
Steganalysis Using Color Wavelet Statistics and One-Class

Support Vector Machines

Siwei Lyu and Hany Farid

Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA

ABSTRACT

Steganographic messages can be embedded into digital images in ways that are imperceptible to the human eye.
These messages, however, alter the underlying statistics of an image. We previously built statistical models
using first-and higher-order wavelet statistics, and employed a non-linear support vector machines (SVM) to
detect steganographic messages. In this paper we extend these results to exploit color statistics, and show how
a one-class SVM greatly simplifies the training stage of the classifier.

Keywords: Steganalysis

1. INTRODUCTION

Over the past few years increasingly sophisticated techniques for information hiding (steganography) have been
developing rapidly (see1–4 for general reviews). These developments, along with high-resolution digital images as
carriers, pose significant challenges to detecting the presence of hidden messages. There is, nonetheless, a growing
literature on steganalysis. While many of these techniques target specific embedding programs or algorithms,5–7

techniques for universal steganalysis have also begun to emerge.8, 9 A review of these and other steganalysis
techniques may be found in.10

In previous work,8, 11, 12 we showed that a statistical model based on first-and higher-order wavelet statistics
could discriminate between images with and without hidden messages. In this earlier work, we only considered
grayscale images in order to simplify the computations. There is no doubt that strong statistical regularities exist
between the color channels, and in this paper we extend our earlier statistical model to capture some of these
regularities. In our previous work we used a (linear and non-linear) two-class support vector machine (SVM)
to discriminate between the statistical features extracted from images with and without hidden messages. This
classifier required training from both cover and stego images. From the point of view of universal steganalysis,
this training had the drawback of requiring exposure to images from broad range of stego tools. In this paper we
employ a one-class SVM that obviates the need for training from stego images, thus making the training easier,
and making it more likely that our classifier will be able to contend with novel and yet to be developed stego
programs.

We will first present the basic statistical model, and then describe the construction of a one-class support
vector machine. We then show the effectiveness of these tools in detecting hidden messages in tens of thousands
of images, and from five different stego programs. We believe that this work brings us closer to realizing a robust
tool for universal steganalysis.

2. STATISTICAL MODEL

The decomposition of images using basis functions that are localized in spatial position, orientation and scale
(e.g., wavelet) have proven extremely useful in image compression, image coding, noise removal and texture
synthesis. One reason is that such decompositions exhibit statistical regularities that can be exploited. The
image decomposition employed here is based on separable quadrature mirror filters (QMFs).13–15 As illustrated
in Figure 1, the decomposition splits the frequency space into multiple orientations and scales. For a grayscale
image, the vertical, horizontal and diagonal subbands at scale i are denoted as Vi(x, y), Hi(x, y), and Di(x, y),
respectively. For a color (RGB) image, the decomposition is applied independently to each color channel. The
resulting subbands are denoted as V c

i (x, y), Hc
i (x, y), and Dc

i (x, y), where c ∈ {r, g, b}.

ωx

ωy

HV D

HV D

2 2 2

1 1 1

D
1

H
1

V
1

D
2

V
2

H
2

Figure 1. Shown on the left is an idealized multi-scale and orientation decomposition of frequency space. Shown, from
top to bottom, are levels 0, 1, and 2, and from left to right, are the lowpass, vertical, horizontal, and diagonal subbands.
Shown on the right is the magnitude of a multi-scale and orientation decomposition of a “disc” image.

Given this image decomposition, the statistical model is composed of the mean, variance, skewness and
kurtosis of the subband coefficients at each orientation, scale and color channel. While these statistics characterize
the basic coefficient distributions, they are unlikely to capture the strong correlations that exist across space,
orientation, scale and color. For example, edges tend to extend spatially and across multiple scales. As such, if a
large coefficient is found in a horizontal subband, then it is likely that its left and right spatial neighbors in the
same subband will also have a large value. Similarly, a large coefficient at scale i might indicate a large value for
its “parent” at scale i + 1.

