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Contrast Enhancement Estimation for Digital Image
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Inconsistency in contrast enhancement can be used to expose image forgeries. In this work, we describe a

new method to estimate contrast enhancement operations from a single image. Our method takes advantage

of the nature of contrast enhancement as a mapping between pixel values, and the distinct characteristics it

introduces to the image pixel histogram. Our method recovers the original pixel histogram and the contrast

enhancement simultaneously from a single image with an iterative algorithm. Unlike previous works, our

method is robust in the presence of additive noise perturbations that are used to hide the traces of contrast

enhancement. Furthermore, we also develop an effective method to detect image regions undergone contrast

enhancement transformations that are different from the rest of the image, and use this method to detect

composite images. We perform extensive experimental evaluations to demonstrate the efficacy and efficiency

of our method.
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Scene anomaly detection; • Applied computing→ Evidence collection, storage and analysis;
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1 INTRODUCTION
The integrity of digital images has been challenged by the development of sophisticated image

editing tools (e.g., Adobe Photoshop), which can modify contents of digital images with minimal

visible traces. Accordingly, the research field of digital image forensics [11] has experienced rapid

developments in the past decade. Important cues to authenticate digital images and detect tamper-

ing can be found from various steps in the image capture and processing pipeline, and one of such

operations is contrast enhancement. Contrast enhancement is a nonlinear monotonic function of

pixel intensity, and it is frequently exploited to enhance image details of over-or under-exposed

regions. Commonly used contrast enhancement transforms include gamma correction, sigmoid
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stretching and histogram equalization [13]. In digital image forensics, recovering contrast enhance-

ment is useful to reconstruct the processing history of an image. Also, detecting regions undergone

different contrast enhancement can be used to expose a composite image.

There have been several methods to estimate contrast enhancement from an image [5, 6, 10, 16,

19, 20, 23]. However, these methods have two main limitations. First, most of these algorithms are

designed for a specific type of contrast enhancement transform (e.g., gamma correction). Second,

these algorithms in general lack robustness with regards to noise perturbations that are added to

hide the traces of contrast enhancement [1, 7].

In this work, we describe a general method to recover contrast enhancement from a single image.

Our method exploits the observations that: (i) although contrast enhancement is typically a nonlin-

ear function of pixel values, it is a linear transformation of pixel histogram; (ii) pixel histogram after

contrast enhancement tends to have more empty bins; and (iii) the effect of additive noise corre-

sponds to a convolution of pixel histogramwith the noise distribution. Accordingly, we formulate

the estimation of contrast enhancement as an optimization problem seeking recovered pixel his-

togram to be consistent with the observed pixel histogram after contrast enhancement transform

is applied, while with minimum number of empty bins. The original problem is intractable, so we

further provide a continuous relaxation and an efficient numerical algorithm to solve the relaxed

problem. Our formulation can handle the estimation of parametric and nonparametric contrast en-

hancement transforms, and is robust to additive noise perturbations. Furthermore, we also develop

an effective method to detect regions undergone contrast enhancement operation different from

the remaining of the image, and use this method to detect composite images generated by splicing.

A preliminary version of this work was published in [22]. The current work extends our pre-

vious method in several key aspects. First, this work uses a more stable property of contrast

enhancement on pixel histogram based on the number of empty bins, which leads to a new type

of regularizer in the optimization objective. Furthermore, we include a new optimization method

based on the Wasserstein distance and augmented the original algorithm to handle additive noises.

The optimization of the overall problem is solved with a more efficient projected gradient descent

method.

The rest of this paper is organized as follows. In Section 2, we review relevant previous works. In

Section 3, we elaborate on the relation of contrast enhancement and pixel histogram, and describe

our algorithm estimating parametric and nonparametric contrast enhancement transforms. In

section 4, we present the experimental evaluations of the global contrast enhancement estimation

algorithm. Section 5 focuses on a local contrast enhancement estimation algorithm based on the

global contrast enhancement estimation algorithm and graph cut minimization. Section 6 concludes

the article with discussion and future works.

2 BACKGROUND AND RELATEDWORKS
2.1 Contrast Enhancementas Linear Operator on Pixel Histogram
Our discussion is for gray-scale images of b bit-pixels. A (normalized) pixel histogram represents

the fractions of pixels taking an individual value out of all 2
b
different grayscale values, and is

usually interpreted as the probability distribution of a random variable X over {0, · · · ,n = 2
b − 1}.

A contrast enhancement is a point-wise monotonic transform between pixel values i, j ∈
{0, · · · ,n}, defined as i = ϕ(j) := [m(i)], wherem(·) : [0,n] 7→ [0,n] is a continuous non-decreasing
function, and [·] is the rounding operation that maps a real number to its nearest integer.

There are two categories of contrast enhancement transforms. A parametric contrast enhance-
ment transform can be determined with a set of parameters. An example of parametric contrast

enhancement transform is gamma correction,
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j = ϕγ (i) :=

[
n

(
i

n

)γ ]
, (1)

where γ ≥ 0 is the parameter controlling the shape of the transform. Another often-used parametric

contrast enhancement transform is sigmoid stretching,

j = ϕα,µ (i) :=

n
©«
S

(
i−nµ
nα

)
− S

( −nµ
nα

)
S

(
n(1−µ)
nα

)
− S

( −nµ
nα

) ª®®¬
 , (2)

where α > 0 and µ ∈ [0, 1] are two parameters, and S(x) = 1

1+exp(−x ) is the sigmoid function. On

the other hand, a nonparametric contrast enhancement transform affords no simple parametric

form and has to be specified for all i ∈ {0, · · · ,n}. An example of the nonparametric contrast

enhancement transform is histogram equalization, which maps the pixel histogram of an image to

match a uniform distribution over {0, · · · ,n}.
Consider two images I and Ĩ , with the pixels of Ĩ obtained from those of I using a contrast

enhancement transform ϕ. We introduce two random variables X ,Y ∈ {0, · · · ,n} as the pixels
of I and Ĩ , hence Y = ϕ(X ). Using the probability interpretation of pixel histogram, the contrast

enhancement transform between X and Y induces the conditional probability distribution Pr(Y =
j |X = i) = 1j=ϕ(i), where 1c is the indicator function whose output is 1 if c is true and zero otherwise.
As such, we have

Pr(Y = j) =
∑

i 1j=ϕ(i) Pr(X = i). (3)

We can model a pixel histogram as a vector on the n-dimensional probability simplex, i.e., h ∈
∆n+1

:= {h|h ⪰ 0, 1T h = 1} with hi+1 = Pr(X = i) for i = 0, · · · ,n, and a contrast enhancement ϕ
as an (n + 1) × (n + 1) matrix Tϕ :

(
Tϕ

)
i+1, j+1

= 1j=ϕ(i). Note that T has nonnegative entries, and

each column sum to one, i.e., T⊤1 = 1. With vector h and matrix Tϕ , we can rewrite Eq. (3) as

˜h = Tϕh, (4)

i.e., the pixel histograms of I and Ĩ are related by a linear transform, even though ϕ is a nonlinear

function of X .

