matrix arithmetic operations for

the optimization. We also provide a proof of convergence for the general form

of the algorithm. (3) We provide additional diagnostic experiments regarding80

the clustering performance and multi-lingual topic analysis to demonstrate the

effectiveness of our solutions.

The remaining of the paper is organized as follows. After introducing back-

ground works in Section 2, we review the PLSA algorithm with mathematical

representations using matrix formation in Section 3. This formulation should85

facilitate the description of the GPLSA algorithm for the clustering task for

single modality in section 4.1 and the extension for multi-modality retrieval

in section 4.2. Section 5 describes experimental validation by applying the

GPLSA algorithms to the image clustering, image/text cross-modal retrieval

and multi-lingual topic analysis applications. Section 6 concludes the paper90

with discussions and future works.
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2. Related Works

2.1. Probabilistic Topic Modeling for Single Modal Data

Much of the existing works regarding the integration of a network structure

with probabilistic topic modeling have focused on data with single modality (e.g.95

images,texts, etc), where topic selection preferences are smoothed among near-

est neighbors on the graph [24, 30, 31]. For instance, the work in [23] combines

topic modeling and social network to analyze the topics in an co-authorship

network. On a related front, graph regularizer is exploited to mode the intrinsic

structure of data distributions in graph-regularized non-negative matrix factor-100

ization (GNMF) [24], where encouraging results are obtained in document and

image clustering. We will show later that GNMF can be regarded as a spe-

cial case of the graph-regularized PLSA model, due to the close relationship

between the PLSA and NMF [32, 33]. GNMF aims to find a compact repre-

sentation which uncovers the hidden semantics from the documents and in the105

meantime represents the intrinsic geometric structure. A semantic representa-

tion space is found based on two assumptions that (1) if two data points are

connected along a graph edge, they should be sufficiently close to each other,

and (2) the representations of these two data points with respect to the new

basis are also close to each other. However, such jointly learned latent represen-110

tations may not have explicit probabilistic interpretations. Other approaches

rely on Bayesian inference performed on the topic network [25, 26]. The Re-

lational Topic Model (RTM) [25] uses LDA to model the documents and the

relationships between them, but suffers from increased complexity problems for

learning and inference.115

2.2. Probabilistic Topic Modeling for Multiple Modal

Recently several topic analysis techniques for multi-modal data have been

proposed [34, 30, 31]. In an early work [34], the interdependencies between pub-

lished documents take the form of citations which allow instant access to the

referenced documents, the citations in the documents are considered as a sepa-120

rate modality in the document corpus. The topics learned form the individual
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modalities are weighted combined as the shared topics of the two modalities.

More recently, there has been an effort to jointly model the documents topics

and other auxiliary information provided within the dateset [17, 18, 19]. For

example, the Wikipedia data documents typically include both texts and im-125

ages, and the work in [20] uses Markov random field of topic models to associate

images and texts based on their similarity. However, it assumes that each data

entity and its associated auxiliary data share the same topic compositions across

modalities in these methods. Such assumption might be too restrictive to be

applied on the real-world multi-modal datasets.130

Topic analysis methods are also widely applied on multi-lingual text which

can be regarded as multi-modal data [26]. For instance, [35] incorporates a bilin-

gual dictionary based on translation bipartite graph into cross-lingual PLSA to

extract common topics in cross-languages. Similarity, [36] presents a novel mul-

tilingual topic model, they first build a bipartite graph matching over terms in135

both languages assuming that words have similarity on document level contexts,

then the matching topics are learned as the distributions of these matching pairs

instead of being distributions over terms. However, both method relay on term

pairs in the dictionary and their assumption of matching terms may result the

loss of correlated information between the languages. In contrast, in this work,140

we aim to extract topics from different information sources (images and texts,

or texts in different languages) that reflect their intrinsic conceptual similari-

ties. It inherits the advantage of topic models that the learned topics are often

intuitive and interpretable.

Recently, there have also been several Bayesian approaches to multi-modal145

probabilistic topic modeling, a Markov random field (MRF) augmented prob-

abilistic topic model is proposed in [26], which incorporates the similarities

between associated topic compositions of different data modalities using MRF.

Although good performance in [26] are achieved, the Bayesian MRF method

has the problem of increased complexity in both of learning and inference al-150

gorithms related with Monte-Carlo methods. Several works also suggested that

connecting multiple modalities using a graph structure is crucial for strong per-
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formance of the learning algorithms on multi-modality datasets [37, 38, 39, 20],

with applications shown in [40, 41, 26].

Therefore, it is useful to extend simpler topic analysis methods such as155

GPLSA to learning from multi-modal data, whose efficient implementation can

be used for rapid analysis of large multi-modal dataset and initializations of

more sophisticated Bayesian methods. Two specific methods of extending PLSA

to multi-modal learning with co-regularization has been studied in two recent

works [27, 28]. The co-regularizer used in [27] is based on the mutual similari-160

ties of data in the topic space, and that of [28] is the `2 divergence between the

topic assignments in the latent space. The common drawback of both meth-

ods, however, is that the optimization procedure cannot guarantee monotonic

improvement of the objective function before a stationary point is reached. As

such, the algorithms in these previous works do not afford guarantees to con-165

verge and usually lead to inferior performance.

3. Background: Generalized PLSA Algorithm

The proposed Generalized PLSA algorithm is based on the generalized PLSA

Algorithm [42]. We first introduce some notations and definitions to be used

throughout the paper. A d-dimensional vector a is stochastic if ai > 0 and170 ∑d
i=1 ai = 1, and corresponds to a categorical probability distribution over d

outcomes. A d× n nonnegative matrix A is stochastic if its column vectors are

stochastic.

Consider any two d-dimensional stochastic vectors a and u, we define their

`1, `2 and Kulback-Leibler (KL) divergences, as: D`1(a,u) =
∑d
i=1 |ai − ui|,175

D`2(a,u) = 1
2

∑d
i=1(ai − ui)2, DKL(a,u) =

∑d
i=1 ai log ai

ui
, and their symmet-

ric KL divergence is defined as DsKL(a,u) = DKL(a,u) + DKL(u,a). Accord-

ingly, we define the divergence between two stochastic matrices A and U as the

sum of the divergences between their corresponding columns, as D∗(A,U) =∑
j D∗(A·,j , U·,j), where D∗ can be replaced with D`1 , D`2 , DKL or DsKL. For180

stochastic vectors/matrices, these divergences are non-negative and equal to
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zero if and only if the two vectors/matrices are identical.

Making analogy to a collection of text documents, we use a “bag-of-word”

representation [1] of a dataset, where each data entity (a “document”) is rep-

resented as the normalized frequencies over some basic features (“words” in a185

“vocabulary”). PLSA is performed based on a simple probabilistic generative

model of the dataset [2]: each word in a document is a sample from a mixture

model; each component of the mixture model is a categorical distributions over

the vocabulary (a “topic”); the mixing weights of the mixture model correspond

to a probability distribution over the topics, and provides the topic composition190

of the data entity.