In order to capture some of these higher-order statistical correlations, we collect a second set of statistics
that are based on the errors in a linear predictor of coefficient magnitude.16 For the purpose of illustration,
consider first a vertical band of the green channel at scale i, V g

i (x, y). A linear predictor for the magnitude of
these coefficients in a subset∗ of all possible spatial, orientation, scale, and color neighbors is given by:

|V g
i (x, y)| = w1|V

g
i (x− 1, y)|+ w2|V

g
i (x + 1, y)|+ w3|V

g
i (x, y − 1)|+ w4|V

g
i (x, y + 1)|

+ w5|V
g
i (x/2, y/2)|+ w6|D

g
i (x, y)|+ w7|D

g
i+1(x/2, y/2)|+ w8|V

r
i (x, y)|+ w9|V

b
i (x, y)|, (1)

where |·| denotes absolute value and wk are the weights. This linear relationship can be expressed more compactly
in matrix form as:

~v = Q~w, (2)

where ~v contains the coefficient magnitudes of V g
i (x, y) strung out into a column vector (to reduce sensitivity

to noise, only magnitudes greater than 1 are considered), the columns of the matrix Q contain the neighboring

coefficient magnitudes as specified in Equation (1), and ~w = (w1 ... w9)
T
. The weights ~w are determined by

minimizing the following quadratic error function:

E(~w) = [~v − Q~w]2. (3)

∗The particular choice of neighbors was motivated by the observations of 16 and modified to include non-casual
neighbors.

This error function is minimized by differentiating with respect to ~w:

dE(~w)

d~w
= 2QT (~v − Q~w), (4)

setting the result equal to zero, and solving for ~w to yield:

~w = (QT Q)−1QT~v. (5)

Given the large number of constraints (one per pixel) in only nine unknowns, it is generally safe to assume that
the 9× 9 matrix QT Q will be invertible.

Given the linear predictor, the log error between the actual coefficient and the predicted coefficient magnitudes
is:

~p = log(~v) − log(|Q~w|), (6)

where the log(·) is computed point-wise on each vector component. It is from this error that additional statistics
are collected, namely the mean, variance, skewness and kurtosis. This process is repeated for scales i = 1, ..., n−1,
and for the subbands V r

i and V b
i , where the linear predictors for these subbands are of the form:

|V r
i (x, y)| = w1|V

r
i (x− 1, y)|+ w2|V

r
i (x + 1, y)|+ w3|V

r
i (x, y − 1)|+ w4|V

r
i (x, y + 1)|

+ w5|V
r
i (x/2, y/2)|+ w6|D

r
i (x, y)|+ w7|D

r
i+1(x/2, y/2)|+ w8|V

g
i (x, y)|+ w9|V

b
i (x, y)|, (7)

and

|V b
i (x, y)| = w1|V

b
i (x− 1, y)|+ w2|V

b
i (x + 1, y)|+ w3|V

b
i (x, y − 1)|+ w4|V

b
i (x, y + 1)|

+ w5|V
b
i (x/2, y/2)|+ w6|D

b
i (x, y)|+ w7|D

b
i+1(x/2, y/2)|+ w8|V

r
i (x, y)|+ w9|V

g
i (x, y)|. (8)

A similar process is repeated for the horizontal and diagonal subbands. As an example, the predictor for the
green channel takes the form:

|Hg
i (x, y)| = w1|H

g
i (x − 1, y)|+ w2|H

g
i (x + 1, y)|+ w3|H

g
i (x, y − 1)|+ w4|H

g
i (x, y + 1)|

+ w5|H
g
i (x/2, y/2)|+ w6|D

g
i (x, y)|+ w7|D

g
i+1(x/2, y/2)|+ w8|H

r
i (x, y)|+ w9|H

b
i (x, y)|, (9)

|Dg
i (x, y)| = w1|D

g
i (x− 1, y)|+ w2|D

g
i (x + 1, y)|+ w3|D

g
i (x, y − 1)|+ w4|D

g
i (x, y + 1)|

+ w5|D
g
i (x/2, y/2)|+ w6|H

g
i (x, y)|+ w7|V

g
i (x, y)|+ w8|D

r
i (x, y)|+ w9|D

b
i (x, y)|. (10)

For the horizontal and diagonal subbands, the predictor for the red and blue channels are determined in a similar
way as was done for the vertical subbands, Equations (7)-(8). For each oriented, scale and color subband, a
similar error metric, Equation(6), and error statistics are computed.