2.2 Previous Works
Except for the case of identity, a contrast enhancement will map multiple input values to a single

output value (correspondingly, there will be values to which no input pixel value maps), a result

from the pigeonhole principle [14]. This leaves “peaks and gaps” in the pixel histogram after a

contrast enhancement transform is applied, which have inspired several works to develop statistical

features to detect the existence of contrast enhancement in an image. The works in [19, 20] describe

an iterative algorithm to jointly estimate a gamma correction, based on a probabilistic model of

pixel histogram and an exhaustive matching procedure to determine which histogram entries are

most likely to correspond to artifacts caused by gamma correction. The statistical procedure of [19]

is further refined in [16] to determine if an image has undergone gamma correction or histogram

equalization. However, all these methods aim only to detect the existence of certain contrast

enhancement in an image, but not to recover the actual form of the contrast enhancement function.

There are several methods that can also recover the functional form of contrast enhancement.

The method in [10] recovers gamma correction from an image using bi-spectra. The method of [5]

uses the features developed in [20] to recover the actual gamma value by applying different gamma

values to a uniform histogram and identifying the optimal value that best matches the observed

pixel histogram features. This work is further extended in [6] to recover contrast enhancement of

a JPEG compressed image. Our previous work [23] uses the increased non-smoothness of pixel

histogram to recover the corresponding contrast enhancement transform. However, most of the

previous methods require knowledge of the type of contrast enhancement a priori. Another common
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date: 2017.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

00:4 Longyin Wen, Honggang Qi, and Siwei Lyu

Fig. 1. Effects of contrast enhancement on the pixel histogram. The four panels correspond to the pixel histograms
of (i) the original image, (ii) the image after a gamma correction with γ = 1.5, (iii) the image after a gamma
correction with γ = 0.5, and (iv) the image after histogram equalization, each panel is marked with the number of
empty bins in the corresponding pixel histogram.
problem of these previous methods is that they are not robust with regards to additive noise that is

added to intentionally hide the trace of contrast enhancement[1, 7].

Methods for local contrast enhancement detection have also been studied in several previous

works[6, 16, 19]. However, most of these works are limited in that they can only recover at the level

of image blocks of large sizes. The high computational cost is one reason why existing methods

cannot be used for pixel-level localization of regions with different contrast enhancement transforms.

3 METHOD
In this section, we describe our method for contrast enhancement estimation from an image. We

start with a property of the pixel histogram of contrast enhancement transformed image. This

is then utilized to formulate the contrast enhancement estimation problem as an optimization

problem, and we further provide details of the solution algorithm.

3.1 Pixel Histogram After Contrast Enhancement

Fig. 2. The minima of changes in
the number of empty bins over
2000 natural images after gamma
corrections with γ value in the
range of {0.1 : 0.01 : 2.5} are ap-
plied. Note the prominent trend of
increasing number of empty bins
after contrast enhancement is ap-
plied to these images. See more
details in the texts.

The effect of a contrast enhancement transform is a redistribution

of pixel values in an image. In particular, the number of empty bins

in the pixel histogram does not decrease after a contrast enhance-

ment transform is applied to an image. This is formally described

in the following result.

Theorem 1. Define Ω(h) =
∑n

i=1
1hi=0, i.e., Ω(h) counts the num-

ber of empty bins in h, then we have Ω(h) ≤ Ω(Tϕh).

Proof of this result can be found in the Appendix. Albeit this is a

simple observation, it holds regardless of the image or the contrast

enhancement transform. Fig.1 demonstrate this effect using an 8-bit

grayscale image as an example. The four panels of Fig.1 correspond

to the pixel histograms of (i) the original image, (ii) the image after

a gamma correction with γ = 1.5, (iii) the image after a gamma

correction with γ = 0.5, and (iv) the image after histogram equal-

ization, each with the number of empty bins annotated. Note the

significant increment of the number of empty bins in the contrast

enhancement transformed images (e.g., the number of empty bins increases from 9 to 126 in the

case of histogram equalization).

Fig.2 corresponds to a quantitative evaluation. Specifically, we choose 2, 000 natural images from

RAISE dataset[9]
1
, and apply gamma corrections with γ value in the range of {0.1 : 0.01 : 2.5}

1
The original images are in the 12-bit or 14-bit uncompressed or lossless compressed NEF or TIFF format. We downloaded

the full RAISE dataset but use a random subset of 2, 000 images for testing our algorithm. We use the green channel of the

RGB color image as in [6]. The pixel histograms are vectors of 2
12 = 4, 096 and 2

14 = 16, 384 dimensions, respectively.
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to each image. We then compute the difference between the number of empty bins of the gamma

corrected image with that of the original image (therefore it is always zero for γ = 1 which

corresponds to the original image). We then show the minima of these differences over the 2, 000

images in Fig.2. Note that these minima are positive, indicating a prominent trend of increasing

number of empty bins after contrast enhancement transform is applied.

3.2 Effect of Additive Noise

Fig. 3. Effects of additive noise on the pixel his-
togram after contrast enhancement is applied.
(Left): pixel histogram of an image after gamma
correction is applied, (Right) The same pixel his-
togram after white Gaussian noise of standard de-
viation 1.0 is added.

The change in the number of empty bins of pixel

histogram caused by contrast enhancement may

be obscured by adding noise to the contrast en-

hancement transformed image (see Fig.3), a fact em-

ployed in recent anti-forensic techniques aiming

at hiding the trace of contrast enhancement[1, 7].

However, this artifact introduced by additive noise

can be precisely modeled using the same mathe-

matical framework. Consider two random variables

X ,Y ∈ {0, · · · ,n} corresponding to pixel values

from two images I and Ĩ , withY = ϕ(X )+Z , whereZ
is a real-valued white noise with probability density

function p(z) and independent of X . Using relations

of the probabilities, we have

Pr(Y = j) =
∑

i Pr(Y = j |X = i) Pr(X = i)
=

∑
i Pr

(
Z ∈ [j − ϕ(x) − 1

2
, j − ϕ(x) + 1

2
)
)
hi+1

=
∑

i,k Pr

(
Z ∈ [j − k − 1

2
, j − k + 1

2
)
)
1(ϕ(i) = k)hi+1

=
∑

i,k Pr

(
Z ∈ [j − k − 1

2
, j − k + 1

2
)
)
(Tϕ )i+1,k+1hi+1

=
∑

i,k

(∫ j−k+ 1

2

j−k− 1

2

p(z)dz

)
(Tϕ )i+1,k+1hi+1

We introduce a new matrix

R j+1,k+1 =

∫ j−k+ 1

2

j−k− 1

2

p(z)dz,

which has a Toeplitz structure and can be obtained in closed form for certain type of noise. For

instance, if Z is zero-mean Gaussian noise with standard deviation σ , elements of matrix R are

explicitly given as:

R j+1,k+1 = erf

(
j − k + 1

2

σ

)
− erf

(
j − k − 1

2

σ

)
,

erf(z) =
∫ u
−∞

1√
2π
e−

τ 2

2 dτ is the cumulative density function of the standardized Gaussian random

variable. Subsequently, we assume R is known or can be obtained from images using methods of

blind noise estimation, e.g., [17, 24]. Considering the noise effect, the relation between the pixel

histograms of the original image and the image after contrast enhancement is applied and white

noise added can be expressed as

˜h = RTϕh, (5)

which will be used subsequently to recover the contrast enhancement.

