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Abstract—In recent years, the advent of deep learning-based
techniques and the significant reduction in the cost of compu-
tation resulted in the feasibility of creating realistic videos of
human faces, commonly known as DeepFakes. The availability
of open-source tools to create DeepFakes poses as a threat to the
trustworthiness of the online media. In this work, we develop
an open-source online platform, known as DeepFake-o-meter,
that integrates state-of-the-art DeepFake detection methods and
provide a convenient interface for the users. We describe the
design and function of DeepFake-o-meter in this work.

Index Terms—Multimedia Forensics, DeepFake Detection,
Software Engineering

I. INTRODUCTION

The buzzword DeepFakes has been frequently featured
in the news and social media to refer to realistic imperson-
ating images, videos, and audios that are generated using AI
algorithms. Although fabrication and manipulation of digital
media are not a new phenomenon [1], powerful AI technology,
in particular, deep neural networks (DNNs), and the unprece-
dented computing power have made it easier than ever to
create sophisticated and compelling fakes. Left unchecked,
DeepFakes can escalate the scale and danger of disinformation,
and fundamentally erode our trust in digital media.

The mounting concerns over the negative impacts of Deep-
Fakes have spawned an increasing interest in DeepFake de-
tection. In less than three years, there have been numerous
new detection methods of DeepFakes. However, differences in
training datasets, hardware, and learning architectures across
research publications make rigorous comparisons of different
detection algorithms challenging. At the same time, the cum-
bersome process of downloading, configuring, and installing of
individual detection algorithms deny the access of the state-of-
the-art DeepFake detection methods to most users. To this end,
we have developed an online DeepFake detection platform. It
serves three purposes.

• For developers of DeepFake detection algorithms, it pro-
vides an API architecture to wrap individual algorithms
and run on a third-party remote server.

• For researchers, it is an evaluation/benchmarking plat-
form to compare multiple algorithms on the same input.

• For users, it provides a convenient portal to use multiple
state-of-the-art detection algorithms.

† The work was done when the author was a post-doc at University at
Buffalo.

Currently we have incorporated 10+ state-of-the-art DeepFake
image and video detection methods, and will keep adding more
capacities.

In this work, we describe the design and the underlying
mechanism of DeepFake-o-meter in details. We start with the
overall architecture of the system, which is composed of a
web-based front-end that interacts with the user, and an on-
server back-end to perform analyses on the input videos. The
separation of front-end and back-end is to ensure the security
of the user-uploaded data, as well as to accommodate the long
running time and the short response time to the users. We fur-
ther provide an overview of the DeepFake detection algorithms
that have been integrated into the current DeepFake-o-meter
system. All these algorithms are recent and represent the state-
of-the-art in DeepFake detection (two of the algorithms are
from the top-performers of the Global DeepFake Detection
Challenge). DeepFake-o-meter is designed to be an open-
architecture, which can be augmented by incorporating more
detection methods over time. We describe the API structures
that are needed for third-party developers of DeepFake detec-
tion algorithms to have their method integrated into DeepFake-
o-meter.

II. PLATFORM DESIGN

This section describes the architecture design of deepfake-
o-meter platform. Our platform is composed by three compo-
nents: Front-end, Back-end and Data synchronizing. The front-
end is the website portal to interact with users. The back-end is
the core component of this platform, which calls corresponding
detection methods to analyze the submitted videos and the data
synchronizing is the protocol for exchanging the interested
data between front-end and back-end. The overview of the
platform architecture is illustrated in Fig.1.

A. Front-end

In order to interact with users, we develop a website to
instruct users to submit their interested videos. Fig.2 shows
the illustration of the front-end interface. The steps for users
to submit videos are as following:

1) Uploading a video either from local machine or using a
video URL. Note the maximum video size is constraint
to 50 MB in order to maintain a stable and quicker
response;

2) Selecting the desired deepfake detection methods;
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Fig. 1. The overview of the platform architecture.

Fig. 2. The illustration of the front-end interface.

3) Inputting user’s email address and a 4-6 digits PIN code.
Note all the subsequent responses including notification
and analyzed results will be sent into the provided email
address. The PIN code is used for verification for the
analyzed results downloading;

4) The submitted video with other information will sent to
the back-end after clicking the submit button.