For a multi-scale decomposition with scales i = 1, ..., n, the total number of basic coefficient statistics is
36(n−1) (12(n−1) per color channel), and the total number of error statistics is also 36(n−1), yielding a grand
total of 72(n− 1) statistics. These statistics form the feature vector to be used to discriminate between images
with and without hidden messages.

3. CLASSIFICATION

In earlier work we showed the effectiveness of using multi-class classification schemes to detect hidden mes-
sages.8, 11, 12 Specifically, we employed both linear discrimination analysis17 and non-linear support vector
machines (SVM).18 While these techniques afforded good classification accuracy, they required training with
both cover and stego images. Since there are numerous stego programs for which these techniques might need
to be trained, it would be advantageous to build a classifier from only the more easily obtained cover images.
Shown in Figure 2(a) is a toy 2-D example where a non-linear SVM was trained on black dots (cover) and white

(a) (b) (c)

Figure 2. Shown are toy examples of (a) two-class SVM, (b) one-class SVM with one-hypersphere, and (c) one-class
SVM with two hyperspheres. In each case, the dotted line or circle represents the classifier. The two-class SVM is trained
on the black dots (cover) and white squares (stego) - notice that the gray squares (also stego) will be incorrectly classified
as they were not including in the training. The one-class SVMs are trained on only the black dots - notice that in these
cases the classifier is better able to generalize as both the white and gray squares generally fall outside the support of the
bounding circle(s).

squares (stego), and where the dashed line corresponds to the separating surface †. In this same figure, the gray
squares correspond to previously unseen images from a different stego program. Notice that without explicit
training on the gray squares, the classifier is unable to correctly classify them. To contend with this problem,
we employ one-class support vector machines (OC-SVM).19

An OC-SVM is trained on data from only one class by computing a bounding hypersphere (in the projected
high-dimensional space) that encompasses as much of the training data as possible, while minimizing its volume.
For example, shown in Figure 2(b) is an OC-SVM trained on the black dots. Note that, unlike the two-class
SVM shown in panel (a), this classifier is able to classify, reasonably well, both types of stego images (white and
gray squares). We describe below the details behind the construction of such OC-SVMs.

3.1. One-class Support Vector Machines

Consider n training data points in a d-dimensional space denoted as {~x1, ..., ~xn}. An OC-SVM first projects
these data into a higher, potentially infinite, dimensional space with the mapping: φ : Rd → F . In this space, a
bounding hypersphere is computed that encompasses as much of the training data as possible, while minimizing
its volume. This hypersphere is parameterized by a center, ~c, and a radius, r. Described below is how these
parameters are computed from the training data, and then how classification is performed given this bounding
hypersphere.

The hypersphere center ~c and radius r are computed by minimizing:

min
~c,r,ξ1 ,...,ξn

r2 +
1

nν

n
∑

i=1

ξi, (11)

where ν ∈ (0, 1) is a parameterized constant that controls the fraction of training data that fall outside of the
hypersphere, and ξis are the “slack variables” whose values indicate how far these outliers deviate from the
surface of the hypersphere. This minimization is subject to:

‖φ(~xi)− ~c‖2 ≤ r2 + ξi, ξi ≥ 0, i = 1, ..., n, (12)

where ‖ · ‖ is the Euclidean norm. The objective function of Equation (11) embodies the requirement that the
volume of the hypersphere is minimized, while simultaneously encompassing as much of the training data as

†The 2-D space shown in Figure 2 corresponds to the result of projecting the original data into a higher-dimensional
space. As such, the non-linear separating surface is linear.

possible. Equation (12) forces the training data to lie within the hypersphere (the slack variables ξi allow the
loosening of this constraint for specific data points).

