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How Realistic 1s Photorealistic?

Siwei Lyu and Hany Farid

Abstract—Computer graphics rendering software is capable of
generating highly photorealistic images that can be impossible to
differentiate from photographic images. As a result, the unique
stature of photographs as a definitive recording of events is being
diminished (the ease with which digital images can be manipu-
lated is, of course, also contributing to this demise). To this end,
we describe a method for differentiating between photorealistic
and photographic images. Specifically, we show that a statistical
model based on first-order and higher order wavelet statistics re-
veals subtle but significant differences between photorealistic and
photographic images.

Index Terms—Digital forensics, image statistics, photorealism.

1. INTRODUCTION

OPHISTICATED computer graphics rendering software

can generate remarkably photorealistic images. Though
it may take some effort, photorealistic images can be created
that are nearly impossible to differentiate from photographic
images. As the rendering technology improves, photorealistic
images will become increasingly easier to generate and more
realistic.

This technology is already having direct implications on our
society. For example, in 1996 the United States Congress passed
The Child Pornography Prevention Act which, in part, prohib-
ited any image that appears to be or conveys the impression of
someone under 18 engaged in sexually explicit conduct. This
law made illegal computer generated pictures that only appear
to show minors involved in sexual activity. In 2002, however, the
United States Supreme Court struck down this law in their 6-3
ruling in Ashcroft Versus Free Speech Coalition. The court said
that language in the 1996 child pornography law was unconsti-
tutionally vague and far-reaching. This ruling makes it consid-
erably more difficult for law enforcement agencies to prosecute
child pornography crimes, since it is always possible to claim
that any image is computer generated.

If we are to have any hope that photographs will again hold
the unique stature of being a definitive recording of events, we
must develop technology that can differentiate between photo-
graphic and photorealistic images. There has been some work in
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Fig. 1. (Left) Idealized multiscale and orientation decomposition of frequency
space. (Top to bottom) Levels 0, 1, and 2. (Left to right) Low-pass, vertical,
horizontal, and diagonal subbands. (Right) Magnitude of a multiscale and
orientation decomposition of a “disc” image.

evaluating the photorealism of computer graphics rendered im-
ages from a human perception point of view (e.g., [9]-[11]). To
our knowledge, however, no computational techniques exist to
differentiate between photographic and photorealistic images (a
method for differentiating between photographic and (nonreal-
istic) graphical icons was proposed in [1]). Related work, though
probably not directly applicable, include techniques to differen-
tiate between city and landscape images [14], [16], indoor and
outdoor images [13], and photographs and paintings [4].

In this paper, we describe a statistical model for photographic
images that is built upon a wavelet-like decomposition. The
model consists of first-order and higher order statistics that cap-
ture regularities that are inherent to photographic images. We
then show that this model can be used to differentiate between
photographic and photorealistic images—from a database of
40000 photographic and 6000 photorealistic images, we cor-
rectly classify approximately 67% of the photorealistic images
while only misclassifying 1% of the photographic images. We
have previously used a similar technique to detect messages
hidden within digital images (steganography) [7], [8].

II. STATISTICAL MODEL

The decomposition of images using basis functions that
are localized in spatial position, orientation, and scale (e.g.,
wavelet) have proven extremely useful in image compression,
image coding, noise removal, and texture synthesis. One reason
is that such decompositions exhibit statistical regularities that
can be exploited. The image decomposition employed here
is based on separable quadrature mirror filters (QMFs) [12],
[15], [18]. As illustrated in Fig. 1, this decomposition splits the
frequency space into multiple scales, and orientations (a ver-
tical, a horizontal, and a diagonal subband). For a color (RGB)
image, the decomposition is applied independently to each
color channel. The resulting vertical, horizontal, and diagonal
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subbands for scale 7 are denoted as V(z,y), Hf(z,y), and
D¢(x,y) respectively, where ¢ € {r, g, b}.

Wavelet subband coefficients for natural images typically
follow a distribution which is well modeled by a generalized
Laplacian P(z) = (1/Z)e~1#/5I", where s,p are the density
parameters, and Z is a normalizing constant [2]. This family
of densities are characterized by a sharp peak at zero and large
symmetric tails. An intuitive explanation for this is that natural
images typically contain large smooth regions and abrupt
transitions (e.g., edges). The smooth regions, though dominant,
produce small coefficients near zero, while the transitions
generate large coefficients. In our statistical model, instead of
directly estimating the generalized Lapalacian distribution, a
simpler approach is taken to characterize these marginal distri-
butions. More specifically, the first four order statistics (mean,
variance, skewness, and kurtosis) of the subband coefficient
histograms at each orientation, scale, and color channel are
collected. These statistics form the first half of our statistical
model.