Specifically, given n documents (d1, · · · ,dn) over a vocabulary of size d,

(w1, · · · ,wd), we use stochastic matrix P of dimension d× n to represent con-

ditional probabilities, as Pij ≡ Prob(word = wi|doc = dj). Assuming the docu-

ments are associated with m topics, (t1, · · · , tm), we use stochastic matrices A of195

dimension d×m and U of dimension m×n to represent conditional probabilities,

as Aik ≡ Prob(word = wi|topic = tk) and Ukj ≡ Prob(topic = tk|doc = dj), re-

spectively. According to the document generation model, documents and words

are conditionally independent from each other. As such, these probabilities

satisfy:200

Prob(word = wi|doc = dj) =
∑
k

Prob(word = wi|topic = tk)

Prob(topic = tk|doc = dj)

(1)

With the matrix notations, the equation (1) is equivalent to P = AU . For-

mally, given a dataset represented in stochastic matrix P of size d × n, PLSA

attempts to find its decomposition into A and U , where A and U are stochastic

matrix of size d×m and m×n respectively, formulated as an optimization prob-

lem: minA,U DKL(P,AU), with the constraint that both A and U are stochastic

matrices. After dropping irrelevant constant terms, minimizing the KL diver-

gence is equivalent to maximizing

J (A,U) =
∑
ij Pij log(AU)ij . (2)
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This optimization problem can be solved with block coordinate ascent by

iteratively optimizing A or U while fixing the other until converging to a local

optimum. The individual optimization step for A and U is solved with the EM

algorithm[43, 44, 42]. To facilitate subsequent discussions, we briefly review the

EM algorithm using the matrix notations introduced early in this section.205

Optimizing A: Introducing a different stochastic matrix Â, we first define an

auxiliary function

F(A, Â) =
∑
ijk

PijÂikUkj

(ÂU)
ij

log

(
Aik
Âik

(
ÂU
)
ij

)
=
∑
ikMik logAik + const. (3)

In the last step, terms irrelevant to A are collected into a constant. Nonnegative

matrix M = Â⊗
[
(P � (ÂU))UT

]
is formed with element-wise matrix multipli-

cation ⊗ and division �. An application of the Jensen’s inequality shows that

F(A, Â) 6 J (A,U) with equality holds when A = Â, i.e., F(A, Â) is a tight

lower-bound of J (A,U). Derivation of Eq.(3) and proof of F(A, Â) being a210

tight lower-bound of J (A,U) are provided in the Appendix A.

The EM algorithm optimizing A uses the above lower-bound to improve

the objective function in an iterative manner: Starting with an initial val-

ues A = A(0), we iteratively solve for A(t+1) ← argmaxA F(A,A(t)) with

the constraint A being stochastic. As we have J (A(t), U) = F(A(t), A(t)) 6215

F(A(t+1), A(t)) 6 J (A(t+1), U), the sequence (A(0), A(1), · · · ) monotonically in-

creases J (A,U) until reaching a local maximum.

During each iteration step of the EM algorithm, we solve for argmaxA F(A,A(t)),

which using Eq.(3) reduces to

maxA
∑
ikMik logAik, s.t. Aij > 0 &

∑
iAij = 1. (4)

The solution to this problem is given by Aik = Mik∑
i′ Mi′k

(proof given in the

Appendix A), in which the normalization step and the non-negativity of M

assures A to be a stochastic matrix.220

Optimizing U : The EM algorithm optimizing U with fixed A proceeds simi-

larly. First using an auxiliary stochastic matrix Û we define function

G(U, Û) =
∑
ijk

PijAikÛkj

(AÛ)
ij

log

(
Ukj

Ûkj

(
AÛ
)
ij

)
=
∑
kj Qkj logUkj + const, (5)
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Figure 1: (a) PSLA: vertices (columns of U) has no constrains, (b) GPLSA: vertices

with graph regularizer, (c) Multi-Modal GPLSA: vertices among multi-modal data

with graph regularizer.

with matrix Q = Û ⊗
[
AT (P � (AÛ))

]
. With a similar argument, we can show

that G(U, Û) is also a tight lower-bound of J (A,U) (proof given in the Appendix

A), on the basis of which the EM algorithm is obtained. Specifically, each step

of the EM algorithm solves

maxU
∑
kj Qik logUkj , s.t. Ukj > 0 &

∑
k Ukj = 1, (6)

of which the solution is given by Ukj =
Qkj∑
k′ Qk′j

. More details of the algorithms

can be found in [42]. For completeness, we include a proof of this result in

Appendix A.

4. Algorithm for Graph-regularized PLSA225

We start with a general setting of the single model GPLSA problem, then

extend the formulation to multi-modality problem.

4.1. General Formulation

In this section, we introduce our GPLSA algorithms. More specifically, fol-

lowing the examples in Fig. 1 (a) and (b). Consider a graph with n vertices,

where each vertex corresponds to a data point represented by each column of

the stochastic matrix U , we use ui (i ∈ [1, n]) to denote the i-th column of U .

For each data point ui, we add edges between ui and the other data points to
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formulate the relation matrix R among the vertices1. The graph regularizers

are the divergences between discrete probability distributions given by the cor-

responding composition of topics from a data entry, which enable effects from

entities of the same semantics to be smoothed by each other. Specifically, we

formulate GPLSA algorithms as a graph regularizer constrained optimization

problem as,

min
W,H

∑
kj

DKL(P,AU) + λD∗(Ukj , Ukl)Rlj , (7)

which satisfy the constraint that A and U are stochastic matrices. Where the

regularization parameter λ > 0 controls the contribution of the GPLSA ob-

jectives of the standard PLSA term and the co-regularization term. In the

following, we replace D∗ with the `1, `2 and symmetric KL divergences. After

dropping irrelevant constant terms of the objective function in Eq.(7), we can

simplify the objective as

max
A,U

∑
kj

J (A,U)− λD∗(Ukj , Ukl)Rlj , (8)

with the same constraints on the factors A and U , with J (A,U) described in

Eq.(2).230

Similar to the case of PLSA, in the learning step of GPLSA, the objective

function in Eq.(8) is optimized with a block-coordinate descent scheme, by alter-

nating steps between the optimization of A and U while fixing the other factors.

We first discuss the EM steps of these sub-problems.

Optimizing A: The optimization of A is the same as the optimization of A in

standard PLSA. As such, the solution can be obtained via solving the optimiza-

tion problem given in Eq.(4).