3.3 Estimating Contrast Enhancement from Pixel Histogram
The problem we are to solve is to recover the unknown contrast enhancement transform ϕ and

the pixel histogram of the original image h simultaneously, using only the pixel histogram of the

observed image
˜h.
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Weuse theWasserstein distance[21] (also known asMallows distance or earthmover’s distance[15]

and subsequently referred to asW1 distance) to measure distances between two histograms pixel

histograms, h, ˜h ∈ ∆n+1
, defined as

W1( ˜h, h) =
∑

i
��CY∼ ˜h(i) − CX∼h(i)

�� = F ˜h − Fh


1

, (6)

where CX∼h(i) = Pr(X ≤ i) =
∑i+1

j=1
hj is the cumulative distribution of h. Note that CX∼h can be

computed as Fh, where F is the lower triangular matrix with all elements equal to one.

Using theW1 distance between two pixel histograms and the observation that contrast enhance-

ment leads to non-smooth pixel histogram, we can formulate contrast enhancement estimation as

the following optimization problem

min

h,ϕ
W1( ˜h,RTϕh) + λΩ(h), s.t. h ∈ ∆n+1,ϕ(i) ≤ ϕ(i + 1), i = 0, · · · ,n − 1. (7)

The first term in the objective function corresponds to relations of pixel histogram of image with

and without contrast enhancement in Eq.(5). The second term reflects the observation in Section

3.1 that pixel histogram of the original image tend to have fewer number of empty bins. Parameter

λ controls the contribution of the two terms in the objective function. The constraint enforces h to

be a legitimate pixel histogram and ϕ to be a monotonic mapping.

We solve (7) using a block coordinate descent scheme [2] by alternating minimizing the objective

with regards to h and ϕ with the other fixed. The estimation of h with fixed ϕ reduces to a convex

optimization problem [3], and we describe its solution in Section 3.3.1. The estimation of ϕ with

fixed h is then given in Section 3.3.2 for the parametric case and 3.3.3 for the nonparametric case.

3.3.1 Recovering Pixel Histogram with Known Contrast Enhancement. Using the equivalent

definition of Wasserstein distance given in Eq.(6), the problem of finding optimal h with known ϕ
is obtained from (7) as

min

h

F ˜h − FRTϕh


1

+ λΩ(h) s.t. 1T h = 1, h ⪰ 0. (8)

Eq.(8) is difficult to solve because (i) theW1 distance uses the non-differentiable ℓ1 norm and (ii)

Ω(h) is not a continuous function. To proceed, in this work, we replace the non-differentiable ∥ · ∥1
using a generalization of the result in [18] (Theorem 2, proof in Appendix 6).

Theorem 2. For x ∈ Rn , we have
∥x∥1 = min

z⪰0

1

2

(
x⊤D(z)−1x + 1⊤z

)
, and |x| = argmin

z⪰0

1

2

(
x⊤D(z)−1x + 1⊤z

)
. (9)

D(z) denotes a diagonal matrix formed from vector z as its main diagonal, and |x| as the vector formed
from the absolute values of the components of x.

Furthermore, note that for ρ > 0, we have e−ρc ≥ 1c=0 with equality holding iff c = 0, and for

c > 0, e−ρc → 0 with ρ →∞. This means that we can use e−ρh, where the exponential is applied
to each element of vector h, as a continuous and convex surrogate to the non-continuous function

in Ω(h).
Using these results, we can develop an efficient numerical algorithm. First, we introduce an

auxiliary variable u ⪰ 0 to replace the ℓ1 norms in (8), and use the scaled exponential function to

reformulate the problem as

min

h,u
L(h, u), s.t. 1T h = 1, h ⪰ 0, u ⪰ 0, (10)

with

L(h, u) =
1

2

(
˜h − RTϕh

)⊤
F⊤D(u)−1F

(
˜h − RTϕh

)
+

1

2

1⊤u + λe−ρh.

This is a constrained convex optimization problem for (h, u). While in principle we can use off-

the-shelf convex programming packages such as CVX [8] to solve this problem, the potentially
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high dimensionality of h (for instance for 14-bit image h is of 16, 384 dimensions) requires a more

efficient algorithm designed for our problem. Our algorithm is provided in the pseudo-code in

Algorithm 1 and the details of the derivation of this algorithm can be found in the Appendix.

ALGORITHM 1: Optimization of (8)

initialize h0 and u0, t ← 0

while not converge do
ht,0 ← ht , τ ← 0

while not converge do

M ←
(
FRTϕ

)⊤
D(ut )−1

(
FRTϕ

)
b←

(
FRTϕ

)⊤
D(ut )−1F ˜h

△hτ ← Mht,τ − b − λρe−ρht,τ ht,τ
ht,τ+1 ← P∆n+1

(
ht,τ −

η0

τ+1
△hτ

)
τ ← τ + 1

end while
ht+1 ← ht,τ , ut+1 ←

���F (
˜h − RTϕht+1

)���
t ← t + 1

end while

3.3.2 Estimating Parametric Contrast En-
hancement. For a parametric contrast enhance-

ment transform that can be determined by small

set of parameters θ , e.g., gamma correction (1)

(whereθ = γ ) and sigmoid stretching (2) (where

θ = (α , µ)), even though the parameters are con-

tinuous, the discrete nature of contrast enhance-

ment as transforms between integers means

that there are only finite number of distinguish-

able parameter values. We illustrate this point

in the case of gamma correction. Consider the

2D lattice {0, · · · ,n} × {0, · · · ,n}, the graph of

gamma correction corresponds to a path over

grid points (i, j) starting from (0, 0) and ending

at (n,n). This path is monotonic, i.e., it never
dips down. Furthermore, for γ < 1, the path

stays on or above the diagonal, while for γ > 1,

the path stays on or below the diagonal. These

properties give rise to only a finite set of distinguishable γ values, (i.e., values leading to different

gamma correction transforms) as the following result shows (proved in Appendix).

