
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 4, DECEMBER 2010 857
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Abstract—Region duplication is a simple and effective opera-
tion to create digital image forgeries, where a continuous portion
of pixels in an image, after possible geometrical and illumination
adjustments, are copied and pasted to a different location in the
same image. Most existing region duplication detection methods
are based on directly matching blocks of image pixels or transform
coefficients, and are not effective when the duplicated regions have
geometrical or illumination distortions. In this work, we describe
a new region duplication detection method that is robust to distor-
tions of the duplicated regions. Our method starts by estimating
the transform between matched scale invariant feature transform
(SIFT) keypoints, which are insensitive to geometrical and illumi-
nation distortions, and then finds all pixels within the duplicated
regions after discounting the estimated transforms. The proposed
method shows effective detection on an automatically synthesized
forgery image database with duplicated and distorted regions. We
further demonstrate its practical performance with several chal-
lenging forgery images created with state-of-the-art tools.

Index Terms—Digital image forensics, image feature matching,
region duplication detection.

I. INTRODUCTION

T HANKS to the increasing availability and sophistication
of digital imaging technology (digital cameras, com-

puters, and photoediting software) and the popularity of the
Internet, digital images have become our main information
source. However, concomitant with the ubiquity of digital
images is the rampant problem of digital forgeries, which has
seriously debased the credibility of photographic images as
definite records of events. Accordingly, digital image forensics
has emerged as a new research field that aims to reveal tam-
pering operations in digital images [13].

A common manipulation in tampering with digital images
is known as region duplication, where a continuous portion of
pixels are copied and pasted to a different location in the same
image. To make convincing forgeries, the duplicated regions
are often created with geometrical or illumination adjustments.
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Fig. 1. Two original digital images and forgery images created based on them
using duplicated and distorted regions. The first original image is courtesy of
H. Farid, and the second one is from [12].

Fig. 1 exemplifies two main usages of duplicated regions in cre-
ating forgery images. For the example shown in the left panel, a
rotated duplicated region is used to conceal undesirable contents
in the original image. In the other case, two duplicated regions
that are scaled, rotated, and mirrored are used to create contents
that are not in the original image. These duplicated regions are
well blended into the surroundings at the target locations, and
become very difficult to detect visually.

In this work, we describe a new method for reliable detec-
tion of duplicated and distorted regions in a digital image. Our
method is based on image keypoints and feature vectors that are
robust to typical image transforms [32]. We formulate region
duplication detection as finding transformed identical regions in
an image and use robust estimation to obtain correct keypoints
matching and transforms between duplicated regions simulta-
neously. With the estimated transforms, our method further ob-
tains the precise location and extent of the detected duplicated
regions. Our method is tested with a comprehensive quantitative
performance evaluation on a database of automatically gener-
ated forgery images with duplicated and distorted regions. We
also report its robustness with regards to different JPEG quali-
ties and additive noise levels. We further demonstrate the effec-
tiveness of our method on several challenging forgery images
generated using state-of-the-art image editing tools.
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II. RELATED WORK

Several general techniques in digital image forensics may
be applied to detect duplicated regions. For JPEG images, a
double JPEG quantization is usually a telltale sign of tampering
operations (including region duplication), and can be detected
based on the histograms of quantized DCT coefficients [20],
[42]. Other intrinsic cues from the imaging process, including
color filter array interpolation patterns [44], [46], camera re-
sponse functions [30], and camera sensor noise [9], [18], or
general statistical properties of untampered natural images [34],
[35] can also be used to reveal image tampering. However, these
general detection methods typically do not provide direct ev-
idence of region duplication or the location of the duplicated
regions. Capturing statistical correlation of interpolation [43] or
inconsistency in the lighting geometry [23] may be used to lo-
cate duplicated regions. But these methods only work reliably
with high-quality uncompressed images, and become ineffec-
tive in practical scenarios.