To construct the front-end, we utilize a python based pack-
age Flask1 as the website maintainer. Flask is a lightweight
Web Server Gateway Interface (WSGI) framework, depending
on the Jinja template engine and the Werkzeug WSGI toolkit.
It is a widely used third-party python library for developing
web applications. Flask can take over the routing between
different web pages and also the service logic after submission,
such as email or PIN code validation and packaging the
submission under certain requirements.

B. Back-end

The back-end is a computation server mainly for performing
deepfake detection methods. In this section, we will describe
the key design, returned results and integrated deepfake detec-
tion methods respectively.

1) Key design: Once the user submits video from the
front-end, the back-end starts to call corresponding detec-
tion methods for the submitted video. However, different
detection methods depend on different environment settings
and different detection methods are designed using different
programming styles. Therefore, we design an unified frame-
work to integrate the mainstream deepfake detection methods.
Specifically, our framework has two major designs, Container
and Coding structure to handle the diversity of environment
and programming styles respectively.

Container. We know virtual machines are the first generation
tools to solve the environmental conflict problem on a single
machine. However, due to the heavy resources occupation,
redundant operation and slow startup, virtual machines are
replaced by Containers, which can isolate the process without
creating a simulate operating system. Docker2 is the most
popular container solution currently, allowing developers to
package their applications and dependent environment into a

1https://flask.palletsprojects.com/en/1.1.x/
2https://www.docker.com/



portable container, which can be run on any other machines.
To freely run each method, we independently create docker
image for each detection method.

Coding structure In order to maintain each method efficiently,
we design a coding structure that can provide an interface
for each method to follow. Specifically, we design a base
class containing four basic functions, named run, crop face,
preproc, postproc, get softlabel and get hardlabel.

- run: This is the entrance function to process an input
image. The input argument is an image and output is
the detection score. Given the input image, this function
will internally call the functions crop face, preproc,
postproc, get softlabel, get hardlabel in sequel.

- crop face: Since many methods require to extract the
face area from the input image before prediction, this
function provides an interface to wrap up the face
extraction process. This function is optional.

- preproc: After face extraction, many methods apply pre-
processing operations to the input face, such as changing
the channel order or color space. Therefore, the pre-
processing operations can be put in here. This function
is also optional.

- get softlabel: This function takes as input the prepos-
sessed face and outputs the confidence score (soft label).
Less score denotes the face is faker. The details of
calling specific detection methods are wrapped here.

- get hardlabel: Based on the soft label, this function
assigns the input to real or fake label.

The code structure will also be exposed to the researchers
who would like to integrate new methods into platform. The
researchers can follow the structure to split their codes into
different functions accordingly.

2) Returned results: The formatting of returned results is
also an important point. For better visualization to users, we
curve the score of each face along with the corresponding
frame and save the prediction of each frame to a video. Besides
the visualization, we also sort the score along all frames and
calculate the Area Under Curve (AUC) score. The results will
be zipped together and sent back to the front-end for user
to download. Fig.3 illustrates several examples of the returned
results. The left part is submitted video and right part plots the
corresponding score. Note our platform supports to run several
methods at the same time, thus the bottom two examples
contains multiple curves.

3) DeepFake detection methods: Our platform integrates
the following deepfake detection methods into this platform.

1) MesoNet [2] is a self-designed CNN model that focuses
on the mesoscopic properties of images. They provide
two variants of MesoNet, namely, Meso4 and MesoIn-
ception4. Meso4 uses conventional convolutional layers,
while MesoInception4 is based on the more sophisti-
cated Inception modules [3]. We integrate MesoIncep-
tion4 into the platform.