Optimizing U : The step optimizing U is different because of the graph-

regularizer. The optimization of Ukj with fixed A and the other columns in

U , i.e. Ukl, where l ∈ n and l 6= j, after removing irrelevant constant terms,

1In this work, we follow the default settings of GNMF using the 0-1 weighting scheme for

the relation matrix R, where Rjl = Rlj , l, j ∈ n .
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becomes

max
U

∑
kj

J (A,U)− λD∗(Ukj , Ukl)Rlj ,

s.t. Ukj > 0 &
∑
k

Ukj = 1.

(9)

A tight lower-bound of the above objective function can be derived using235

the auxiliary function G defined in Eq.(5), as: G(U, Û) − λD∗(Ukj , Ukl)Rlj 6

J (A,U)− λD∗(Ukj , Ukl)Rlj with equality when Ûkj = Ukj , which follows from

the property of G. We note that the second term λD∗(Ukj , Ukl)Rlj does not

depend on the auxiliary variable Ûkj in this lower-bound.

Then, we give a similar EM algorithm that optimizes Ukj iteratively, which

improves the lower-bound in each iteration. Starting with the initial Ukj = U0
kj ,

we iteratively solve for

U
(t+1)
kj ← argmax

Ukj

G(Ukj , U
(t)
kj )− λD∗(Ukj , Ukl)Rlj ,

s.t. Ukj > 0 &
∑
k

Ukj = 1.
(10)

We provide efficient algorithms for symmetric KL, `2 and `1 divergences

with convergence guarantees. Finally, the essential objective function we need

to optimize is

max
Ukj

∑
kj

Qkj logUkj − λD∗(Ukj , Ukl)Rlj ,

s.t. Ukj > 0 &
∑
k

Ukj = 1.

(11)

With respect to three types of graph-regularizer, namely, symmetric KL, `2240

and `1 divergences, the optimal solution to Eq.(11) can be expressed as non-

linear functions of a scalar variable ηj , which is the Lagrangian multiplier of the

normalizing constraint,
∑
k Ukj = 1.

Then, we have the solution to each type of graph-regularizer in the following

equations (proof given in the Appendix B):245

• For D∗ = DsKL,

Ukj(ηj) =
Qkj+λUklRlj

λCW
(
Qkj+λUklRlj

λC exp(
ηj
λC−

Skj
C +1)

) , (12)
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where W0(·) is defined implicitly as x = W (x)eW (x) for x > 0, which is

the principal branch of the Lambert W function [45]2. Rlj represents the

relation weight between document l and j,
∑
lRlj denotes the weight sum-

mation between document j and all other documents l, l ∈ {1, n} and l 6= j.

(logU)klRlj and UklRlj are the constant terms with respect to the cur-250

rent variable, i.e., the j th column of matrix U , we denote C =
∑
lRlj ,

Skj = (logU)klRlj for simplicity.

• For D∗ = D`2 ,

Ukj(ηj) =
λUklRlj−ηj+

√
(ηj−λUklRlj)2+4λ(

∑
l Rlj)Qkj

2λ(
∑
l Rlj)

, (13)

• For D∗ = D`1 ,

Ukj(ηj) =


Qkj

ηj+λ
∑
l Rlj

−λ
∑
lRlj < ηj <

Qkj
Ukl
− λ

∑
lRlj ,

Ukl
Qkj
Ukl
− λ

∑
lRlj ≤ ηj ≤

Qkj
Ukl

+ λ
∑
lRlj ,

Qkj
ηj−λ

∑
l Rlj

Qkj
Ukl

+ λ
∑
lRlj < ηj .

(14)

Compared with the two other divergence types, the update steps for `1

divergence in Eq.(14) corresponds to a piecewise function. The computation

only involves arithmetic operations and thresholding, which is substantially255

more simple and efficient. Another important property of using `1 regularizer

is that the resulting Ukj can have identical components as Ukl. This is usually

not the case for the `2 and symmetric KL regularizers.

We use Ukj(ηj) in Eqs.(12,13,14) to emphasize the fact that they are func-

tions of the scalar parameter ηj . To determine the value of ηj , which in turn

leads to the optimal solution to U , we can solve the following 1D nonlinear

equation corresponding to the normalization constraint in Eq.(11),∑
k

Ukj(ηj) = 1. (15)

For each type of graph regularizers, we use the corresponding Ukj(ηj) in

Eqs.(12,13,14). For each column index j, Eq.(15) can be solved numerically,260

2The Lambert W function has been independently introduced in number of different ap-

plications, such as encouraging sparsity over the obtained A or U factors in a variant of PLSA

[46], it has also been used in algorithms that enforce entropic priors [47]. It can be numerically

evaluated and is provided in popular numerical tools such as MATLAB (function lambertw)

or SciPy (function scipy.special.lambertw).
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e.g., with Newton-Raphson when Ukj(ηj) is differentiable (e.g., D∗ = D`2 or

DsKL) or bi-section when otherwise (e.g., D∗ = D`1).

In summary, we solve the GPLSA problems with an iterative algorithm that

alternates between the optimization of individual A and U factors while fixing

the others. The optimization of A factor is performed with another iterative265

EM algorithm based on individual optimization steps given in Eq.(4). The

optimization of U factor is achieved by iterating steps that first solve Eq.(15)

and then determine the factors with Eq.(12), Eq.(13) or Eq.(14). In practice,

all iterative algorithms converges within 5-10 steps, which corresponds to about

20-30 seconds using Matlab implementation running on a desktop with Intel270

Core(TM) i7 CPU and 8GB RAM.

4.2. Extend GPLSA to Multi-Modal Topic Analysis

Our GPLSA algorithms can be extended to the case with more than one

modalities. The overall architecture is shown in Fig. 1 (c). Formally, given

a data set with L modalities, we represent it as stochastic matrices P (l) (l ∈275

1, ..., L) of size dl × n, and aims to find factorization P (l) ≈ A(l)U (l), with

stochastic matrices A(l) of size d(l) × m and a matrix U (l) of size m × n rep-

resenting the m modality-specific topic matrices and the topic compositions of

the dataset, respectively. In GPLSA, association of different modalities to their

common data entry is achieved by coupling the factorizations P (l) ≈ A(l)U (l),280

i.e., besides individual GPLSA objectives to each modality. The relation matrix

R of the graph regularizers is constructed among U (l) based on the assump-

tion that different data modalities admit similar underlying semantic structure,

thus the algorithms aim to minimize the difference of U matrices from different

modalities corresponding to each respective topic compositions.285

Specifically, GPLSA algorithms are formulated as a constrained optimization

problem as

min
A(l),U(l)

∑
l=1,...,L

DKL(P (l), A(l)U (l)) + λD∗(U (l), U (\l)), (16)
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which satisfy the constraint that A(l) and U (l) are stochastic matrices, for sim-

plicity, we refer to U (\l) as the other U factor other than U (l). Parameter λ > 0

balances the contribution of the GPLSA objectives of each modality and the

graph-regularization term. Then we replace D∗ with the symmetric KL, `2 or

`1 divergences3. Dropping irrelevant constant terms, the objective function of

Eq.(16) can be further simplified to

max
A(l),U(l)

∑
`=1,...,L

J (A(l), U (l))− λD∗(U (l), U (\l)), (17)

with the same constraints on the factors.