One simple approach to locate duplicated regions in an image
is to identify off-origin peaks in the image auto-correlation func-
tion, which can be computed efficiently using the fast Fourier
transform [17]. Due to its running efficiency and simplicity, it
has been used for the detection of duplicated regions in videos
[47]. However, identifying off-origin peaks in the auto-corre-
lation function becomes difficult when the duplicated region is
relatively small, or the image contains noise or other artifacts.
Many other existing region duplication detection methods are
based on matching blocks of image pixels or transform coef-
ficients (e.g., [4], [15], [24], [26], [28], [33], [36], [41], [48]).
While these methods can detect duplicated regions pasted to
the target location without any change (a special case known
as copy-move), they are largely ineffective to detect duplicated
regions that are also distorted (such as examples in Fig. 1). To
alleviate this problem, a variant of the block matching region
duplication method is proposed to handle duplicated regions ro-
tated with 90 , 180 , and 270 [29]. Another vein of works use
blocks in the log-polar coordinate system [5], [8], [38], where
rotation and scaling become translation and can be detected as
copy-move. Another method has been proposed to detect du-
plicated regions with smoothing operation [27]. However, the
flexibilities provided by this method are limited and they cannot
be extended for the detection of duplicated regions with general
distortions.

As an alternative to the block-matching-based detection
methods, several recent methods have explored the use of
matched image keypoints to identify duplicated regions. In
[21], keypoints and features based on the scale invariant
feature transform (SIFT) algorithm [32] are used to account
for illumination changes in the detection of copy-move region
duplication. However, the robustness of SIFT keypoints and
features to image distortions is not fully exploited, which
prevents this method from being extended to detect affine
transformed duplicated regions. In our previous work [39],
we describe an SIFT-matching-based detection method that
can locate duplicated regions with rotation or scaling. Another
recent work [3] uses SIFT keypoint matching to estimate the
parameters of the affine transform and recover matched key-

Fig. 2. Main steps of the proposed method to detect duplicated and distorted
regions. (top left) Detected SIFT keypoints in an image. (top right) Matched
keypoints after the RANSAC algorithm. (bottom left) Region correlation map
generated with the estimated affine transforms. Brighter pixel intensity signifies
stronger correlation. (bottom right) Detected duplicated regions.

points. But similar to [21], it does not provide the exact extent
and location of the detected duplicated region, but only displays
the matched keypoints. Furthermore, these detection methods
are typically evaluated against simple forgeries where human
viewers have no trouble to identify the duplicated regions, and
their performance on challenging realistic forgery images is
largely unknown.

III. METHOD

In this section, we describe in detail the proposed method to
detect duplicated and distorted regions in an image, with Fig. 2
illustrating the main steps of our method using the forgery image
shown in Fig. 1.

A. Finding Image Keypoints and Collecting Features

We detect duplicated regions in the illumination domain, so
RGB images are first converted to grayscale images using stan-
dard color space conversion. The first step in our method is to
find image keypoints and collect image features at the detected
keypoints.

Keypoints are locations carrying distinct information of the
image content. Each keypoint is characterized by a feature
vector that consists of a set of image statistics collected at
the local neighborhood of the corresponding keypoint. Good
keypoints and features should represent distinct locations in an
image, be efficient to compute and robust to local geometrical
distortion, illumination variations, noise, and other degrada-
tions.

Our method is based on an effective keypoint and feature
computation algorithm known as the SIFT [32]. SIFT keypoints
are found by searching for locations that are stable local extrema
in the scale space [31]. At each keypoint, a 128-dimensional fea-
ture vector is generated from the histograms of local gradients
in its neighborhood. To ensure the obtained feature vector in-
variant to rotation and scaling, the size of the neighborhood is
determined by the dominant scale of the keypoint, and all gra-
dients within are aligned with the keypoint’s dominant orien-
tation. Furthermore, the obtained histograms are normalized to
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unit length, which renders the feature vector invariant to local
illumination changes.

As duplicated regions typically account for only a small frac-
tion of the total area of the image, we limit keypoint detection
to a small range of scales. In our experiment, we construct the
scale space with Gaussian kernels of initial width of 1.6 pixels
up to 7 octaves. The top left panel in Fig. 2 shows the SIFT key-
points detected in an image. The end of each arrow corresponds
to the location of one SIFT keypoint. The directions of the ar-
rows show the dominant orientation of each keypoint, and the
lengths of the arrows correspond to the dominant scale.

B. Putative Keypoint Matching

The detected SIFT keypoints are then tentatively matched
based on their feature vectors using the best-bin-first algorithm
[6]. For a keypoint at location with feature , we match it with
keypoint , whose corresponding feature vector is the nearest
neighbor to measured with their (Euclidean) distance. Due
to the smoothness of natural images, the best match of a key-
point usually lies within its close spatial adjacency. To avoid
searching nearest neighbors of a keypoint from the same region,
we perform the search outside an 11 11 pixel window centered
at the keypoint. Further, many keypoints can match with each
other, but we only keep those with distinct similarities. Specif-
ically, we require that for any other feature vector other than

and , the distance between and has to be smaller than that
of and by at least a factor of , as ,
where is a preset threshold controlling the distinc-
tiveness of the matching. We use a default to provide a
good trade-off between matching accuracy and ratio of outliers.