Theorem 3. All γ ∈ [γ
i j
, γ̄i j ) for i, j ∈ {1, · · · ,n − 1} where

γ
i j
=

logn − log(j + 1

2
)

logn − log i
, γ̄i j =

logn − log(j − 1

2
)

logn − log i
.

leads to the same gamma correction curve. As such, the total number of distinguishable γ value is
bounded by (n − 1)2.

In practice, distinguishable parameter values are also limited by the numerical precision in which

they can be input in photo editing software, usually in the range of 10
−2

or 10
−3
.

ALGORITHM 2: Estimation of Parametric

Contrast Enhancement

for θ ∈ {θ1, · · · ,θm } do
compute L⋆(θ ) using Algorithm 1;

end for
return θ⋆ = argminθ ∈{θ1, · · · ,θm } L

⋆(θ )

On the other hand, optimal contrast enhancement pa-

rameters lead to a minimum of Eq.(10) across different pa-

rameter values. As the transformed pixel histogram will

be exactly the same as the observed histogram, thus the

first term will reach minimum (zero), while the original

histogram should have the minimum number of zero

bins. We denote the minimum of (10) corresponding to

contrast enhancement parameter θ as L⋆(θ ). These two
characteristics of parametric contrast enhancement, i.e.,

the finite number of distinguishable parameter values and the optimal value leading to the global

minimum of (10), suggest that the optimal parameter can be recovered by a grid search in the set of

plausible parameters. Specifically, given a search range of parameter values Φ = {θ1, · · · ,θm}, we
seek θ⋆ = argminθ ∈Φ L

⋆(θ ) as the optimal contrast enhancement parameter. This is the algorithm

we use for estimating parametric contrast enhancement. A pseudo code is given in Algorithm 2.

3.3.3 Estimating Nonparametric Contrast Enhancement. In the case where the contrast enhance-

ment transform does not afford a parametric form, with the pixel histogram of the original image
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obtained using the algorithm given §3.3.2, we estimate ϕ directly. Dropping irrelevant terms from

the overall optimization problem (7), this reduces to the following problem

min

ϕ
W1( ˜h,RTϕh) s.t. ϕ(i) ≤ ϕ(i + 1), i = 0, · · · ,n. (11)

To solve this problem, we first decouple pixel histogram before and after noise is added. To this

end, we introduce an auxiliary variable
ˆh and a parameter ξ to enforce the constraint

ˆh = Tϕh with

W1 distance, and rewrite the optimization problem as

min

ˆh,ϕ
W1( ˜h,R ˆh) + ξW1(ˆh,Tϕh) s.t. ˆh ∈ ∆n+1,ϕ(i) ≤ ϕ(i + 1), i = 0, · · · ,n. (12)

Using the block coordinate descent scheme, we solve (14) by alternating minimization of
ˆh and ϕ

with the other fixed until the guaranteed convergence is reached.

Optimizing ˆh This problem becomes

min

ˆh,ϕ

F ˜h − FR ˆh


1

+ ξ
F ˆh − FTϕh


1

s.t. 1T ˆh = 1, ˆh ⪰ 0. (13)

Following a similar procedure as for the solution of Eq.(8), we optimize (13) with an iterative

algorithm that uses the ℓ1 relaxation in Theorem 2 and projected gradient descent. We defer a

detailed derivation and algorithm to the Appendix.

Optimizingϕ.We use the equivalent definition ofW1 distance based on the cumulative distributions

(6), and the problem of solving ϕ reduces to

min

ϕ

n∑
i=0

���CX̂∼ˆh(i) − Cϕ(X )∼Tϕh(i)
��� s.t. ϕ(i) ≤ ϕ(i + 1), i = 0, · · · ,n. (14)

This is essentially the search for a monotonic transform between two random variables X and X̂

over {0, · · · ,n} with corresponding probability distributions (histograms) h and
ˆh, such that the

histogram of ϕ(X ) is as close as possible to that of X̂ .

ALGORITHM 3: Estimation of Nonpara-

metric Contrast Enhancement

while not converge do
update

˜h (8) using Algorithm 1;

update
ˆh (13) using Algorithm 4;

update ϕ (14) with (16);

end while

The problem of finding a transform that matches ran-

dom variable of one distribution to another is known as

histogram matching, the optimal solution of which can

be obtained from the cumulative distributions of the two

random variables [21]. Specifically, from the cumulative

probability distribution of h, CX∼h : {0, · · · ,n} 7→ [0, 1],
we define the corresponding pseudo inverse cumulative

distribution function [0, 1] 7→ {0, · · · ,n}, as

C−1

X∼h(j) = i if CX∼h(i − 1) < j ≤ CX∼h(i). (15)

The histogram matching transform is formed by applying the cumulative distribution function of h
followed by the pseudo inverse cumulative distribution function of

˜h (15),

ϕ⋆(i) = C−1

Y∼ ˜h
(CX∼h(i)). (16)

It can be shown that this function is monotonic and maps X ∼ h to ϕ⋆(X ) ∼ ˜h and leads to

the objective function in (14) to zero. We provide the pseudo code of the overall algorithm in

Algorithm 3.

4 EXPERIMENTAL EVALUATION
In this section, we report experimental evaluations of the contrast enhancement estimation method

described in the previous section. The images used in our experiments are based on N = 2, 000

grayscale images from the RAISE dataset[9]. The original images are in the 12-bit or 14-bit uncom-

pressed or lossless compressed NEF or TIFF format. We downloaded the full RAISE dataset but use

a random subset of 2, 000 images that are further cropped to the same size of 1000 × 800. We use
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the green channel of the RGB color image as in [6]. The pixel histograms are vectors of 2
12 = 4, 096

and 2
14 = 16, 384 dimensions, respectively. All subsequent running time statistics are based on a

machine of 3.2GHz Due Core Intel CPU and 16G RAM and unoptimized MATLAB code.

4.1 Parametric Contrast Enhancement Estimation
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Fig. 4. The relation between the value
of L⋆(γ , λ) and γ values, in the case of
contrast mapping in the form of sim-
ple gamma correction. The true γ value
in the two cases are 0.4 and 1.4, corre-
sponding to the global minima.