Similar to PLSA, in the learning step of GPLSA, the objective function in

Eq.(17) is optimized with a block-coordinate descent scheme, by alternating

between steps optimizing each of A(l), U (l), while fixing the other factors. In

the following, we describe the steps of these sub-problems.290

Optimizing A(l): The step optimizing each A(l) is the same as the optimization

of A in PLSA. As such, the optimal solution can be obtained via solving a

sequence of optimization problem given in Eq.(4).

Optimizing U (l): The optimization of U (l) with fixed A(l) and U (\l), after

dropping irrelevant constant terms, we have

max
U(l)

∑
kj

Qkj logU
(l)
kj − λD∗(U

(l), U (\l)),

s.t. U
(l)
kj > 0 &

∑
k

U
(l)
kj = 1.

(18)

Similar to GPLSA on single modality, with respect to three types of graph-

regularizer for difference modality (namely, symmetric KL, `2 and `1 diver-295

gences), the optimal solution to Eq.(18) can be expressed as non-linear func-

tions of a scalar variable ηj , which is referred to as a Lagrangian multiplier of

the normalizing constraint,
∑
k Ukj = 1. Specifically, these solutions are given

in the following equations, with proofs given in the Appendix C:

• For D∗ = DsKL,

U
(l)
kj (ηj) =

Qkj+λU
(\l)
kj

λW0

(
Qkj+λU

(\l)
kj

λU
(\l)
kj

exp(1+
ηj
λ )

) , (19)

3One could have other regularization terms on the factors A(l) and U(l) for other preference

on the factors such as sparsity. Furthermore, it is also possible to use similar methods to

enforce consistencies in parts of factor A(l). However, for simplicity, in the current work we

do not consider these types of regularizers.
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• For D∗ = D`2 ,

U
(l)
kj (ηj) = 1

2

√(
U

(\l)
kj −

ηj
λ

)2

+
4Qkj
λ + 1

2

(
U

(\l)
kj −

ηj
λ

)
, (20)

• For D∗ = D`1 ,

U
(l)
kj (ηj) =


Qkj
ηj+λ

, −λ < ηj <
Qkj

U
(\l)
kj

− λ,

U
(\l)
kj ,

Qkj

U
(\l)
kj

− λ 6 ηj 6
Qkj

U
(\l)
kj

+ λ,

Qkj
ηj−λ ,

Qkj

U
(\l)
kj

+ λ < ηj .

(21)

300

5. Experiments

In this section, we first perform some simple experiment to evaluate the

GPLSA algorithms on image clustering to justify how well they perform on

topic analysis from data of a single modality. We then apply them to cross-305

modality retrieval from documents containing both images and texts. Finally,

we also apply them on multi-lingual topic analysis problems. An overview of

the proposed framework for experiments is shown in Fig.2.

Data Set
Matrix 

Representation
Preprocessing GPLSA

Low dim
Representation

of Data Set

Application
algorithms

Figure 2: An overview of the proposed framework.

5.1. Image Clustering310

We use two data sets in this experiment, the first one is the CMU Pose,

Illumination, and Expression (PIE) face database [48], which contains of 32 ×

32 gray scale facial images of 68 persons. There are 42 facial images taken

for each person under different poses, illumination and expression conditions.

The second one is the Columbia Image Library (COIL-20) data set [24], which315

contains 32 × 32 gray scale images of 20 classes (objects). There are 72 images

taken for each object with different view angles.
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Accuracy (%) Normalized Mutual Information (%)

K Baseline Regularizer GNMF [24] GPLSA Baseline Regularizer GNMF[24] GPLSA

L1 — 38.81 L1 — 57.25

30 26.83 L2 82.86 84.44 48.38 L2 90.49 91.19

KL 61.51 76.27 KL 78.11 88.12

L1 — 39.43 L1 — 62.89

50 25.48 L2 76.14 80.48 50.93 L2 89.26 90.22

KL 62.57 70.14 KL 81.20 86.28

L1 — 35.75 L1 — 63.56

68 23.99 L2 75.56 77.66 53.77 L2 88.07 89.14

KL 63.55 76.23 KL 83.20 89.16

Table 1: Comparison of results regarding clustering performance of GPLSA vs.

GNMF [24] on the PIE face dataset in terms of accuracy and normalized mutual

information.

The clustering results are evaluated by two metrics, the accuracy and the

normalized mutual information metric (NMI) [49]. The accuracy is defined as:

AC =

∑n
i=1 δ(ri, si)

n
, (22)

where ri is the estimated cluster label, si is the ground truth label, and n is the

number of examples. δ(ri, si) is the delta function that equals 1 if ri = si and

equals 0 otherwise. The NMI are defined as follow:320

NMI(C, C̄) =
MI(C, C̄)

max(H(C), H(C̄))
, (23)

where H(C) and H(C̄) are the entropies of H(C) and H(C̄), the mutual

information (MI) is defined as:

MI(C, C̄) =
∑

ci∈C,c̄j∈C̄

p(ci, c̄j) log2

p(ci, c̄j)

p(ci)p(c̄j)
, (24)

where C is the set of ground truth clusters, C̄ is the clustering result from the

testing algorithm. p(ci) and p(c̄j) are the probabilities of a randomly selected

image, which belongs to clusters ci and c̄j , respectively. p(ci, c̄j) is the joint325

probability that this randomly selected image belongs to the clusters ci and c̄j

at the same time. In case two sets of clusters are identical, NMI is 1. In case

two sets are independent, NMI is 0.
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We compare GPLSA with (1) a baseline algorithm with K-means clustering

in the original image space and (2) the GNMF method [24], which has been330

shown to achieve superior performance against classic clustering algorithms (i.e.

K-means, SVD, NCut, standard NMF)4. After applying GPLSA and GNMF, a

low dimensional representation with the size of topics numbers for each image is

obtained. The clustering of images is then performed upon this low dimensional

representation using standard K-means for a final evaluation. We follow the335

default settings of GNMF using the 0-1 weighting scheme and use 5 nearest

neighbors for the relation matrix R; and we set the number of topics equals to

the number of clusters, the optimized balance parameter λ in GPLSA algorithms

is chosen by cross-validation on a subset of the training data. We evaluate

the performance with different number of clusters (K in Table 2), where the340

evaluated clusters (classes) are randomly chosen from 20 classes (objects).