C. Estimation of Affine Transform Between Matched Keypoints

Next, based on the putative keypoint matching, we estimate
the possible geometric distortions of the duplicated regions. To
generalize transforms such as rotation, scaling, and shearing that
are supported in most photoediting software, we model the dis-
tortion as affine transform of pixel coordinates. Given two cor-
responding pixel locations from a region and its duplicate as

and , respectively, they are related by
a 2-D affine transform specified by a 2 2 matrix and a shift
vector as , or more explicitly

(1)

To obtain a unique solution to the transform parameters,
, we need at least three pairs of cor-

responding keypoints that are not collinear. In practice, due
to imprecise matching, (1) may not be satisfied exactly, and
we form the least squares objective function using matched
keypoints and , as

(2)

and searching for and that minimize it. The optimal solu-
tion is provided and derived in the Appendix.1

D. Robust Estimation of Affine Transform

We can use the putative matchings of SIFT keypoints to
estimate the affine transform parameters, but the obtained
results are inaccurate due to the large number of mismatched
keypoints. To prune out unreliable keypoint correspondences
and obtain accurate transform parameters simultaneously, we
employ a widely used robust estimation method known as the
Random Sample Consensus (RANSAC) algorithm [14]. The
RANSAC algorithm can estimate the model parameters with
a high degree of accuracy even when a significant number of
mismatched pairs are present. Using the putative matching of
SIFT keypoints, we run the following two steps times:

1) Randomly select three or more pairs of matched keypoints
that are not collinear. Using the chosen pairs of keypoints,
estimate and shift vector by minimizing the objective
function given in (2).

2) Using the estimated and , classify all pairs of matched
SIFT keypoints into inliers or outliers. Specifically, a pair
of matched keypoints is an inlier if

, otherwise, it is an outlier.
The RANSAC algorithm returns with the estimated transform
parameters that lead to the largest number of inliers. In our ex-
periment, we choose default values for and as
they lead to better empirical performance. The top right panel in
Fig. 2 shows the SIFT keypoint correspondences after pruning
with the RANSAC algorithm.

E. Region Correlation Map

With the estimated affine transform, we compare each pixel to
its transformation to find identical regions. In practice, because
the estimated affine transform can be the inverse of the actual
transform (from pixel level, we cannot differentiate which re-
gion is the source and which one is the duplicate), we check the
correspondence of using both the estimated affine transform,

and its inverse, . Taking the
forward transform as example, the similarity between and
is evaluated with the correlation coefficients between the pixel
intensities within small neighboring areas of each location. De-
note the pixel intensity at location as , and as the
5 5 pixels neighboring area centered at , the correlation co-
efficient between the two pixel locations is computed as

The correlation coefficient for the inverse transformed
is computed in the same manner. The correlation coefficient is
in the range of [0, 1], with larger value indicating higher level
of similarity. Further, it is invariant to local illumination dis-
tortions—any illumination changes consistent within the local

1This method can be further generalized to the perspective projection trans-
form, in which we use a general 3 � 3 homographic matrix in lieu of � , and
obtain least squares solutions in a similar fashion [19].
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neighborhood will cancel out each other. The computed corre-
lation coefficients and are put into two correlation
maps, one example of which is shown in the bottom left panel
of Fig. 2.

F. Locating Duplicated Regions

The final step of our method is to process the region corre-
lation maps to obtain the duplicated regions. First, we apply a
Gaussian filter of size 7 7 pixels to reduce the noise in the cor-
relation maps. Next, with a threshold , the correlation
maps are discretized to binary images. A higher value close to
1 can single out regions that are strongly similar, but can miss
detections of duplicated regions that give rise to weaker correla-
tions. On the other hand, a lower value allows better detection
accuracy of duplicated regions, but may increase false detec-
tions by including untampered regions that have medium range
correlations. In our experiments we choose a default value of

for a good trade-off between detection accuracy and
false detection rate. The obtained binary maps for and are
then combined into a single map by a union of the binary values.
Next, we use an area threshold, of the total area of
the image to remove small isolated regions. By doing so, we
assume the minimum duplicated region that can be detected is
about 23 23 pixels in size for an image of 800 600 pixels.
As a final postprocessing step, we use mathematical morpholog-
ical operations [45] to smooth and connect the boundaries of the
detected duplicated regions. Shown in the bottom right panel of
Fig. 2 are the final detected regions.