While these statistics describe the basic coefficient distribu-
tions, they are unlikely to capture the strong correlations that
exist across space, orientation, and scale [2], [6]. For example,
salient image features such as edges tend to orient spatially
in certain direction and extend across multiple scales. These
image features result in substantial local energy across many
scales, orientations, and spatial locations. The local energy can
be roughly measured by the magnitude of the decomposition co-
efficient. As such, a strong coefficient in a horizontal subband
may indicate that its left and right spatial neighbors in the same
subband will also have a large value. Similarly, if there is a coef-
ficient with large magnitude at scale ¢, it is also very likely that
its “parent” at scale 7 + 1 will also have a large magnitude.

In order to capture some of these higher order statistical cor-
relations, we collect a second set of statistics that are based on
the errors in a linear predictor of coefficient magnitude [2]. For
the purpose of illustration, consider first a vertical band of the
green channel at scale i, V?(z,y). A linear predictor for the
magnitude of these coefficients in a subset! of all possible spa-
tial, orientation, scale, and color neighbors is given by

Vi (@, )| = wi|Vi¥ (@ = Ly)l + w Vi (2 + 1, 9))|
+ws| VI (2, y=1)| + wa|V (2, y + 1)

z Yy

s [V (58)| + wel DY (.
T

+ wry ‘D‘?_H (5, %)’ +w8|vvzr($7ly)|

b
+w| V7 (2, y)] ey
where | - | denotes absolute value and wy, are the scalar weights.
This linear relationship can be expressed more compactly in ma-
trix form as

7= QU 2)
where ¥ contains the coefficient magnitudes of V7 (z, y) strung
out into a column vector (to reduce sensitivity to noise, only

I'The particular choice of neighbors was motivated by the observations of [2]
and modified to include noncasual neighbors.
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magnitudes greater than 1 are considered), the columns of the
matrix @) contain the neighboring coefficient magnitudes as
specified in (1), and @ = (w; wg)T. The weights
are determined by minimizing the following quadratic error
function:

E(w) = [§ — Quf]. )

This error function is minimized by differentiating with respect
to

dE (W
D 2075 - qi) @
setting the result equal to zero, and solving for @ to yield
@ =(QTQ)QTT. ®)

Given the large number of constraints (one per pixel) in only
nine unknowns, it is generally safe to assume that the 9 X 9 ma-
trix QT Q will be invertible.

Given the linear predictor, the log error between the actual
coefficient and the predicted coefficient magnitudes is

7= log(¥) — log(|Qu|) (6)

where the log(-) is computed point-wise on each vector compo-
nent. As with the coefficient statisics, mean, variance, skewness,
and kurtosis of this error distribution are collected. This process
is repeated for scales « = 1,...,n — 1, and for the subbands
V" and V;*, where the linear predictors for these subbands are
of the form

V7 ()l =V (= 1)+ wel V7 (o + 1,)]
s VY (= )]+ wal VY (. + 1)
T
+ wslVi (5 5) 1+ wol Di ()
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A similar process is repeated for the horizontal and diagonal
subbands. As an example, the predictor for the green channel
takes the form
[ HY (2, y)] =wi|H] (z — 1y)| + w2 H (= + 1, y)|
+ws|H (w,y — 1) + wa| HY (z,y + 1)
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and

|D} (z,y)| =w1|D{(z — 1,y)| + w2| D (z + L, y)]

+ws| D} (z,y — 1)| + w4| DY (z,y + 1)

xr

s | Dy (50 8)| + wol Y (2, )

+wr| Vi (2, 9)| + ws| D (z,y)]

+wo| D} (2, y)|. (10)
For the horizontal and diagonal subbands, the predictor for the
red and blue channels are determined in a similar way as was
done for the vertical subbands [see (7) and (8)]. For each ori-
ented, scale, and color subband, a similar error metric (6) and
error statistics are computed.

For a multiscale decomposition with scales ¢ = 1, ..., n, the
total number of basic coefficient statistics is 36(n—1) (12(n—1)
per color channel), and the total number of error statistics is also
36(n — 1), yielding a grand total of 72(n — 1) statistics. These
statistics form the feature vector to be used to discriminate be-
tween photorealistic and photographic images.

III. CLASSIFICATION

From the measured statistics of a training set of images la-
beled as photorealistic or photographic, our goal is to build
a classifier that can determine to which category a novel test
image belongs.

To this end, linear discrimination analysis (LDA) is a widely
used classification algorithm [5]. In a two-class LDA, a one-di-
mensional linear subspace is found such that when the features
are projected onto this subspace, the within-class scatter is min-
imized while the between-class scatter is maximized. LDA is at-
tractive because of its general effectiveness and simplicity (the
classifier is built using a closed-form generalized eigenvector
solution). The drawback of LDA is that the classification sur-
face is constrained to be linear.