Table 1 and 2 shows the results of GPLSA algorithms with `1, `2 and sym-

metric KL regularizers on the PIE and COIL-20 dataset, respectively. The

results using the `1 regularizer consistently outperform the baseline. We note

that the use of `1 regularizer in GNMF is not available, thus the comparison345

is omitted. GPLSA outperforms GNFM in both cases of symmetric KL and

`2 regularizers. Finally, the symmetric KL graph-regularizer achieves the best

overall performance. This is expectable as we solve the objective function with

the log term using the Lambert W function, and in comparison GNMF relies

on a rough approximate to solve a nonlinear equation.350

5.2. Cross-Modal Image/Text Retrieval

For multi-modality data, the difference in original data representations of

images and text are encoded into the corresponding topics with the GPLSA

model. And with their topic compositions, images and texts are projected

into a compatible semantic space, this new representation can then be used355

4The GNMF code and dataset are released and available at

http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html
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Accuracy (%) Normalized Mutual Information (%)

K Baseline Regularizer GNMF [24] GPLSA Baseline Regularizer GNMF[24] GPLSA

L1 — 60.00 L1 — 65.95

10 43.89 L2 79.58 85.00 54.14 L2 87.92 88.62

KL 84.31 87.36 KL 88.44 90.18

L1 — 67.87 L1 — 76.54

15 65.37 L2 84.35 85.83 71.08 L2 85.31 86.22

KL 84.17 86.39 KL 87.60 89.18

L1 — 73.68 L1 — 81.69

20 60.49 L2 72.22 80.97 73.86 L2 87.60 88.36

KL 73.68 81.81 KL 85.18 90.14

Table 2: Comparison of results regarding clustering performance of GPLSA vs.

GNMF [24] on the COIL20 dataset in terms of accuracy and normalized mutual in-

formation.

to do establish connections between images and text documents and facilitates

cross-modality retrieval. Specifically, our evaluation focused on the task of text

retrieval from an image query (i-2-t), and image retrieval from a query with a

text document (t-2-i). Two standard benchmark image/text datasets were used

in our experiments: Wikipedia [38] and TVGraz [50]. The Wikipedia dataset360

consists of 2866 image/text pairs of 30 semantic categories, includes a standard

training and testing sets split with 2173 and 693 image/text pairs. The TV-

Graz dataset consists of 2058 image/text pairs of 10 semantic categories with

an average document length of 289 words, and is split into training and testing

sets with 1558 and 500 image/text pairs. Images and texts in both datasets are365

converted to bag-of-word representation, where for images we used 1024 visual

keywords as a result of clustering the SIFT features from all training images,

and 6203 unique text words were selected after stemming and removal of the

common stop words.

In the learning phase, we determine modality-specific topics using the GPLSA370

learning algorithm (Section 4.2) on the training sets. We extract 100 topics from

the Wikipedia dataset and 50 topics from the TVGraz dataset, and the optimized

balance parameter λ in GPLSA algorithms is chosen by cross-validation on a

subset of the training data. When performing retrieval tasks on the testing
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Methods

Topic space similarity Semantic space similarity

TVGraz Wikipedia TVGraz Wikipedia

i-2-t t-2-i i-2-t t-2-i i-2-t t-2-i i-2-t t-2-i

SCM [37] 0.460 0.450 0.267 0.219 0.664 0.649 0.362 0.273

Link PLSA [34] 0.349 0.349 0.247 0.247 0.803 0.803 0.605 0.605

`1 GPLSA 0.359 0.365 0.317 0.307 0.723 0.726 0.667 0.658

`2 GPLSA 0.450 0.445 0.360 0.358 0.846 0.845 0.706 0.701

sKL GPLSA 0.481 0.481 0.413 0.413 0.850 0.850 0.726 0.724

Table 3: Performance comparison of GPLSA with 3 regularizers and two other multi-

modal learning algorithms in terms of mean average precision (mAP) on two standard

public image/text benchmark datasets. See texts for details.

set, we first recover the topic composition of the queried image or text using the375

PLSA algorithm (only the optimization of U matrix) using the learned modality-

specific topics. The similarities between topic compositions of the queried image

and texts in testing set (in task i-2-t) or queried text and images in testing set

(in task t-2-i) are then evaluated and ranked. Two similarity measures are

used in our experiments, the centered normalized correlation between the topic380

compositions and the centered normalized correlations between topic compo-

sitions transformed by a multi-class logistic regression function learned during

training, which maps topic compositions to the semantic categories pre-defined

for each dataset. As such, the former evaluates correlations of topic compo-

sitions directly, while the latter can be regarded as the correlation in a more385

semantically meaningful space induced from the topic compositions [37]. We use

the mean average precision (MAP) scores over all testing data as performance

metric. The average precision score for each query is computed as the mean

precision value for the top 10 relevant retrievals. Here, we determine a relevant

retrieval occurs if the retrieved text/image is from the same semantic category390

as the image/text used in query.

Table 3 shows the results of GPLSA algorithms with `1, `2 and symmetric

KL regularizers on the two datasets. For comparison, we also include retrieval

performance based on a link-PLSA model that requires the topic compositions

of associated text and image to be identical. The link-PLSA algorithm can be395
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image topic composition tags image topic composition tags

water, lake

pond, surface

stream, basin, ice

flow, wave

New, york, city,

Unite, largest,

State,

high, metropolitan,

Manhattan, world

tree, plant, root,

sap,forest, leave,

layer, fruit,

growth, timber

town, house,

area, village,

urban,

tree, room, local,

home, settlement

forest, tree, Forb,

taiga, tropic,

climat,

season, plant,

region,

broadleaf, nature,

building, construct,

structure, design,

city, built, sustain,

home, public

Figure 3: Example images with generated topic compositions and tags obtained with

sKL-GPLSA from the Wikipedia dataset.

implemented as described in [34]. Furthermore, all results were compared to a

baseline established by the method of semantic correlation matching (SCM) [37],

which represents the state-of-the-art performance in text/image cross-modal re-

trieval tasks. Results in Table 3 suggests that for the two cross-modal retrieval

tasks, GPLSA algorithms in general achieve better performance than the link400

PLSA algorithm, and also outperform the SCM method that is based on kernel

canonical correlation analysis. This may be attributed to, on the one hand,

the more semantic relevance of the representation (as probability mixture of

thematic topics of the images/text) obtained with GPLSA, and on the other

hand, its less restrict assumption that allows for mis-match of topic composi-405

tions of associated text and images. This is further corroborated by observing

that the MAP scores for i2t and t2i tasks are similar with GPLSA algorithms,

suggesting the diminished representational difference between the two modali-

ties in the topic space found by GPLSA. Furthermore, all three variants of the

GPLSA algorithms achieves better performance and efficient computation, but410

symmetric KL graph-regularizer leads to the best overall performance. Last,

combining with more semantic abstraction, as concluded in [37], can also sig-

nificantly improve the retrieval performance.
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Topic 1 - (Turkey nuclear) Topic 2 - (Europe peace)