G. Handling Copy-Move

If the estimated transform matrix is close to identity, the
distortion of the duplicated region is close to a translation, cor-
responding to a copy-move duplication. In this case, we employ
a more efficient and robust method to recover the shift vectors
directly. Specifically, we compute the distances between the
location of each pair of matched SIFT keypoints. Though corre-
sponding keypoints in the source and duplicated regions should
have the same distance, due to mismatch, the observed values
have a wider range. So we build a histogram of distances be-
tween all pairs of keypoints, and collect keypoint pairs with the
distance of maximum frequency of occurrence. After grouping
these keypoints into two groups using the -means clustering,
the shift vector is estimated as the difference between the means
of these two groups.

H. Handling Reflection

Duplicated regions that are reflected need special treatments.
A reflection over a line is a transformation in which each point
is mapped to another point that is the same distance from the
line of reflection as the original point but is on the opposite
side. It can be shown that reflection is a special case of the
affine transform. However, SIFT features are not invariant to
reflection, as the mirrored keypoint has different dominant ori-
entation. Specifically, we handle reflected duplicated regions by
searching corresponding SIFT keypoints in one image, as well
as its mirrored version reflected around one image coordinate
axis with regards to the geometric center of the image plane. The

TABLE I
DEFAULT PARAMETER VALUES IN OUR METHOD

RANSAC procedure is then run to obtain SIFT keypoint corre-
spondences, and detected matchings in the mirrored image are
mapped back to locations in the original image coordinates.

I. Detecting Multiple Duplicated Regions

For forgery images containing more than one pair of dupli-
cated regions, we run our detection method iteratively with each
iteration selecting one pair of potential duplicated regions. After
a pair of duplicated regions are identified, we rerun our detec-
tion algorithm, this time with pixels in one of the detected dupli-
cated regions masked out from the search. In other words, any
SIFT keypoints from regions that have been detected as duplica-
tions are excluded from the next round of detection. This allows
more significant duplications to be detected first, followed by
ones with smaller area. The whole algorithm stops when there
is no duplicated region larger than the area threshold found in
the image. As the last step, all recovered duplicated regions are
combined together and mapped back to the original image co-
ordinates.

J. Implementation

Our method is implemented using the C language based on
the OpenCV platform [7]. On a machine with an Intel Core 2
Duo 3.0-GHz E8400 processor and 4-GB memory, the average
time to analyze an 800 600 image is about 10 s. We list the
default values of the adjustable parameters in our method in
Table I. Unless specified otherwise, the results reported in the
following sections are with the default parameters.

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the quantitative performance of
the proposed region duplication detection method on a set of
automatically generated forgery images with duplicated and dis-
torted regions.

A. Automatically Synthesized Forgery Images

Forgery images are generated based on 25 uncompressed
PNG true color images of size 768 512 pixels released by
the Kodak Corporation for unrestricted research usage.2 For
each untampered image, randomly chosen square regions that
contain more than 50 SIFT keypoints are used for duplication.
To test the effect of the sizes of the duplicated regions on
detection, we use three different block sizes (32 32, 64
64, and 96 96 pixels) corresponding to 0.26%, 1.04%, and
2.34% of total image area, respectively.

We then distort the duplicated regions using several types of
transforms, with the shift vector chosen randomly in the same
image. These affine transforms are representatives of the most

2Image source: http://r0k.us/graphics/kodak/.
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Fig. 3. (Top) Five examples of synthesized forgery images used in our experiments, corresponding to copy-move, rotation, scaling, random free-form linear
transform, and illumination distortion to a duplicated region of size 64 � 64 pixels. (Bottom) Detection results using our method. In the parentheses are the
PDA/PFP rates of the detected duplicated region in percentage.