To determine ~c and r, the quadratic programming problem of Equations (11)-(12) are transformed into their
dual form20:

min
α1,...,αn

n
∑

i=1

n
∑

j=1

αiαjφ(~xi)
T φ(~xj) −

n
∑

i=1

αiφ(~xi)
T φ(~xi), (13)

subject to:

n
∑

i=1

αi = 1, 0 ≤ αi ≤
1

nν
, i = 1, ..., n, (14)

where αi’s are Lagrange multipliers. Note that in this dual formulation the constraints (Equation (14)) are
now linear, and both the objective function and constraints are convex. Standard techniques from quadratic
programming can be used to solve for the unknown Lagrange multipliers.20 The center of the hypersphere, is
then given by:

~c =

n
∑

i=1

αiφ(~xi). (15)

In order to computed the hypersphere’s radius, r, we first use the Karush-Khun-Tucker (KKT) condition20 to
find the data points that lie exactly on the surface of the optimal hypersphere. Such points, ~xi, satisfy the
condition 0 < αi < 1/(nν). Any such data point ~y that lies on the surface of the optimal hypersphere satisfies
the following:

r2 = ‖φ(~y)− ~c‖2. (16)

Substituting the solution of Equation (15) into the above yields a solution for the hypersphere radius:

r2 =
n
∑

i=1

n
∑

j=1

αiαjφ(~xi)
T φ(~xj)− 2

n
∑

i=1

αiφ(~xi)
T φ(~y) + φ(~y)T φ(~y). (17)

With the hypersphere parameters, the decision function, f(~x), which determines whether a data point lies
within the support of the hypersphere, is defined as:

f(~x) = r2 − ‖φ(~x) − ~c‖2, (18)

such that, if f(~x) is greater than or equal to zero, then φ(~x) lies within the hypersphere, otherwise it lies outside.
Note that this decision function requires an explicit evaluation of φ(~x). This is computationally costly if φ(·)
maps the data into a very high dimensional space, and is problematic when that space is infinite dimensional.
Fortunately, the evaluation of φ(·) can be avoided entirely. Substituting the solution of Equation (15) into the
above decision function yields:

f(~x) = r2 −

n
∑

i=1

n
∑

j=1

αiαjφ(~xi)
T φ(~xj)− 2

n
∑

i=1

αiφ(~xi)
T φ(~x) + φ(~x)T φ(~x)

 . (19)

The inner products between two projected data points in the above equation, in the computation of r of Equa-
tion (17), and the objective function of Equation (13) are replaced with an appropriate kernel function21:

k(~x, ~y) = φ(~x)T φ(~y), (20)

to yield:

f(~x) =

(

−2

n
∑

i=1

αik(~xi, ~y) + k(~y, ~y)

)

−

(

−2

n
∑

i=1

αik(~xi, ~x) + k(~x, ~x)

)

, (21)

where the re-formulated objective function takes the form:

min
α1,...,αn

n
∑

i=1

n
∑

j=1

αiαjk(~xi, ~xj) −

n
∑

i=1

αik(~xi, ~xi). (22)

Commonly used kernel functions are polynomials and radial basis functions (see21 for more examples). Note
that this objective function is defined in the original d-dimensional space. In the following section we show how
this basic framework can be extended to allow for coverage of the data with multiple hyperspheres.

3.2. One-class Support Vector Machines with Multiple Hyperspheres

An OC-SVM with a single hypersphere, as described in the previous section, obviates the need for training a
classifier on a fully labeled training set. In our case, an OC-SVM need only be trained on cover images. In the
testing stage, images that are not in the support of the bounding hypersphere are considered to contain a hidden
message. One potential drawback of using only a single hypersphere is that it may not provide a particularly
compact support for the training data, Figure 2(b).

To alleviate this problem, we propose to cover the training data with several hyperspheres, where each
hypersphere encompasses a non-intersecting subset of the training data. Shown in Figure 2(c), for example, is
the result of using two hyperspheres to cover the same data as shown in panel (b). Note that, in this case,
the support is significantly more compact, thus leading to improved classification. In choosing the number of
hyperspheres, however, we need to balance between the compactness of the support and the generalizability of
the classifier. Specifically, if too many hyperspheres are used, then it is likely that the classifier will be tuned
only to the training data, and will perform poorly when presented with novel data.

With a specified number of hyperspheres, M , the training data are first automatically segmented into M
non-intersecting subsets. Specifically, a standard K-means clustering algorithm17 is employed to cluster the
original data into M groups. An OC-SVM, using a single hypersphere, is then independently trained on each
of the M groups. We next compute the distance between each data point and the center of each OC-SVM’s
hypersphere. For each data point, the hypersphere to whose center it is closest is determined. Each data point
is then re-assigned to this group, regardless of its previous assignment. And finally, a new set of M OC-SVMs
are trained using the new group assignments. This process is repeated until no single data point is re-assigned.
The convergence of this algorithm can be proven in a fairly straight-forward way similar to that used in proving
the convergence of K-means clustering.