German English German English

turkei (turkey) Turkey israel (israel) peace

frag (question) nuclear europa (Europe) Israel

prasident (president) question palastinens (palestinians) Palestinian

moglich (possible) President union (union) European

kommission (commission) people staat (State) negoti

antwort (answer) Commission region (region) territory

nuklear (nuclear) concern ost (east) Union

fall (event) time friedensprozess (peace process) East

zeit (time) Council abkomm (Agreem) agreement

bedenk (Bedenk) possibl gebiet (area) State

Topic 3 - (fishing environment) Topic 4 - (vehicle)

German English German English

schiff (ship) fish herstell (producible) car

fischerei (fishing) disaster fahrzeug (vehicle) manufacture

katastroph (disaster) fisher kost (costly) cost

erika (heather) affect autos (cars) recycle

fisch (fish) pollute verantwort (responsible) vehicle

europa (Europe) ship standpunkt (viewpoint) environment

schad (defective) control gemeinsam (common) industry

kontroll (control) damage automobilindustri (automotive-industrial) common

umwelt (environment) sea recycling (recycling) consume

fischereisektor (fishing sector) environment verbrauch (consumption) response

Table 4: Top words of leaned topics on the German-English corpus. See text for

details.

In Fig.3 we further show several test images from the Wikipedia dataset with

their corresponding topic compositions over a subset of topics obtained with the415

symmetric KL GPLSA algorithm (the names of each topic is manually assigned

based on the top words from each topic to facilitate understanding), together

with text tags that are generated by sampling from the topic mixtures associated

with each image. The visualized topic compositions and the generated text tags

of these images obtained with GPLSA span wide semantic ranges, and can shed420

some light on their effects in improving the precisions of semantic matching with

the queried text document.

5.3. Multi-Lingual Topic Analysis

In multi-lingual topic analysis, our purpose it to produce a topic-level sum-

marization of documents using GPLSA in different languages. From such a425

summarization, one can quickly grasp the basic subjects concerning a document
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English document: The UN Economic Commission for Europe has also examined the objec-

tives for reductions in the same sources of emissions as in the proposal for a directive

now under discussion, and, as a result of these talks, the so-called Gothenburg Protocol

was signed. There is a clear difference between this proposal and the Commission’s. Mr

President, the industry committee, after much discussion and serious consideration, is over-

whelmingly opposed to the Commission’s proposed ceilings, and this is across all groups and

nationalities. I understand that the groups, the whole Parliament, are split on this issue,

between supporters of the Committee on the Environment, Public Health and Consumer

Policy and supporters of the industry committee’s line.

Summarization in German: europa, kommission, union, wirtschaft, parlament, bericht, land,

frag, wichtig, prasident, moglich, polit, ziel, mitgliedstaat, sozial

German document: In Kreisen der UNO-Wirtschaftskommission fr Europa sind ebenfalls

Ziele fr die Verringerung derselben Emissionsquellen untersucht worden wie in dem jetzt

debattierten Vorschlag fr eine Richtlinie, und im Ergebnis dieser Verhandlungen wurde

das sogenannte Gteborger Protokoll unterzeichnet. Zwischen diesem Vorschlag und dem

Vorschlag der Kommission gibt es einen deutlichen Unterschied. Herr Prsident, der In-

dustrieausschu lehnt nach ausfhrlicher Diskussion und ernsthafter berlegung die von der

Kommission vorgeschlagenen Hchstgrenzen mit der berwltigenden Mehrheit aller Frak-

tionen und Nationalitten ab. Soweit mir bekannt ist, sind die Fraktionen, ist das gesamte

Parlament in zwei Lager gespalten, von denen das eine den Ausschu fr Umweltfragen, Volks-

gesundheit und Verbraucherpolitik untersttzt und das andere den Industrieausschu.

Summarization in English: European, commission, policy, President, Union, service, region,

import, report, social, Member, develop, State, country, economic

Table 5: German-English document summarization results. See text for details.

written in unknown language by another familiar language. As such analysis

bypasses the need of machine translation, it can be used in occasions where fast

analysis of a vast number of documents in foreign languages is required.

We used a data set that is a subset of the multilingual corpora in the Euro-430

pean Parliament Proceedings Parallel Corpus (EPPPC) [51], which contains

newswire articles written in different European languages with aligned sen-

tences. In our experiments, we selected 1100 documents of German ⇔ English

pairs. Considering different languages as different information sources, topics

are learned from a training set containing 1000 German-English documents.435

Performance of the topic learning algorithms are evaluated on a test set of the

remaining 100 documents. After stemming and removing a standard list of the
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stop words using NLTK5, the resulting English dictionary contains 10115 words,

while the German dictionary contains 19532 words.

We then applied the GPLSA algorithm on this corpus to extract 100 common440

topics in the two languages. Table 4 shows the top words of two languages from 4

examples of the learned topics (the German words are shown with their English

translations in parentheses). As these result shows, common topics capture the

correspondence of German and English words without precisely aligning them.

More importantly, these words are grouped together under topics of the same445

concept.

As a simple application, we generate English summarization for German

documents that were not covered by the training set. Similar to the previ-

ous experiments on image-text documents, we take the simple method of first

recovering the topic assignments of the German documents using the learned450

German topic matrix, then combine it with the English topic matrix to generate

corresponding keywords in English. Two examples from the results are shown

in Table 5. For readers who do not know German, the extracted keywords in

English can provide informative guidelines about the topics of the document (in

this case, both are about ‘European politics’).455

6. Conclusion

We have presented efficient algorithms for graph regularized PLSA (GPLSA)

to probabilistic topic analysis of both single- and multiple- modality data repre-

sentation. In GPLSA, topic compositions of a data entity are mapped to a graph

and the similarities between topic compositions on the graph are measured with460

divergences between discrete probabilities. We propose efficient multiplicative

iterative algorithms for GPLSA with `1, `2 and symmetric KL divergences as

regularizers. The optimization problem for each case affords simple numeri-

cal solutions that require only matrix arithmetic operations and 1D nonlinear

5http://www.nltk.org/
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equations. Experimental results in various real-data sets show that the pro-465

posed algorithms enhances the performance of the sate-of-the art frameworks.

Unfortunately, We have not proven if the algorithm converges to a limit point

in the interior of the feasible region, that this point is indeed a stationary point

[52], we will investigate more on this direction in the future work.

There are several directions that the current work can be further improved.470

First, the correlation matrix controls the smoothness of topics in GPLSA model.

Thus, learning a suitable correlation matrix is critical to GPLSA algorithms.