4.1.1 Gamma Correction. We first consider the estimation

of gamma correction transform. We choose γ value from the

range of {0.1 : 0.05 : 2.5}, with each γ value applied to all N
images to create sets of gamma corrected images. We imple-

ment the grid-search based algorithm (Algorithm 2 in §3.3.2)

using a probing range of {0.1 : 0.01 : 2.5} to recover the γ
values from these images. We use a stride of 0.01 as it is the

minimum numerical precision a user can specify a gamma cor-

rection in image editing tools. We choose parameter λ = 0.75

and ρ = 1 as we found the estimation results are not par-

ticularly sensitive to the values of these parameters. Unless

specified, we set the noise level to σ = 0.01. Fig.4 shows the

graph of L⋆(θ ) for the case of gamma correction. The curves

correspond to two different parameter values: γ = 0.4 and 1.4,
and the range of the searched γ values is set to [0.1, 1.8]with a

step size of 0.05. In both cases, the true γ values lead to global

minimums of L⋆(θ )2.
We use the estimation accuracy rate (AR) to quantify the estimation performance. For an error

threshold ϵ , Aϵ corresponds to the fraction of estimations that are within a relative error of ϵ .
Specifically, denoting the true parameter as γ⋆

and the estimated parameter as γi for each of the N
test images, AR is defined as

Aϵ =

∑N
i=1

1(|γi − γ⋆ | ≤ ϵ)

N
. (17)

For a given ϵ , higher AR Aϵ corresponds to better estimation performance. Subsequently, we report

A0, A0.01 and A0.05, corresponding to the cases when the estimation is exact, has a relative error

≤ 0.01 and has a relative error ≤ 0.05, respectively.

We apply our estimation algorithm and compare it with two previous works on gamma correction

estimation [6, 10]
3
. The results for A0, A0.01 and A0.05 for the full range of probing γ values are

shown in Fig.5. The bi-spectra based method of [10] demonstrates some stable estimation results for

γ value near 1.0, yet the performance deteriorates as γ deviates from 1.0. This may be due to the fact

that estimations of bi-spectral features become less reliable for more extreme γ values. The original

method of [6] is a classification scheme based on the empty-bin locations as classification features.

To apply it to the estimation problem, we build 250 classifiers corresponding to the probing range

of γ values, and output the γ value that corresponds to the largest classification score. Using only

the locations of the empty bins may not be sufficient to recover the γ value as many neighboring

γ values share similar empty bin locations. On the other hand, our method achieves significant

improvement in performance when comparing with those of the two previous works. We attribute

the improved estimation performance to that the optimization formulation of the problem better

captures characteristics of pixel histogram, with the Wasserstein loss reflects different locations

2
Similar observations have also been made on other types of parametric contrast enhancement transforms, such as sigmoid

stretching and cubic spline curves.

3
We use our own MATLAB implementation of these methods following the settings provided in the corresponding published

papers. We compared only with the results of [6] which improves on the earlier work from the same authors in [5].
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Fig. 5. Performance comparison of parametric contrast enhancement estimation methods for gamma correction,
the three plots corresponds to A0, A0.01 and A0.05, respectively.

t

Fig. 6. Performance comparison of nonparametric contrast enhancement estimation methods for histogram
equalization (top) and the freeform contrast enhancement curve (bottom), the three rows corresponding to plots
of Â0.01, Â0.05 and Â0.10, respectively.

of the empty bin, and the regularizer favoring smaller number of empty bins further reduces

uncertainty in determining the γ value. The average running time is 23.1 second per test image of

size 1000 × 800 pixels, as the algorithm iterates over 250 different gamma values.

actual α/µ estimated α estimated µ
(mean/std) (mean/std)

0.5 / -1.0 0.49 (0.01) -1.02 (0.01)

0.5 / 0.0 0.50 (0.02) 0.01 (0.01)

0.5 / 1.0 0.50 (0.01) 1.01 (0.02)

1.0 / -1.0 0.98 (0.02) -0.99 (0.01)

1.0 / 0.0 1.02 (0.04) 0.02 (0.03)

1.0 / 1.0 1.01 (0.02) 1.04 (0.03)

2.0 / -1.0 2.02 (0.03) -0.98 (0.02)

2.0 / 0.0 2.01 (0.03) 0.99 (0.03)

2.0 / 1.0 1.97 (0.02) 0.98 (0.01)

Table 1. Performances of estimating sigmoid stretching
on 100 test images with different (α , µ) values.

4.1.2 Sigmoid Stretching. The next exper-

iment tests the performance of our method

on the estimation of parameters of sigmoid

stretching, Eq.(2). To our best knowledge, there

is no previous method developed for the es-

timation of this parametric contrast enhance-

ment transform. To this end, we created test

images using the range of parameters (α , µ) ∈
{0.5, 1.0, 2.0} × {−1.0, 0.0, 1.0}, and our algo-

rithm performs a grid search in the range of

{0.2 : 0.01 : 2.5} × {−1.5 : 0.01 : 1.5}. The
results, as the averages and standard devia-

tions of the estimated (α , µ) values over the 100
test image, are listed in Table 1. Our method

is effective to recover the original contrast en-

hancement parameters. However, the two di-

mensional search space increase the running time to 15 seconds per image.

4.1.3 Robustness under Noise and JPEG. We further evaluate the robustness of our method in

the presence of noise and JPEG compression. We apply gamma correction with γ values randomly

sampled from the range [0.1, 2.5] to generate 2, 000 test images. Then, white Gaussian noises with
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zero mean and various levels are added to the gamma corrected image and then rounded to integral

pixel values. We further applied JPEG compression of different quality factors to the same set of

gamma corrected images.

Shown in Fig 7 are the performance evaluated with A0.05, which is the percentage of estimated γ
that fall in the range of ±0.05 of the ground truths, as well as comparisons with the methods of [10]

and [6]. Accuracies of all methods are affected by the additive noises and JPEG compression. But

in the case of noise, the performances of our method show less degradation in comparison with

those of the previous works because our method directly incorporate noise perturbations, while

the previous works are based on properties that are fragile in the presence of perturbations. On the

other hand, in the presence of JPEG compression, our method achieves comparable performance

with the method of [6] that is specifically designed to model the artifacts introduced by JPEG to an

image after contrast enhancement.

4.2 Nonparametric Contrast Enhancement

Fig. 7. Robustness under additive Gaussian noise
and JPEG compression for the estimation of gamma
correction evaluated by A0.05.

We further test our methods to recover two dif-

ferent types of nonparametric contrast enhance-

ment transforms – histogram equalization and a

nonparametric contrast enhancement created by cu-

bic spline interpolation of manually selecting key

points. The latter is analogous to free-form contrast

enhancement transform in photo-editing software

(e.g., the Curve tool in Photoshop). We applied his-

togram equalization and interpolated contrast en-

hancement transform to create 100 test images of

each type.

Because of the nonparametric nature of the con-

trast enhancement transform, we measure the per-

formance using a slightly different metric based on

the relative root mean squared error (RMSE) be-

tween ϕ⋆
and ϕk to evaluate the performance. De-

note the true contrast enhancement transform as

ϕ⋆
and the estimated contrast enhancement transform using each test image as ϕk , for an error

threshold ϵ , we define the accuracy rate as Âϵ =
1

N
∑N

k=1
1
(
∥ϕk−ϕ⋆ ∥2
∥ϕ⋆ ∥2

≤ ϵ
)
.