In the testing stage, a novel image is tested against each of the M OC-SVMs. It is classified as a cover
image if it falls within the support of any OC-SVM’s hypersphere, otherwise it is classified as a stego image. In
the following section we show the efficacy of using an OC-SVM with multiple hyperspheres for distinguishing
between cover and stego images.

4. RESULTS

Shown in Figure 3 are thirty two cover images taken from a database of 40, 000 natural images‡. These color
images span a range of indoor and outdoor scenes, are JPEG compressed with an average quality of 90%, and
typically are 600×400 pixels in size (on average, 85.7 kilobytes). To contend with slight variations in image size,
only the central 256×256 region of each image was considered in the analysis. Statistics, as described in Section 2,
were collected by constructing, for each color channel, a four-level, three-orientation QMF pyramid. For each
image a 216-D feature vector (72 per color channel) of coefficient and error statistics was then computed. Of

‡All natural images were downloaded from www.freefoto.com - all images were photographed with a range of different
films, cameras, and lenses, and digitally scanned.

Figure 3. Examples from a database of 40,000 color images.

1 2 3 4 5 6
 0
 1
 2
 3
 4
 5

fa
ls

e
po

si
tiv

e
(%

)

number of hyper−spheres

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Jsteg Outguess F5 Jphide Steghide

number of hyper−spheres

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (

%
)

Figure 4. Shown in the bottom panel is the classification accuracy, for five different stego programs, as a function of
the number of hyperspheres used in the training of the OC-SVM. Shown in the top panel is the false-positive rate (a
cover image incorrectly classified as stego) as a function of the number of hyperspheres. Note that although classification
accuracy improves with more hyperspheres, the false-positive rate also begins to increase.

the 40, 000 collected feature vectors, 32, 000 were used to train a one-class support vector machine (OC-SVM) §.
For comparison sake, multiple OC-SVMs were trained with N hyperspheres, N = 1, 2, ...,6. In each case, the
false-positive rate was fixed at less than 1% (i.e., a cover image being incorrectly classified as a stego image).

Next, 40, 000 stego images were generated by embedding messages of various sizes into the full-resoltuion cover
images. The messages were n × n central regions of randomly chosen images from the same image database,
n = 80, 40, 20, or, 10. These messages were embedded using Jsteg,23 Outguess,24 F5,25 Jphide,26 and
Steghide.27 Each stego image was generated with the same quality factor as the original cover image so as
to minimize double JPEG compression artifacts. The same statistical feature vector as described above was
computed from the central 256× 256 region of each stego image.

The trained OC-SVMs were then used to test the previously unseen 8, 000 cover images, and all 40, 000 stego
images (8, 000 per each of five stego embedding programs). Shown in the bottom panel of Figure 4 are the
classification results of the testing stage for a message size of 80× 80, and for OC-SVMs trained with a varying
number of hyperspheres. Shown in the top panel of this same figure are the number of false-positives (a cover
image incorrectly classified as a stego image) from the testing stage. Note that even though the overall detection

§
LIBSVM,22 with a radial basis kernel, was used as the underlying SVM algorithm.

Embedding Message Message SVMa SVMb SVMc OC-SVM OC-SVM
(pixels) (K) (2 class) (2 class) (2 class) (1 HS) (4 HS)

(gray) (color) (color) (color) (color)

No-steg - - 99.1 99.3 99.1 99.9 99.0

Jsteg 80× 80 18.8 76.7 95.2 92.4 17.9 65.7
Jsteg 40× 40 4.7 68.2 87.4 79.6 18.2 37.2
Jsteg 20× 20 1.2 33.1 57.6 42.3 15.5 21.3
Jsteg 10× 10 0.3 4.1 16.1 7.3 9.3 12.3