Secondly, we are working on adapting the GPLSA algorithms to datasets with

more sophisticated structures over topics, such as allowing a hierarchical struc-

ture of the topics with higher layers capturing more abstract semantic notions.475

At last, we are also interested in incorporating other type of constraints such as

sparseness in multi-modal topic analysis. We will also seek more applications

of GPLSA algorithms, for instance to video analysis or multi-modal social data

analysis.
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Appendix A.

Proof. Proof of J (A,U) is tight lower-bounded by F(A, Â). First, note

that
(
ÂU
)
ij

=
∑
k ÂikUkj , or

∑
k
ÂikUkj

(ÂU)
ij

= 1. Next, consider the concavity

of the logarithm function, we first rearrange terms in the definition of F(A, Â)

and then apply Jensen’s inequality to the inner term to get

∑
ij

Vij


∑
k

ŴikHkj(
ŴH

)
ij

log

(
WikHkj

ŴikHkj

(
ŴH

)
ij

)
6
∑
ij

Vij log

(∑
k

WikHkj

)
=
∑
ij

Vij log(WH)ij .

As the last term is J (A,U), this proves the inequalities F(A, Â) 6 J (A,U).

Furthermore, equality trivially holds if we have A = Â.
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Next, we show the other part of Eq.(3), F(A, Â) =
∑
ikMik logAik + const.

We start with the definition of F(A, Â), as

∑
ijk

PijÂikUkj(
ÂU
)
ij

log

(
Aik

Âik

(
ÂU
)
ij

)∑
ik

Âik
∑
j

 Pij(
ÂU
)
ij

(UT )jk

 logAik + const.

where
∑
j

{
Pij

(ÂU)
ij

(UT )jk

}
=
[
(P � (ÂU))UT

]
ik

, it then follows that the term485

in front of logAik is the element of matrix M = Â⊗
[
(P � (ÂU))UT

]
.

Optimal solution to Eq.(4). We first introduce Lagrangian multiplier for

each equality constraint ηk in the optimization problem, and form the La-

grangian as: ∑
ik

Mik logAik −
∑
k

ηk

(∑
i

Aik − 1

)
.

Taking derivative of the Lagrangian with regards to each Aik and solving the

equation when setting the result to zero yield Aik = Mik

ηk
. Further considering

the constraint
∑
i′ Ai′k = 1, we have ηk =

∑
i′ Mi′k, thus proves the result.

Proof of J (A,U) is tight lower-bounded by G(U, Û). As in the case of show-

ing F(A, Â) 6 J (A,U), we first use the fact that
(
AÛ
)
ij

=
∑
k AikÛkj , or∑

k
AikÛkj

(AÛ)
ij

= 1. We then rearrange terms of G(U, Û) and then apply Jensen’s

inequality to obtain

∑
ij

Vij


∑
k

WikĤkj(
WĤ

)
ij

log

(
WikHkj

WikĤkj

(
WĤ

)
ij

)
6
∑
ij

Vij log

(∑
k

WikHkj

)
=
∑
ij

Vij log(WH)ij .

As the last term is J (A,U), this proves that G(U, Û) 6 J (A,U). Furthermore,490

equality is trivially held when we have U = Û .

Next, we show the other part of Eq.(5), G(U, Û) =
∑
kj Qkj logUkj + const.
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We start with the definition of G(U, Û), as

∑
ijk

VijWikĤkj(
WĤ

)
ij

log

(
Hkj

Ĥkj

(
WĤ

)
ij

)

=
∑
kj

Ĥkj

∑
i

(WT )ki
Vij(

WĤ
)
ij

 logHkj + const.

Where
∑
i

{
(AT )ki

Pij

(AÛ)
ij

}
=
[
AT (P � (AÛ))

]
kj

, it then follows that the term

in front of logUkj is the element of matrix that can be written as Q = Û ⊗[
AT (P � (AÛ))

]
.

Optimal solution to Eq.(6). We first introduce Lagrangian multiplier for

each equality constraint ηj in the optimization problem, and form the La-

grangian as: ∑
kj Qkj logUkj −

∑
j ηj (

∑
k Ukj − 1) .

Taking derivative of the Lagrangian with regards to each Ukj and solving the495

equation when setting the result to zero yield Ukj =
Qkj
ηj

. Further considering

the constraint
∑
k′j Uk′j = 1, we have ηj =

∑
k′ Qk′j , thus proves the result.

Appendix B.

Proof. Proof of Eq.(12). We first simplify the objective function of Eq.(11)

by dropping irrelevant constant terms to obtain the new objective function as

∑
kj

Qkj logUkj − λ
n∑
j=1

n∑
l=1

r∑
k=1

(
Ukj log

Ukj
Ukl

+ Ukl log
Ukl
Ukj

)
Rlj .

Next, we introduce Lagrangian multiplier ηj to each equality constraint on

the column of Ukj in Eq.(11) and form the Lagrangian. Ignoring the nonnegative

constraint (it will be shown to be satisfied in our setup later in this section), the

first KKT condition of the problem with regards to Ukj is that the derivative of

the Lagrangian with regards to Ukj vanishes, as

Qkj
Ukj
− ηj − λ((

∑
l

Rlj) logUkj + (
∑
l

Rlj)− (logU)klRlj −
UklRlj
Ukj

) = 0.
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We define C =
∑
lRlj , Skj = (logH)klRlj , T =

Qkj+λSkj
λC and B =

ηj
λC −

Skj
C + 1, and rearrange term followed by exponentiation of both sides of the

above equation to obtain

T

Ukj
= logUkj +B ⇒ TeB = exp

(
log
(
Ukje

B
))

log
(
Ukje

B
)
.

Using the definition of the principal branch of the Lambert W-function, this

further reduces to

logHkje
B =W0

(
AeB

)
⇒ Hkje

B = eW0(AeB) ⇒

Hkje
B =

AeB

W0 (AeB)
⇒ Hkj =

A

W0 (AeB)
,

where in the last step we use the property of W function that eW0(z) = z
W0(z) .

Now replacing T and B with their definitions yields Eq.(12).500

Proof of Eq.(13). With the `2 regularizer, the objective function of Eq.(11)

becomes ∑
kj

Qkj logUkj − λ
n∑
j=1

n∑
l=1

r∑
k=1

1

2
(Ukj − Ukl)2

Rlj . (B.1)

Similar to the symmetric KL divergence case, we form Lagrangian with

Lagrangian multiplier ηj to each equality constraint of Eq.(11), and take its

derivative with regards to Ukj and set it to zero,

Qkj
Ukj
− ηj − λ

[
(
∑
l

Rlj)Ukj − UklRlj

]
= 0, (B.2)

rearranging terms leads to a quadratic equation, as

λ(
∑
l

Rlj)U
2
kj + (ηj − λ(UklRlj))Ukj −Qkj = 0, (B.3)

where the positive root of this equation is given by Eq.(13), and the other root
is negative.