Fig. 4. (a)–(e) ROC curves for different tampering operations and block sizes. Results are averaged over 100 randomly synthesized forgeries with region dupli-
cations. (f) Overall image level performance of our method. For clean images, we report the true negative rates. For forgery images of different duplicated region
sizes and operations, we report the detection accuracies. Both rates are given in percentage. (a) Copy-move; (b) rotation; (c) scaling; (d) free-form; (e) illumination;
(f) image level detection.

frequent manipulations in creating region duplication forgeries
provided in most photoediting tools, and are defined with re-
gards to the local coordinate system originating at the geometric
center of the corresponding source regions, and implemented
with bicubic interpolations using MATLAB.

1) Copy-move: The duplicated region is translated to the
target location with no distortion.

2) Rotation: The duplicated region is rotated with a random
angle .

3) Scaling: The duplicated region is scaled up or down with
a random scaling factor .

4) Free-form: The duplicated region is distorted with a linear
transform of a random affine matrix .

5) Illumination adjustment: The affine transform is the
same as in the case of copy-move, but all pixels in the
duplicated region have intensities modulated to 80% of
their original values.

For each of the five types of region duplication and size of dupli-
cated regions, we generate four tampered images using each of
the 25 images in the Kodak database, resulting in a total 1500
forgery images, five examples of which are shown in the top
rows of Fig. 3.

B. Performance Analysis With ROC Curves of PDA/PFP Rates

We use two quantitative measures to evaluate the perfor-
mance of our method. Denote as pixels in the true duplicated
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regions (both the source and its duplicates), and as pixels in
the detected duplicated regions; we define the pixel detection
accuracy (PDA) rate as the fraction of pixels in duplicated
regions that are correctly identified, i.e., PDA
and the pixel false positive (PFP) rate as the fraction of pixels
in untampered regions that are detected as from duplicated
regions, i.e., PFP .

Combining the PDA and PFP rates in a receiver-operator
characteristics (ROC) curve [11] provides a comprehensive
evaluation of the detection performance. In our method, dif-
ferent PDA/PFP rates are obtained by adjusting the correlation
threshold (Section III-E) in the range of 0.00 to 0.95 with step
size 0.05. To reduce the effect of random samples, each pair of
PDA/PFP rates is computed as the averages over all 100 forgery
images of each distortion and block size. The resulting ROC
curves for each type of distortion and size of the duplicated
regions are shown in panels (a)–(f) of Fig. 4.

As these ROC curves show, for block sizes of 64 64 and
96 96, with a PFP rate around 5%, our method achieves a PDA
rate greater than 85%. Such a level of PDA/PFP rates are usually
sufficient to identify the duplicated regions visually, confirmed
with the bottom row of Fig. 3 showing detection results with
the corresponding PDA/PFP rates in this range. On the other
hand, there is a clear effect of the size of the duplicated blocks
to the detection performance, the larger the block size is, the
better the overall performance (as the area under the ROC curve
is larger). This is expected, as larger duplicated regions include
more SIFT keypoints, which makes the matching and transform
estimation more reliable. Also, there is a difference in perfor-
mance for different types of distortion. Especially, the simple
case of copy-move and illumination distortion are the easiest to
detect, while the most difficult is when the duplicated regions
are subject to free-form affine transforms.

For the purpose of comparison, we also implement and apply
two previous region duplication detection methods, [41] and
[21],3 to the set of automatically synthesized forgery images.
For copy-move forgeries, both methods achieve similar perfor-
mances to our method, as they are designed for such types of
forgeries. On the other hand, for other types of distorted dupli-
cated regions, both methods practically fail to detect any forgery
image, reflected by close to zero areas under the ROC curves.

C. Image Level Detection Performance

Area based performance measures such as PDA/PFP rates are
useful when we know that the tested image is a forgery, i.e.,

. Yet, in practice, this is usually not known a priori. In
the next set of experiments, we test the overall image-level de-
tection performance of our method. Specifically, for a forgery
image, a successful detection is deemed when our method de-
tects a duplicated region larger than the area threshold . For
an untampered image, a true negative occurs when our method
does not detect any duplicated region. Panel (f) of Fig. 4 shows
the overall detection performance of our method on the 1500
synthesized forgery images, measured by the rate of successful

3The original method in [21] only gives matched keypoints. To compare with
our method, we extended it in a similar fashion as in Section III-E to return
location and extent of detected duplicated regions.

detections. Also shown is the true negative rate for the 325 un-
tampered images (300 images are collected from Berkeley seg-
mentation dataset [37] and 25 images are collected from Kodak
dataset). We use the default parameter values given in Table I.