We implemented our algorithm to recover nonparametric contrast enhancement as described

in Algorithm 3 in Section 3.3.3, and set λ = 0.75 and ξ = 10. In practice, we observe that the

algorithm usually converges within less than 10 iterations. Fig.8 demonstrate the convergence

of one estimated contrast enhancement transform, with the original transform obtained from

interpolating manually chosen key points using cubic splines. As it shows, after 5 iterations of the

algorithm, the estimated transform is already very close to the true transform.

We compare it with the only known previous work for the same task in [19], which is based on an

iterative and exhaustive search of pixel histogram that can result in the observed pixel histogram of

an image after the contrast enhancement is applied
4
.

iter #1 iter #3 iter #5

Fig. 8. Convergence of the estimated nonparametric free-
form contrast enhancement transform.

Fig.6 shows the performance of both algo-

rithms measured by Â0.01, Â0.05 and Â0.10, with

perturbations from additive white Gaussian

4
Code of this work is not made public by the authors, so the results are based on our own implementation using MATLAB
following the descriptions in [19].
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noise of different strengths. As these results

show, the estimation performance with our

method is consistently better than that of [19].

Furthermore, our method takes about 2.2 sec-

onds to run on an 1000 × 800 image and on

average it is 5−10 times faster than the method

of [19], which relies on an exhaustive search.

More importantly, the performances of the

method in [19] seem to be strongly affected by noise and compression, this is in direct contrast to

our method, which can take such perturbation into consideration to become more robust.

5 LOCAL CONTRAST ENHANCEMENT ESTIMATION
A composite image can be created by replacing a region in one image with a region from a different

image. If the host and the donor images were captured under different lighting environments, an

image forger can perform contrast enhancement so that lighting conditions match across the com-

posite image. Image forgeries created in this manner can thus be revealed with inconsistent contrast

enhancement transforms across different regions using a local contrast enhancement estimation

method.

A straightforward approach would be to apply the global contrast enhancement detection method

to non-overlapping rectangular blocks of pixels [6, 16, 19]. However, this simple method has several

problems. First, due to the smaller number of pixels in each block, it is difficult to obtain a reliable

estimation of the contrast enhancement transform. Second, this simple approach does not take into

consideration that adjacent blocks are likely to have undergone the same contrast enhancement. The

third problem with these methods is that, to avoid long running time, these methods are only run

on non-overlapping blocks and obtain block level localization, while for practical forensic analysis it
is desirable to have pixel level localization of regions undergone different contrast enhancement. To

improve on these aspects, in this section, we describe a new local contrast enhancement estimation

method based on our global estimation method, but embed it in an energy minimization formulation

for a more effective and efficient local contrast enhancement estimation at the pixel level.

5.1 Energy Minimization
We segment an image intom overlapping blocks, {I1, · · · , Im}, and denote N (k) ⊆ {1, · · · ,m} as
the indices of blocks that are spatial neighbors of block Ik based on a 4-connected neighborhood

system. We use an operatorH(I ) to denote the procedure of obtaining pixel histogram from an

image region I .
We assume that there are two regions in the image undergone two different and unknown

contrast enhancement transforms,ϕ0 andϕ1, and associate each blockwith a binary labelyk ∈ {0, 1}:
yk = 0 indicating that ϕ0 is applied to Ik and yk = 1 indicating Ik has contrast enhancement ϕ1

5
.

Our algorithm obtains estimation of ϕ0 and ϕ1 and image regions to which they are applied

simultaneously, which is formulated as minimizing the following energy function with regards to

ϕ0,ϕ1 and labels {yk }
m
k=1

: ∑
k

Eyk (Ik ) + β
∑
k

∑
k ′∈N(k)

|yk − yk ′ |. (18)

5
The subsequent algorithm can be readily extended to the case of more than two regions by replacing the binary label with

multi-valued labels.
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Fig. 9. Local contrast enhancement estimation for tampering detection. (a1, b1, c1, d1): Four examples of the
manipulated images created from the NIMBLE dataset. (a2, b2, c2, d2): Ground truth masks of the spliced regions.
(a3,b3,c3,d3)): The detection results with black and white corresponding to regions with label 0 and 1.
The first term in Eq.(18) is the unary energy or data term for the two values of the label, which is

defined as

E0(I ) = minh∈∆n+1 log

(
W1(H(I ),RTϕ0

h) + λΩ(h)
)

E1(I ) = minh∈∆n+1 log

(
W1(H(I ),RTϕ1

h) + λΩ(h)
)
.

(19)

Note that the unary energy is obtained as the result of optimizing Eq.(8) assuming known contrast

enhancement, thus it can be computed with Algorithm 1.

The second term in Eq.(18), β
∑

k
∑

k ′∈N(k ) |yk − yk ′ |, corresponds to the binary energy that

penalizes differences of label assignments to neighboring blocks. It reflects the assumption that the

same contrast enhancement is applied to an extended region in the image that subsumes many

neighboring blocks. Parameter β is used to balance the numerical contribution of the unary and

binary energy in the overall energy function (we use β = 0.1 in the subsequent experiments).

The minimization of Eq.(18) is a mixed optimization problem with discrete labels and continuous

functions, and we solve it by an iterative block coordinate descent algorithm that alternates between

the optimization of (ϕ0,ϕ1) and {yk }
m
k=1

with the other set of variable fixed.

Optimizing {yk }mk=1
. With fixed ϕ0 and ϕ1, the unary energy in Eq.(19) can be computed with

Algorithm 1. The energy function is a sub-modular function of the binary labels {yk }
m
k=1

, which

can be minimized using the graph cut algorithm [4].

Optimizing (ϕ0,ϕ1). The update for ϕ0 and ϕ1 with fixed cluster labels proceeds as re-estimating

ϕ0 and ϕ1 using the union of all pixels in blocks with the corresponding label equal to 0 and 1,

respectively, as

ϕ0 ← argminϕ minhW1(H(∪k :yk=0Ik ),RTϕ0
h) + λΩ(h)

ϕ1 ← argminϕ minhW1(H(∪k :yk=1Ik ),RTϕ0
h) + λΩ(h) (20)

This is implemented as first collecting pixel histogram on these blocks, then apply Algorithm 4

in Section 3.3.3 to recover the contrast enhancement transform
6
. Compared to previous methods

that are based on single image blocks, this increases the number of pixels in the estimation of pixel

histogram and thus improves the stability of the estimation.

5.2 Experimental Evaluation
We perform experimental evaluations of the local contrast enhancement estimation algorithm using

a set of 500 composite images with ground truth masks of the spliced regions. These images are a

subset of the NIMBLE Challenge dataset provided by NIST for evaluating existing image forensic

methods
7
. These images were generated by composing different regions from donor images and

pasted into the tampered image. The typical size of the tampered region is about 15−35% of the size

6
We did not use the grid-search based Algorithm 3 to handle the parametric contrast enhancement as in practical scenarios

we usually do not have the knowledge of the types of contrast enhancement involved.