Outguess 80× 80 18.8 71.5 76.3 78.6 14.3 62.5
Outguess 40× 40 4.7 49.6 63.4 61.9 16.2 49.3
Outguess 20× 20 1.2 20.9 29.7 34.8 12.3 26.6
Outguess 10× 10 0.3 1.4 3.9 4.3 7.3 13.8
F5 80× 80 18.8 5.1 48.1 69.7 11.2 51.4
F5 40× 40 4.7 2.3 22.7 49.2 9.7 33.2
F5 20× 20 1.2 0.0 7.1 15.8 9.1 28.3
F5 10× 10 0.3 0.0 0.3 2.7 6.4 11.7
Jphide 80× 80 18.8 37.8 38.9 64.4 15.3 58.3
Jphide 40× 40 4.7 21.6 31.1 60.8 14.5 32.4
Jphide 20× 20 1.2 13.3 16.4 25.5 19.0 29.0
Jphide 10× 10 0.3 0.8 1.1 3.7 10.6 15.1
Steghide 80× 80 18.8 45.4 52.6 79.6 14.6 42.4
Steghide 40× 40 4.7 28.9 39.4 55.9 12.9 33.9
Steghide 20× 20 1.2 11.2 18.3 33.1 14.1 31.0
Steghide 10× 10 0.3 2.1 4.8 8.9 15.3 12.6

Table 1. Classification results from two-class and one-class SVMs. The two-class SVMs are trained only on Jsteg (column
b) or on Jsteg and F5 (column a and c). The two-class SVM results shown in column c are based on color images, while
those in column a are based on the same images converted to grayscale. Note that color statistics affords a considerable
improvement in overall accuracy. Shown in the last two columns are the results from a one-class SVM. The OC-SVMs
were trained with either one or four hyperspheres (HS). Note that the OC-SVMs are better able to generalize as compared
to the two-class SVM trained only on Jsteg (column b). In all cases, the reported accuracy is from the classification testing
stage.

improves with an increasing number of hyperspheres, the false-positive rate begins to increase considerably after
four hyperspheres. The reason for this is that while multiple hyperspheres afford a more compact support in the
training stage, they lead to poor generalization in the testing stage.

Shown in Table 1 are the complete grayscale and color classification results from our previous two-class SVM8

trained only on Jsteg stego images (column SVMb) and trained on Jsteg and F5 images (columns SVMa and
SVMc). Also shown in this table are the results from an OC-SVM with one and four hyperspheres. In all cases,
the reported accuracy is from the testing stage (i.e., images unseen during the training of the SVMs). Note first
that color statistics affords a considerable improvement in overall accuracy. The two-class SVM trained on Jsteg
and F5 generally performs better on novel stego programs than does the SVM trained only on Jsteg. Note also
that an OC-SVM with four hyperspheres affords considerably higher classification accuracy than one hypersphere.
And as expected, the OC-SVM (with four hyperspheres) is generally more consistent at generalizing to novel
stego programs than the SVM trained only on Jsteg. A two-class SVM fully trained on all stego programs will
almost certainly outperform an OC-SVM. The training of such an SVM, however, requires a larger training set,
and may not generalize well to stego programs previously unseen by the classifier.

5. DISCUSSION

We have described a universal steganalysis algorithm that exploits the inherent statistical regularities of natural
images. The statistical model consists of first- and higher-order color wavelet statistics. A one-class support
vector machine (OC-SVM) was employed for detecting hidden messages in digital images. The work presented
here builds on our earlier work where we used first- and higher-order grayscale wavelet statistics and a two-class
support vector machine. The addition of color statistics provides a considerable improvement in overall detection
accuracy. And, while a fully trained two-class SVM is likely to outperform an OC-SVM, the OC-SVM has the
advantage that it is more likely to generalize to stego programs not previously seen by the classifier. In addition,
the training of the OC-SVM is simplified as it only requires training on the more easily obtained cover (non-stego)
images.

Techniques for universal steganalysis, such as that presented here, hold out promise that high-throughput
steganography can be detected. There is no doubt, however, that small messages (relative to the cover medium)
will be nearly impossible to detect. Finally, it might be possible to alter a cover image such that, after inserting
a hidden message, the statistical feature vector which we collect falls within the realm of non-stego images. It
is not immediately obvious (to us) how this image manipulation could be performed. We expect, however, that
counter-measures will eventually be developed which can foil our detection scheme. The development of such
techniques will in turn lead to better statistical models and detection schemes, and so on.