As these results show, our method correctly identifies all
forgery images with duplicated blocks of size 64 64 or 96
96 pixels, and the average PDA/PFP rates for these detections
are 83.5% and 8.8%, respectively. The detection performance
for duplicated blocks of size 32 32 pixels are significantly
inferior, which corroborates the ROC curves in Fig. 4. For
untampered images, our method achieves high true negative
rates (on average 99.08%), as for most untampered images,
intrinsic similar regions (e.g., textures and other repetitive
structures) usually lack the high similarity resulted from iden-
tical duplicates. This in turn leads to insufficient SIFT keypoint
matchings. The threshold in selecting nearest neighbors, the
RANSAC matching and threshold on region area then work
together to prevent significant false positives in an unmodified
image.

D. Robustness to Image Degradations

Our next experiment addresses the robustness and sensitivity
of our method with different JPEG qualities, and noise levels.
Shown in Fig. 5 are the ROC curves of PDA/PFP for the detec-
tion of duplicated regions with rotation, free-form affine trans-
form, and illumination distortion under different JPEG com-
pression qualities (top row) and signal-to-noise ratios (SNRs) of
additive white Gaussian noises (bottom row). The forgery im-
ages are created with duplicated regions of size 64 64 pixels,
and the distortions of these duplicated regions are applied as in
the previous experiment. The forgery images are then converted
to JPEG images ( ) or contaminated with
additive white Gaussian noise (SNR dB).

As shown in the ROC curves in Fig. 5, the overall detec-
tion performance of our method is relatively robust to these
degradations. Even with low image qualities (JPEG or
SNR ), in most of the cases, more than 70% of the pixels
in duplicated regions can still be detected with less than 20%
of PFP rates. In general, the performance tends to decrease for
lower image quality. The main reason is that artifacts such as
the “blockiness” in low-quality JPEG compression or high level
noise interfere with the SIFT algorithm in detecting keypoints.
As less reliable keypoints are available in such cases, the detec-
tion performance is strongly affected.

E. Transform Parameter Estimation

Last, we evaluate the accuracy of the estimated affine trans-
form using the RANSAC estimation (Section III-D). Using a
set of 100 forgery images with randomly chosen affine trans-
formed duplicated regions for each block size, we evaluate the
relative estimation errors of each affine transform parameter,
which is the ratio of estimation error (the difference between
the estimated value and the true value) and the truth parameter
value. Shown in Table II are the means and standard deviations
(in parenthesis) of the computed relative estimation errors. Note
that these errors are relatively small for larger block sizes, but
become significant when the block size is 32 32. This is con-
sistent with the results reflected by the ROC curves of PDA/PFP
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Fig. 5. ROC curves of PDA and PFP rates for different JPEG (top row) and SNRs (bottom row) of region duplications with (a), (d) rotation, (b), (e) free-form
transform, and (c), (f) illumination distortion.

TABLE II
MEANS AND STANDARD DEVIATIONS (IN PARENTHESIS) OF THE RELATIVE ERRORS OF THE RANSAC ESTIMATED PARAMETERS FOR THE

FREE-FORM LINEAR TRANSFORMED DUPLICATED REGIONS

rates (Fig. 5), as well as the overall image level detection per-
formance (Fig. 3). This experiment also sheds some light on the
relatively low performance for duplicated regions of 32 32
pixels: the smaller number of SIFT keypoints leads to less ac-
curate estimation of the transform parameters, which in turn af-
fects the overall detection performance.

V. REALISTIC DETECTIONS

With the aid of sophisticated photoediting software, such as
the healing brush in Photoshop [16] and the smart fill tool in
Image Doctor [2], forgery images can be made with convincing
visual appearance using duplicated and distorted regions. And
seamless region splicing is an active developments in computer
graphics, e.g., [1], [12], [22], and [40]. In this section, we test
our region duplication detection method with several convincing
digital forgeries made with state-of-the-art image retouching al-
gorithms and tools. All the detection results are made with the
default parameter values in Table I.

First, based on the untampered image shown in Fig. 1, we
create a set of forgeries of convincing effects using Photoshop.
Irregular regions are chosen, distorted with rotation, scaling,
free-form affine transform, perspective projection, reflection or
illumination adjustment, and then pasted to target locations. The

created forgeries, along with the detection results of our method,
are shown in Fig. 6. As the visual results and the accompanying
PDA/PFP rates show, our method can reliably detect these du-
plicated regions.