Support vector machines (SVM) afford a more flexible non-
linear classification surface [17]. Within this family of classi-
fiers there are both linear and nonlinear SVMs. A linear SVM
is similar to an LDA, the difference being in the objective func-
tion that is minimized. A nonlinear SVM extends a linear SVM
by using a kernel function to map the training exemplars into a
higher (possibly infinite) dimensional space. While affording a
more flexible classifier, the construction of a nonlinear SVM is
no longer closed-form, but requires an iterative numerical opti-
mization.

We employed both LDA and a nonlinear SVM for the
purposes of distinguishing between photorealistic and photo-
graphic images.

IV. RESULTS

Shown in Figs. 2 and 3 are several images taken from a data-
base of 40000 photographic and 6000 photorealistic images.?
All of the images consist of a broad range of indoor and out-
door scenes, and the photorealistic images were rendered using
a number of different software packages (e.g., 3D Studio Max,

2The photographic images were downloaded from www.freefoto.com, the
photorealistic images were downloaded from www.raph.com and www.irtc.org.
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Fig. 2. Eight examples from a database of 40 000 photographic images. The
central 256 x 256 white boxes denote the region of the image from which
statistics are measured.

Fig. 3. Eight examples from a database of 6000 photorealistic images. The
central 256 x 256 white boxes denote the region of the image from which
statistics are measured.

Maya, SoftImage 3D, PovRay, Lightwave 3D, and Imagine). All
of the images are color (RGB), JPEG compressed (with an av-
erage quality of 90%), and typically on the order of 600 x 400
pixels in size.
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TABLE 1
CLASSIFICATION RESULTS USING LDA AND SVM. SHOWN ARE THE AVERAGE
ACCURACIES (IN PERCENT) OVER 100 RANDOM TRAINING/TESTING SPLITS OF
THE DATABASE OF 40 000 PHOTOGRAPHIC AND 6000 PHOTOREALISTIC IMAGES

training testing
LDA SVM LDA SVM
photographic 58.7 70.9 54.6 66.8
photorealistic 99.4 99.1 99.2 98.8

From this database of 46 000 images, statistics as described
in Section II were extracted. To accommodate different image
sizes, only the central 256 x 256 region of each image was con-
sidered. For each image region, a four-level three-orientation
QMF pyramid? was constructed for each color channel, from
which a 216-dimensional feature vector (72 per color channel)
of coefficient and error statistics was collected.

From the 46000 feature vectors, 32000 photographic and
4800 photorealistic feature vectors were used to train both an
LDA and a nonlinear SVM.4 The remaining feature vectors were
used to test the classifiers. In the results presented here, the
training/testing split was done randomly. We report, in Table I,
the classification accuracy over 100 such splits. With a 0.8%
false-negative rate (a photorealistic image classified as photo-
graphic), the LDA correctly classified approximately 54.6% of
the photorealistic images. A nonlinear SVM had better perfor-
mance, correctly classifying approximately 66.8% of the pho-
tographic images, with a 1.2% false-negative rate. Note that in
both cases the testing accuracy was fairly close to the training
accuracy, suggesting that the classifiers generalized.

We next wondered which images were most easy and most
difficult to classify. Specifically, images that are easy to classify
are those that are far from the separating classification surface,
and those that are hard to classify are near, or on the wrong side
of, the classification surface. Shown in Figs. 4 and 5 are eight
photographic images and eight photorealistic images, respec-
tively, that were easily classified under the nonlinear SVM. We
found that photographic images of trees, plants, etc. are particu-
larly easy to classify, but note that city scenes are also correctly
classified. We also noticed that photorealistic images that are
easy to classify appear to be particularly artificial (e.g., lack of
depth-of-field, lack of details, plastic appearance, etc.). Shown
in Fig. 6 are eight photographic images that were incorrectly

3We employed a 9-tap QMEF filter as the basis of the multiscale multiorienta-
tion image decomposition. The low-pass (/) and high-pass (h) filters are given
by

1=[0.02807382—0.060944743—0.073386624 0.41472545
0.7973934 0.41472545 — 0.073386624
—0.060944743 0.02807382]

h=[0.02807382 0.060944743—0.073386624—0.41472545
0.7973934 — 0.414 72545 — 0.073386624
0.060944 743 0.02807382].

‘We have also experimented with both Laplacian and steerable pyramid decom-
positions. Results from a steerable pyramid (with eight orientation subbands)
were similar to the results using a QMF pyramid (which use only three orienta-
tion subbands). The Laplacian pyramid generally gave poor results. So while it
seems that oriented subbands are necessary, it also seems that a finer orientation
tuning is not necessary for this particular task.