7
These images can be downloaded from https://mig.nist.gov/MediforBP/MediforBPResources.html.
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of the original images. We applied different contrast enhancement transforms to the spliced regions.

Because the masks of the spliced regions of these composite images are provided, we generate

locally contrast enhancement transformed images by using taking the tampered region then applied

contrast enhancement operations to the tampered regions. The NIMBLE images are in JPEG format

and to avoid introducing double-JPEG artifact, we compress the resulting image with the same JPEG

qualities. To ensure diversity of the applied contrast enhancement, we choose from four different

cases, including gamma correction, sigmoid stretching, histogram equalization and monotonic cubic

spline curve with hand picked control points. Four examples of the manipulated images are shown in

the left column of Fig.9, with the ground truth masks of spliced region shown in the middle column.

Fig. 10. ROC curve of the spliced region de-
tection based on the contrast enhancement de-
tection method. The Area under ROC (AUC)
is 72.5%.

We implement the local contrast enhancement esti-

mation algorithm described in the previous section. We

try to simulate a situation where the specific form of

contrast enhancement is unknown, so we use Algorithm

4 in Section 3.3.3 and ignore the fact that some of the

contrast enhancements have parametric form. The size

and stride of these blocks determine the reliability of the

estimated contrast enhancement transforms and the accu-

racy in locating the spliced regions in a composite image.

Empirically, we found block size of 50 × 50 pixels with

overlapping strides of 2 pixels to provide a good tradeoff

of running efficiency and estimation accuracy, so they

are used throughout our subsequent experiments.

The detection results on the four examples given in the leftmost column of Fig.9 are shown

in the corresponding panels on the right, with black and white corresponding to regions with

label 0 and 1. To quantitatively evaluate the results, we use the region detection ratio (RDE) and
region false positive ratio (RFP ) to measure the accuracy of the recovered region undergone the

same contrast enhancement transform. Specifically, with RD and RT corresponding to the detected

and true region undergone ϕ0, respectively, with |R | representing the area of an image region R,
we define DE = |RT ∩ RD |/|RT |, FP = 1 − |RT ∩ RD |/|RD |. Note that these two rates vary as the

threshold that we use to generate the binary mask. To evaluate the performance, we show the ROC

curve in Fig.10 averaged over the 500 images from the NIMBLE dataset. The Area under ROC of

this plot is 72.5%. On the whole image level, for all 500 images there are more than 50% of the

spliced region detected. As these results show, our method is capable of recovering the majority of

the spliced regions. The averaged running time over a 2, 000 × 1, 500 image is about 56.2 seconds

on a machine of 3.2GHz Due Core Intel CPU and 16G RAM and MATLAB implementation of the

algorithm.

On the other hand, we also noticed that large continuous regions with few pixel values due

to large monotone or insufficient exposure can lead to false positive or mis-detections. The pixel

histogram of these areas are usually sparse and a contrast enhancement transform just move bins

around without changing the number of empty bins significantly. A future work is to identify such

regions based on their pixel histogram and exclude them from the estimation procedure.

6 CONCLUSION
In this work, we describe a new method to estimate contrast enhancement from images, taking

advantage of the nature of contrast enhancement as a mapping between integral pixel values and the

distinct characteristics it introduces to the pixel histogram of the transformed image. Our method

recovers the original pixel histogram and the applied contrast enhancement simultaneously with an
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efficient iterative algorithm, and can effectively handle perturbations due to noise and compression.

We perform experimental evaluation to demonstrate the efficacy and efficiency of the proposed

method. By examining local areas in the image, we also show that using this method, we can detect

spliced image regions that have undergone different contrast enhancement transformations.

There are several shortcomings to the current method that provide directions in which we would

like to further improve the current work in the future. First, we can further improve the robustness

of the current algorithm robust with regards to JPEG compressions with different quality factors,

and we are investigating modeling JPEG compression using similar mathematical framework and

handling them as in [6, 12]. Second, the current localization algorithm cannot effectively handle

large image regions with monotone content or that are over or under exposure. Such areas lead

to unstable estimations and should be opt-outed from the analysis. Third, our current method is

based on the assumption that contrast enhancement operations are among the last manipulations

performed on the image or image regions, such that the traces they leave in the pixel histogram are

still significant to be exposed. This is certainly a strong assumption that may not hold in actual

image manipulations. Therefore, we will further improve the global and local estimation method

to efficiently work in a real forensic contexts where the quality factors and processing orders are

unknown a priori.

Acknowledgement. This work is partially supported by the US DARPA Media Forensic (MediFor)

Program and National Science Foundation of China Research Grant (#61771341). Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the DARPA and NSF.

APPENDICES
Proof of Theorem 1. We consider a non-empty bin in the pixel histogram of an image. As the

contrast enhancement transform transports each bin as a whole (i.e., no splitting of bins), there

are only two situation can occur: either this bin becomes another individual non-empty bin in the

contrast enhancement transformed image, or it is mapped to a location other bins are also mapped

to. In either case, the number of non-empty bins will not increase, and correspondingly the number

of empty bins in the pixel histogram after contrast enhancement is applied does not decrease. On

the other hand, the strict inequality does not hold, as if we have a monotone image with a single

distinct pixel value, any contrast enhancement will only create another monotone image, in which

case the number of empty bins remains the same.

Proof of Theorem 2. First, for x ∈ R, we have |x | = minz≥0

1

2

(
x 2

z + z
)
= argminz≥0

1

2

(
x 2

z + z
)
,

since for x , 0, differentiating the objective with regards to z and setting results to zero give

1

2

(
− x 2

z2
+ 1

)
= 0⇒ z = |x |, and for x = 0 the obvious optimal solution is z = 0. Using this result,

we have

∥x∥1 =
∑n

i=1
minzi ≥0

1

2

(
x 2

i
zi
+ zi

)
= minzi ≥0

∑n
i=1

1

2

(
x 2

i
zi
+ zi

)
= minz⪰0

1

2

(
x⊤D(z)−1x + 1⊤z

)
.

And so does the argmin part of the result.

Derivation of Algorithm 1. We solve (10) with a block coordinate descent sub-procedure by

iterating ht+1 ← argmaxh L(h, ut ) and ut+1 ← argmaxu L(ht+1, u) until convergence. The overall
algorithm minimizing (8) is summarized in pseudocode in Algorithm 1.

Optimizing h: fixing ut and dropping irrelevant terms, minimizing h reduces to the following

constrained nonlinear convex optimization problem

min

h

1

2

h⊤Mh − b⊤h + λe−ρh s.t. 1T h = 1, h ⪰ 0, (21)
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where

M =
(
FRTϕ

)⊤
D(ut )−1

(
FRTϕ

)
b =

(
FRTϕ

)⊤
D(ut )−1F ˜h.