Shown in Fig. 7 are the detection results of our method on
some more realistic forgeries. Forgery images in the first two
rows are generated with the splicing algorithm developed by
Zeev et al. [12], which creates natural transition between du-
plicated region and the surroundings at the target location. This
is achieved using numerical solutions to the Laplacian equa-
tion defined by the boundary conditions specified by the bor-
ders of the duplicated region and its target location, which re-
sults in highly convincing tampering results [12]. The dupli-
cated regions in these examples are affine transformed. In the
“deer” image, the duplicated region is rotated, scaled, and mir-
rored; in the “cherry” image, the duplicated region is rotated
and overlapped with the source region. Nevertheless, our detec-
tion method is able to recover the duplicated regions, and cor-
rectly accounts for the geometrical distortions, using the proce-
dure given in Section III-I to detect multiple duplicated regions.

The third row of Fig. 7 shows a forgery created with the Smart
Fill tool in the Image Doctor software (Alien Skin Software,
[2]). The unpublished algorithm used to create this forgery is
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Fig. 6. Detection results (bottom) of our method on a set of forgery images with duplicated regions undergone different types of distortion (top). These images
are manually created with the aid of Adobe Photoshop. In the parentheses are the PDA/PFP rates of the detected duplicated region in percentage.

more sophisticated: instead of using a continuous duplicated re-
gion of relatively large size, smaller regions containing mostly
textures (sometimes the selected region is less than 20 pixels in
size) are combined and arranged to cover a larger region at the
target location. This makes the visual detection of the duplicated
regions significantly more difficult. It also poses as a challenge
to our method, especially due to the fact that the smaller iden-
tical regions provide less reliable keypoint matchings. However,
the detection result of our method as shown in the right column
can still provide a considerable clue to draw an inspector’s at-
tention for scrutiny.

The last row of Fig. 7 shows the detection result of our method
on an alleged forgery image that has recently raised the public’s
attention. The image shown in the middle panel appeared on the
front pages of several internationally important newspapers in-
cluding The Los Angeles Times, The Financial Times, and The
Chicago Tribune and several major news web sites in 2009.
Shortly after this image was published, doubts were raised that it
had been digitally altered, a fact later confirmed by inspection of
photography experts and the appearance of another photograph
that was believed to be taken at about the same time (left). Con-
sistent with the analysis of photography experts, our method is
able to recover the two major regions that are believed to be du-
plicated from other parts of the image.

VI. DISCUSSION

Forgery images created with duplicated and distorted regions
are challenging to detect visually. In this work, we describe a
new method to detect duplicated and distorted regions based
on the robust matching of image keypoints and features. We
demonstrate the effectiveness of our detection method with a se-
ries of experiments, including several sets of highly convincing
forgery images created with state-of-the-art image editing tools.

Though having achieved promising performance in detecting
sophisticated forgeries with duplicated regions, our method re-
lies on the detection of reliable SIFT keypoints. For some im-
ages this may be a limitation. One example is shown as the top
left image in Fig. 8, where an obvious duplicated region is not
detected by our method. This is because the SIFT algorithm
cannot find reliable keypoints in regions with little visual struc-
tures. Similarly, as smaller regions have fewer keypoints, they
are also hard to detect with our method. Second, there are im-
ages that have intrinsically identical areas that cannot be differ-
entiated from intentionally inserted duplicated regions by our
method. The three images in Fig. 8 exemplify such cases. As an
important future work, we will consider several approaches to
improve the detection performance for such cases, including in-
corporating other features such as PCA-SIFT [25] or histograms
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Fig. 7. Detection results of our method on a set of challenging and realistic forgery images with duplicated regions. See text for details.

of oriented gradients [10], and combining with other detection
schemes based on intrinsic signal statistics/patterns to provide
strong cues when image keypoints and features are not suffi-
cient.

APPENDIX

We provide the detailed derivation of the least squared estima-
tion of the affine transform parameters using matched keypoint
pairs in Section III-C. First, taking derivative of the objective
function in (2) with regards to , we have

Setting this to zero, we obtain
, where and are the mean vectors for

Fig. 8. Top left image is a forgery whose duplicated region is not detected by
our method due to the lack of reliable keypoints. The other three images are un-
tampered, but the intrinsic repetitive patterns are regarded as duplicated regions
by our method.
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and . Furthermore, using
the above result, we can further reduce the objective function to

where and are centered data vectors.
Taking derivative with regards to , we have

After setting to zero, .
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