2) FWA [4] is based on ResNet-50 [5] which detects
DeepFake videos by exposing the face warping artifacts

due to the resizing and interpolation operations.
3) VA [6] targets the visual artifacts in the face organs such

as eyes, teeth and facial contours of the synthesized
faces. Two variants of this method are provided: VA-
MLP and VA-LogReg. VA-MLP is based on a crafted
CNN, and VA-LogReg uses a simpler logistic regression
model. We integrate VA-MLP into the platform

4) Xception [7] comes with FaceForensics++ dataset. It
corresponds to a DeepFake detection method based
on the XceptionNet model [8]. This method pro-
vides three variants: Xception-raw, Xception-c23 and
Xception-c40. Xception-raw are trained on raw videos,
while Xception-c23 and Xception-c40 are trained on
compressed videos with different degrees, respectively.
We integrate Xception-c23 into the platform.

5) ClassNSeg [9] is another CNN based DeepFake detec-
tion method that is formulated to a multi-task learning
problem to imultaneously detect forgery images and
segment manipulated areas.

6) Capsule [10] employs the VGG19 [11] capsule structure
[12] as the backbone architecture for DeepFake classi-
fication.

7) DSP-FWA is a further improved method based on FWA,
which incorporates a spatial pyramid pooling (SPP)
module [13] to better tackle the variations of face
resolutions.

8) CNNDetection [14] utilizes a standard image classifier
trained on only ProGAN [15] , finding it generalizes
surprisingly well to unseen architectures, datasets, and
training methods.

9) Upconv [16] argues that common up-sampling methods
(upconvolution or transposed convolution) lack the abil-
ity to reproduce spectral distributions of natural training
data correctly. They take 2D amplitude spectrum as
feature and utilize a basic SVM classifier.

10) WM ensembles two WS-DAN [17] models (with
EfficientNet-b3 [18] and Xception [8] feature extractors,
respectively) and a Xception classifier to produce per-
face predictions.

11) Selim utilizes state-of-the-art encoder, EfficientNet B7,
pretrained with ImageNet [19] and noisy student [20],
and uses a heuristic way to select 32 frames for each
video to average predictions.

The summary of each detection method with code reposi-
tories is given in Table I.

C. Data Synchronizing

This section describes the scheme of data synchronizing
between front-end and back-end. To enable data sharing
between two machines, we utilize the Network File System
(NFS) technology. NFS is a distributed file system protocol
that can mount remote directories from client to the server.
NFS provides a simple and quick way to visit remote systems
through the network. For our platform, we need to set up two
shared folders. The first one aims to synchronize the data, i.e.,
user submitted videos and other information such as email
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TABLE I
SUMMARY OF INTEGRATED DEEPFAKE DETECTION METHODS. SEE TEXTS FOR MORE DETAILS.

Methods Repositories Release Date
MesoNet [2] https://github.com/DariusAf/MesoNet 2018.09

FWA [4] https://github.com/danmohaha/CVPRW2019 Face Artifacts 2018.11
VA [6] https://github.com/FalkoMatern/Exploiting-Visual-Artifacts 2019.01

Xception [7] https://github.com/ondyari/FaceForensics 2019.01
ClassNSeg [9] https://github.com/nii-yamagishilab/ClassNSeg 2019.06
Capsule [10] https://github.com/nii-yamagishilab/Capsule-Forensics-v2 2019.10

CNNDetection https://github.com/peterwang512/CNNDetection 2019.12
DSP-FWA https://github.com/danmohaha/DSP-FWA 2019.11

Upconv https://github.com/cc-hpc-itwm/UpConv 2020.03
WM https://github.com/cuihaoleo/kaggle-dfdc 2020.07

Selim https://github.com/selimsef/dfdc deepfake challenge 2020.07

address, from font-end to the back-end. The second one is
used to share the detection results of user’s submitted videos
from the back-end to the front-end, see Fig.1.

III. CONCLUSION

In this work, we describe an open platform, known as
DeepFake-o-meter, for DeepFake detection. This platform is
composed by front-end and back-end. The front-end is a
web application to interact with users and back-end perform
corresponding detection methods on submitted videos. The
platform integrates more than 10 state-of-the-art detection
methods and it also provides interfaces for researchers to
incorporate their method into the platform.

For future works, we will continue integrate more DeepFake
detection methods into the platform. Furthermore, we will

study the use of multi-GPU platform to accelerate the analysis
process. We will also augment the APIs so as to accommodate
more general detection methods for other media formats (still
images and audio signals).
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