Proof of Eq.(14). For the `1 divergence regularizer, the objective function of

Eq.(11) becomes

∑
kj

Qkj logUkj − λ
n∑
j=1

n∑
l=1

r∑
k=1

(|Ukj − Ukl|)Rlj . (B.4)
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First we form the Lagrangian by introducing a multiplier ηj for each column

of Ukj . Since the resulting Lagrangian is separable for each column of matrix

Ukj , we focus on terms that are relevant to one element Ukj , which is

∑
k

Qkj logUkj − λ
n∑
j=1

n∑
l=1

r∑
k=1

(|Ukj − Ukl|)Rlj − ηj

(∑
k

Ukj − 1

)
.

After rearranging terms to remove the absolute value and dropping constants,

we have∑
k

Qkj logUkj − λ
∑

Ukj<Ukl

(Ukj − Ukl)− λ
∑

Ukl<Ukj

(Ukl − Ukj)− ηj
∑
k

Ukj .

Next, we take derivative with regards to this function, which will be in two

cases. For Ukj > Ukl, setting the derivative with regards to Ukj becomes
Qkj
Ukj
−

λ
∑
lRlj − ηj = 0 ⇒ Ukj =

Qkj
ηj+λ

∑
l Rlj

. This holds when Ukj =
Qkj

ηj+λ
∑
l Rlj

>505

Ukl ⇒ Qkj
Ukl
− λ > ηj

∑
lRlj . To make Ukj nonnegative, it is easy to see that

ηj > −λ
∑
lRlj . For Ukj < Ukl, setting the derivative with regards to Ukj

becomes
Qkj
Ukj

+ λ
∑
lRlj − ηj = 0 ⇒ Ukj =

Qkj
ηj−λ

∑
l Rlj

. This holds when

Ukj =
Qkj

ηj−λ
∑
l Rlj

< Ukl ⇒ Qkj
Ukl

+ λ
∑
lRlj < ηj . When these two conditions

are not satisfied, the optimal solution is given by setting Ukj = Ukl. Combining510

all these results yields Eq.(14).

Appendix C.

Proof of Eq.(19). We first simplify the objective function of Eq.(18) by drop-

ping irrelevant constant terms to obtain the new objective function as∑
kj Qkj logU

(l)
kj − λ

∑
kj

(
U

(l)
kj log

U
(l)
kj

U
(\l)
jk

− U (\l)
jk logU

(l)
kj

)
Next, we introduce Lagrangian multiplier ηj to each equality constraint on the

column of U (l) in Eq.(18) and form the Lagrangian. Ignoring the nonnega-

tive constraint (it will be shown to be satisfied automatically later), the first

KKT condition of the problem with regards to U
(l)
kj is that the derivative of the

Lagrangian with regards to U
(l)
kj vanishes, as

Qkj+λU
(\l)
kj

U
(l)
kj

+ λ log
U

(\l)
kj

U
(l)
kj

− λ− ηj = 0.
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We define T =
Qkj
λ + U

(\l)
kj and B = 1 − logU

(\l)
kj +

ηj
λ , and rearrange term

followed by exponentiation of both sides of the above equation to obtain

T

U
(l)
kj

= logU
(l)
kj +B ⇒ TeB = exp

(
log
(
U

(l)
kj e

B
))

log
(
U

(l)
kj e

B
)

Using the definition of the principal branch of the Lambert W-function, this

further reduces to

logH
(l)
kj e

B =W0

(
AeB

)
⇒ H

(l)
kj e

B = eW0(AeB) ⇒

H
(l)
kj e

B =
AeB

W0 (AeB)
⇒ H

(l)
kj =

A

W0 (AeB)
,

where in the last step we use the property of W function that eW0(z) = z
W0(z) .

Now replacing T and B with their definitions yields Eq.(19).

Proof of Eq.(20). With the `2 co-regularizer, the objective function of Eq.(18)

becomes ∑
kj Qkj logU

(l)
kj − λ

∑
kj

1
2

(
U

(l)
kj − U

(\l)
kj

)2

Similar to the symmetric KL divergence case, we form Lagrangian with La-

grangian multiplier ηj to each equality constraint of Eq.(18), and take its deriva-

tive with regards to U
(l)
kj and set it to zero,

Qkj

U
(l)
kj

− λ(U
(l)
kj − U

(\l)
kj )− ηj = 0.

Rearranging terms, this leads to a quadratic equation

λ
(
U

(l)
kj

)2

−
(
λU

(\l)
kj − ηj

)
U

(l)
kj −Qkj = 0,

the positive root of which is given by Eq.(20) (the other root is negative).515

Proof of Eq.(21). For the `1 divergence co-regularizer, the objective function

of Eq.(18) becomes ∑
kj Qkj logU

(l)
kj − λ

∑
kj

∣∣∣U (l)
kj − U

(\l)
kj

∣∣∣ .
First we form the Lagrangian by introducing a multiplier ηj for each column

of U (l). Since the resulting Lagrangian is separable for each column of matrix

U (l), we focus on terms that are relevant to one element U
(l)
kj , which is∑

kQkj logU
(l)
kj − λ

∑
k

∣∣∣U (l)
kj − U

(\l)
kj

∣∣∣− ηj (∑k U
(l)
kj − 1

)
.

30



After rearranging terms to remove the absolute value and dropping constants,

we have ∑
k

Qkj logH
(l)
kj − λ

∑
H

(l)
kj <H

(\l)
kj

(
H

(l)
kj −H

(\l)
kj

)

− λ
∑

H
(l)
kj <H

(\l)
kj

(
H

(\l)
kj −H

(l)
kj

)
− ηj

∑
k

H
(l)
kj .

Next, we can take derivative with regards to this function, which will be in two

cases. For U
(l)
kj > U

(\l)
kj , setting the derivative with regards to U

(l)
kj becomes

Qkj

U
(l)
kj

− λ − ηj = 0 ⇒ U
(l)
kj =

Qkj
ηj+λ

. This holds when U
(l)
kj =

Qkj
ηj+λ

> U
(\l)
kj ⇒

Qkj

U
(\l)
kj

− λ > ηj . To make U
(l)
kj nonnegative, it is easy to see that ηj > −λ. For

U
(l)
kj < U

(\l)
kj , setting the derivative with regards to U

(l)
kj becomes

Qkj

U
(l)
kj

+λ−ηj =520

0 ⇒ U
(l)
kj =

Qkj
ηj−λ . This holds when U

(l)
kj =

Qkj
ηj−λ < U

(\l)
kj ⇒ Qkj

U
(\l)
kj

+ λ < ηj .

When these two conditions are not satisfied, the optimal solution is given by

setting U
(l)
kj = U

(\l)
kj . Combining all these results yields Eq.(21).
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