4We employed the SVM algorithm implemented in LIBSVM [3], along with
an RBF kernel.
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Fig. 5. Easily classified photorealistic images.

classified as photorealistic, and shown in Fig. 7 are eight photo-
realistic images incorrectly classified as photographic. Note that
several of the incorrectly classified photographic images consist
of road signs and one is of a painting.

We further tested the RBF SVM classifier on a novel set of
14 images (seven photographic, seven photorealistic) from the
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Fig. 6. Incorrectly classified photographic images.

Fig. 7. Incorrectly classified photorealistic images.

website www.fakeorfoto.com. Shown in Fig. 8 are the 14 im-
ages with the correctly classified photographic images in the
top row, and the correctly classified photorealistic images in the
middle row. Shown in the bottom row are two incorrectly clas-
sified photographic images (left) and two incorrectly classified
photorealistic images (right). Consistent with the previous re-
sults, we correctly classified 71% of the photorealistic images.

Fig. 8. Images from www.fakeorfoto.com. (a) and (c) Correctly and
incorrectly classified photographic images, respectively. (b) and (d) Correctly
and incorrectly classified photorealistic images, respectively.
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Fig. 9. Classification accuracy as a function of the number and category of
feature for the LDA classifier. The white and gray regions correspond to error
and coefficient features, respectively.

‘We wondered which set of statistics, coefficient or error, were
most crucial for the classifier. Shown in Fig. 9 is the accuracy of
the classifier plotted against the number and category of feature
for the LDA classifier.5 We began by choosing the single feature,
out of the 216 possible coefficient and error features, that gives
the best classification accuracy. This was done by building 216
classifiers each based on a single feature, and choosing the fea-
ture that yields the highest accuracy (the feature was the vari-
ance in the error of the green channel’s diagonal band at the
second scale). We then choose the next best feature from the
remaining 215 components. This process was repeated until all
features were selected. The solid line in Fig. 9 is the accuracy as
a function of the number of features. The white and gray regions
correspond to error and coefficient features, respectively. That
is, if the feature included on the 7th iteration is a coefficient then
we denote that with a vertical gray line at the sth position on the
horizontal axis. Note that the coefficient and error statistics are
interleaved, showing that both sets of statistics are important for
classification.

Finally, we attempted to retrain the nonlinear SVM with
random class labels assigned to the training images. The ra-
tionale for this was to ensure that the statistical model and
classifier are discriminating on fundamental differences be-
tween photographic and photorealistic images, and not on some
artifact. To this end, we expect a random class assignment to
lead to significantly worse classification accuracy. We generated
ten different training sets containing 5000 randomly selected
photographic images and 5000 photorealistic images. Half of
these images were randomly assigned to the photographic class

5This analysis was performed only on the LDA because the computational
cost of retraining 23,220 = 216 + - - - 4+ 1 nonlinear SVMs is prohibitive. We
expect the same pattern of results for the nonlinear SVM.
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and the other half were assigned to the photorealistic class. We
then trained nonlinear SVM classifiers on these training sets
and tested them on the testing sets as used in our experiment
described above. The best performance across the ten training
sets was 27.6% correctly classified photographic images, with
a 1.4% false-negative rate. Note that this is significantly worse
than the 66.8% detection accuracy when the correct training
labels were used. This result indicates that our statistical model
and classifier are discriminating on fundamental statistical
differences between photographic and photorealistic images.

V. DISCUSSION

We have described a statistical model for photographic im-
ages consisting of first-order and higher order wavelet statis-
tics. This model seems to capture regularities that are inherent to
photographic images. We have also shown that this model, cou-
pled with either an LDA or a nonlinear SVM, can be used to dif-
ferentiate between photorealistic and photographic images. It is
interesting to see that even though photorealistic images can be
perceptually indistinguishable from photographic images, their
underlying statistics can still be significantly different. These
techniques are also likely to have important applications in the
growing field of digital forensics.

There are, of course, several possible extensions to this work.
We expect that these techniques can be extended to differentiate
between synthetically generated and natural voice signals and
video streams. In addition, as in earlier work [8], we expect a
one-class SVM, that only requires training from photographic
images, to simplify the classifier training.

Finally, we note that it is not immediately obvious that a pho-
torealistic image could be altered to match the expected higher
order statistics of photographic images. The drawback of this,
from a rendering point of view, is that these models do not nec-
essarily give any insight into how one might render more pho-
torealistic images. The benefit, from a digital forensic point of
view, is that it is likely that this model will not be immedi-
ately vulnerable to counter-attacks. It is possible, of course, that
counter-measures will be developed that can foil the classifica-
tion scheme outlined here. The development of such techniques
will, in turn, lead to better classification schemes, and so on.
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