ACKNOWLEDGMENTS

This work was supported by an Alfred P. Sloan Fellowship, an NSF CAREER Award (IIS-99-83806), an NSF
Infrastructure Grant (EIA-98-02068), and under Award No. 2000-DT-CX-K001 from the Office for Domestic
Preparedness, U.S. Department of Homeland Security (points of view in this document are those of the authors
and do not necessarily represent the official position of the U.S. Department of Homeland Security).

REFERENCES

1. D. Kahn, “The history of steganography,” in Proceedings of Information Hiding, First International Work-
shop, (Cambridge, UK), 1996.

2. R. Anderson and F. Petitcolas, “On the limits of steganography,” IEEE Journal on Selected Areas in
Communications 16(4), pp. 474–481, 1998.

3. N. Johnson and S. Jajodia, “Exploring steganography: seeing the unseen,” IEEE Computer 31(2), pp. 26–34,
1998.

4. E. Petitcolas, R. Anderson, and M. Kuhn, “Information hiding - a survey,” Proceedings of the IEEE 87(7),
pp. 1062–1078, 1999.

5. N. Provos and P. Honeyman, “Detecting steganographic content on the internet,” Tech. Rep. CITI 01-1a,
University of Michigan, 2001.

6. J. Fridrich, M. Goljan, and D. Hogea, “Steganalysis of JPEG images: Breaking the F5 algorithm,” in 5th
International Workshop on Information Hiding, (Noordwijkerhout, The Netherlands), 2002.

7. X. Wu, S. Dumitrescu, and Z. Wang, “Detection of lsb steganography via sample pair analysis,” in 5th
International Workshop on Information Hiding, (Noordwijkerhout, The Netherlands), 2002.

8. S. Lyu and H. Farid, “Detecting hidden messages using higher-order statistics and support vector machines,”
in 5th International Workshop on Information Hiding, (Noordwijkerhout, The Netherlands), 2002.

9. J. Fridrich, M. Goljan, and D. Hogea, “New methodology for breaking steganographic techniques for
JPEGs,” in SPIE Symposium on Electronic Imaging, (Santa Clara, CA), 2003.

10. J. Fridrich and M. Goljan, “Practical steganalysis – state of the art,” in SPIE Symposium on Electronic
Imaging, (San Jose, California), 2002.

11. H. Farid and S. Lyu, “Higher-order wavelet statistics and their application to digital forensics,” in IEEE
Workshop on Statistical Analysis in Computer Vision (in conjunction with CVPR), (Madison, WI), 2003.

12. H. Farid, “Detecting hidden messages using higher-order statistical models,” in International Conference
on Image Processing, (Rochester, New York), 2002.

13. P. Vaidyanathan, “Quadrature mirror filter banks, M-band extensions and perfect reconstruction tech-
niques,” IEEE ASSP Magazine 4(3), pp. 4–20, 1987.

14. M. Vetterli, “A theory of multirate filter banks,” IEEE Transactions on ASSP 35(3), pp. 356–372, 1987.

15. E. Simoncelli and E. Adelson, Subband image coding, ch. Subband transforms, pp. 143–192. Kluwer Academic
Publishers, 1990.

16. R. Buccigrossi and E. Simoncelli, “Image compression via joint statistical characterization in the wavelet
domain,” IEEE Transactions on Image Processing 8(12), pp. 1688–1701, 1999.

17. R. Duda and P. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, 1973.

18. V. Vapnik, The nature of statistical learning theory, Spring Verlag, 1995.

19. B. Scholkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a
high-dimensional distribution.,” in Neural Computation, pp. 1443–1471, 2001.

20. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, 2nd ed., 1987.

21. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge
Discovery 2, pp. 121–167, 1998.

22. C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

23. D. Upham, Jsteg. Software available at ftp.funet.fi.

24. N. Provos, Outguess. Software available at www.outguess.org.

25. A. Westfeld, F5. Software available at wwwwrn.inf.tu-dresden.de/westfeld/f5.

26. A. Latham, Jpeg Hide-and-Seek. Software available at linux01.gwdg.de/alatham/stego.

27. S. Hetzl, Steghide. Software available at steghide.sourceforge.net.