Eq.(21) can be efficiently solved with a projected gradient descent method [3]. Specifically, starting

with ht,0 = ht , our algorithm iterates between two steps:

△hτ ← Mht,τ − b − λρe−ρht,τ ht,τ ,
ht,τ+1 ← P∆n+1

(
ht,τ −

η0

τ+1
△hτ

)
.

(22)

The first step computes the gradient of the objective function. The second equation performs

a gradient descent update with step size
η0

τ+1
followed by a projection onto the n-dimensional

probability simplex P∆n+1 , which does not have closed-form but affords a very efficient algorithm

(see Appendix for a detailed description for completeness). The damping step size
η0

τ+1
guarantees

the convergence of the projected gradient descent algorithm [3], and we choose η0 = 1.2 in all our

subsequent experiments. This projected gradient descent algorithm usually converges within 5-10

steps. We take ht+1 = ht,τ at the convergence.

Optimizing u: when fixing ht+1 and dropping irrelevant terms, minimizing u becomes

min

u
c⊤D(u)−1c + 1⊤u s.t. u ⪰ 0,

where c = F
(

˜h − RTϕht+1

)
. Using Theorem 2, we obtain the optimal solution ut+1 = |c|.

Projection on probability simplex. The projection of a vector x on ∆n+1
is defined as the solution

to the following optimization problem

min

h

1

2

∥x − h∥2 s.t. h ≥ 0, 1⊤h = 1. (23)

Introducing Lagrangian multipliers y ≥ 0 and ξ , we form the Lagrangian of Eq.(23) as

L(h, y, ξ ) =
1

2

∥x − h∥2 − y⊤h − ξ (1⊤h − 1).

The corresponding KKT condition is then given by

h − x − y − ξ1 = 0 ( ∂∂hL(h, y, ξ ) = 0)

1⊤h = 1 (primal feasibility)

0 ≤ y⊥h ≥ 0 (complementary slackness).
It is not hard to see that the following is a solution satisfying the KKT condition

y = (x + ξ1)+ − (x + ξ1)
h = (x + ξ1)+
ξ = the solution of

∑n
i=1
(xi + ξ )+ = 1.

Here we define (x)+ = max(x , 0) is the hinge function.

Proof of Theorem 3. To count the total number of different gamma correction transforms, we

notice that if i is mapped to j by the gamma correction transform, we have

j −
1

2

≤ n

(
i

n

)γ
< j +

1

2

.

This turns into γ
i j
≤ γ < γ̄i j where

γ
i j
=

logn − log(j + 1

2
)

logn − log i
, γ̄i j =

logn − log(j − 1

2
)

logn − log i
.

We have (i) all γ
i j
and γ̄i j are distinct numbers and (ii) γ

i j
= γ̄i, j+1. As such, each different value

of γ
i j
signifies a change of gamma correction curves, while different values within the range

γ
i j
≤ γ < γ̄i j corresponds to the same curve. Therefore, the total number of gamma correction is

bounded by (n − 1)2.

Optimization of (13). Using Theorem 2, we introduce two auxiliary variables û ⪰ 0 and v̂ ⪰ 0 to

replace the ℓ1 norms in (13), and reformulate the problem as
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ALGORITHM 4: Optimization of (13)

initialize
ˆh0, û0 and v̂0, t ← 0

while not converge do
ˆht,0 ← ˆht , τ ← 0

while not converge do
M̂ ← (RF )⊤D(ût )−1RF + ξF⊤D(v̂t )−1F
ˆb← (RF )⊤D(ût )−1F ˜h + ξF⊤D(v̂t )−1FTϕh
△ ˆhτ ← M̂ ˆht,τ − ˆb
ˆht,τ+1 ← P∆n+1

(
ˆht,τ −

η0

τ+1
△ ˆhτ

)
, τ ← τ + 1

end while
ˆht+1 ← ˆht,τ , ût+1 ←

���F (
˜h − R ˆht+1

)���;
v̂t+1 =

���F (
ˆht+1 −Tϕh

)���; t ← t + 1;

end while

min

ˆh, û, v̂
L̂(ˆh, û, v̂) s.t. 1T ˆh = 1, ˆh ⪰ 0, û ⪰ 0, v̂ ⪰ 0, (24)

where

L̂(ˆh, û, v̂) =
1

2

1⊤û+
ξ

2

1⊤v̂+
1

2

(
F ˜h − FR ˆh

)⊤
D(û)−1

(
F ˜h − FR ˆh

)
+
ξ

2

(
F ˆh − FTϕh

)⊤
D(v̂)−1

(
F ˆh − FTϕh

)
.

Eq.(25) is a convex optimization problem jointly for (ˆh, û, v̂), and we solve it also with a block

coordinate descent scheme. Specifically, initializing
ˆh0, û0 and v̂0, we find the optimal solution to it

by iterating the following steps until convergence

• ˆht+1 ← argmaxˆh L̂(
ˆh, ût , v̂t );

• ût+1 ← argmaxû L̂(
ˆht+1, û, v̂t );

• v̂t+1 ← argmaxv̂ L̂(
ˆht+1, ût+1, v̂).

Optimizing ˆh: fixing ût and v̂t and dropping irrelevant terms, minimizing
ˆh reduces to the

following constrained linear least squares problem

min

ˆh

1

2

ˆh⊤M̂ ˆh − ˆb⊤ ˆh s.t. 1T ˆh = 1, ˆh ⪰ 0, (25)

where

M̂ = (RF )⊤D(ût )−1RF + ξF⊤D(v̂t )−1F , ˆb = (RF )⊤D(ût )−1F ˜h + ξF⊤D(v̂t )−1FTϕh.

Eq.(25) is solved with projected gradient descent: starting with ht,0 = ht , our algorithm iterates

between two steps:

△ ˆhτ ← M̂ ˆht,τ − ˆb, ˆht,τ+1 ← P∆n+1

(
ˆht,τ −

η0

τ + 1

△ ˆhτ
)
. (26)

We take
ˆht+1 = ˆht,τ at the convergence.

Optimizing û: when fixing
ˆht+1 and dropping irrelevant terms, minimizing û becomes

min

û
c⊤D(û)−1c + 1⊤û s.t. û ⪰ 0,

where c = F
(

˜h − R ˆht+1

)
. Using Theorem 2, we obtain the optimal solution ût+1 ←

���F (
˜h − R ˆht+1

)���.
Optimizing v̂: similarly, when fixing

ˆht+1 and dropping irrelevant terms, minimizing v̂ becomes

min

v̂

(
ˆht+1 −Tϕh

)⊤
F⊤D(v̂)−1F

(
ˆht+1 −Tϕh

)
+ 1⊤v̂, s.t. v̂ ⪰ 0.

Using Theorem 2 again, we have v̂t+1 =

���F (
ˆht+1 −Tϕh

)���.
The overall algorithm is given in the pseudo-code given in Algorithm 4.
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