
A Univariate Bound of Area Under ROC

Siwei Lyu Yiming Ying
Computer Science Department Mathematics Department
University at Albany, State University at New York, USA

{slyu,yying}@albany.edu

Abstract

Area under ROC (AUC) is an important met-
ric for binary classification and bipartite rank-
ing problems. However, it is difficult to di-
rectly optimize AUC as a learning objective, so
most existing algorithms are based on optimiz-
ing a surrogate loss to AUC. One significant
drawback of these surrogate losses is that they
require pairwise comparisons among training
data, which leads to slow running time and in-
creasing local storage for online learning. In
this work, we describe a new surrogate loss
based on a reformulation of AUC risk, which
does not require pairwise comparison but rank-
ings of the predictions. We further show that
the ranking operation can be avoided, and the
learning objective obtained based on this sur-
rogate enjoys linear complexity in time and
storage. We perform experiments to demon-
strate the effectiveness of the online and batch
algorithms for AUC optimization based on the
proposed surrogate loss.

1 INTRODUCTION

The area under receiver operating characteristics curves
(AUC) is a useful quantitative metric for assessing the
performance of binary classification and bipartite rank-
ing algorithms [1, 2]. However, there are two factors
make AUC difficult to be used directly as a learning ob-
jective to train classification or ranking algorithms. The
foremost is due to the discontinuous indicator function
in the definition of the AUC (c.f. Eq.(1)), which makes
direct minimization of the AUC in general an NP-hard
problem [4]. As such, most existing AUC learning algo-
rithm replace the indicator function with surrogates that
are continuous and convex upper-bounds of the AUC.

The second issue with the AUC is the requirement of
pairwise comparison between all positive and negative
examples in training data. This leads to algorithms with
a running time complexity that is quadratic in the num-
ber of training data, and a space complexity that is linear
of the training data. For batch algorithms, this means
slow running time as we need to compare all pairs of
positive/negative examples, and for online learning, this
means ever increasing local storage as we need to store
all previously seen data for the pairwise comparisons.
Both are undesirable when applying these algorithms to
large-scale datasets.

In this work, we describe a new surrogate loss to AUC
that has a linear time complexity and constant space com-
plexity. This new loss is based on an equivalent formu-
lation of AUC based on ranking the prediction scores,
which obviates pairwise comparisons. We further show
that the ranking operation can be replaced with an equiv-
alent optimization problem, and the learning objective
affords a simple form that has a bounding relation with
AUC. Furthermore, we show that the new loss has a
close relation with the SVM learning objective, which
sheds light on the previous observations of the effec-
tiveness of the SVM on optimizing AUC [5, 6, 7, 8].
The new surrogate loss leads naturally to an online AUC
optimization method with simple (projected) stochastic
sub-gradient steps. Experimental evaluations on several
standard benchmark datasets show that learning objec-
tive formed from this new loss achieves performance in
par with other widely used AUC surrogates, with a sig-
nificant reduction in running time and storage require-
ment.

2 DEFINITIONS

To facilitate subsequent description, we first review the
definition of AUC in the context of binary classification.
Assume we are given a set of data {(xi, yi)}Ni=1, with
yi ∈ {−1,+1} and xi ∈ Rd. We denote I+ = {i|yi =

+1} and I− = {i|yi = −1} as the sets of indices of
positive and negative examples, respectively, withN+ =
|I+| and N− = |I−|, and N+ + N− = N . Define
I as the indicator function: Ia = 1 if a is true and 0
otherwise. A parametric binary classifier cw,θ : Rd 7→
{−1,+1}, constructed as

cw,θ(x) = 2Ifw(x)≥θ − 1 = sign(fw(x)− θ),

maps an example to the class label, where fw : Rd 7→ R
(with w ∈ Rm being the parameter) is the prediction
function and θ ∈ R is the classification threshold. We
denote ci = fw(xi) as the prediction score of the ith ex-
ample (i = 1, · · · , N). For simplicity, we assume there
are no ties in the prediction scores, i.e., ci 6= cj for i 6= j,
though this condition will be relaxed later.

Given a threshold θ, negative examples with prediction
scores greater than θ are false positives, and the false
positive rate is given by τFP = |Ici>θ∧i∈I− |/N−. Cor-
respondingly, positive examples with prediction scores
greater or equal to θ are true positives, and the true posi-
tive rate is given by τTP = |Ici≥θ∧i∈I+ |/N+. Then the
receiver operation curve (ROC) is defined as the curve
formed by the pair (τFP , τTP) with θ ∈ (−∞,∞). With
this definition, ROC is a curve confined to [0, 1] × [0, 1]
and connecting (0, 0) to (1, 1). AUC then corresponds to
the area enclosed by the ROC curve of the classifier.

It is more conveniently computed in closed form using
the Wilcoxon-Mann-Whitney (WMW) statistic [3], as
A = 1

N+N−

∑
i∈I+

∑
j∈I− Ici>cj . In this work, we use

the AUC risk, which is defined as

LAUC = 1−A =
1

N+N−

∑
i∈I+

∑
j∈I−

Ici<cj . (1)

Note that LAUC takes values in [0, 1] and corresponds
to the fraction of pairs of positive and negative predic-
tions that are ranked incorrectly, i.e., a positive example
with lower prediction score than a negative example, so
LAUC = 0 indicates perfect classification/ranking. In ad-
dition, LAUC is independent of threshold θ, and only con-
cerns with the overall performance of the predictor fw.
Hence, we aim to learn a prediction function fw that min-
imizes LAUC, from which we can choose θ to construct
classifier cw,θ(x).

3 RELATED WORKS

Most existing works for either batch or online algorithms
for AUC optimization (e.g., [9, 10]) minimize surrogates
to the true AUC risk, which are usually in the form of
convex upper-bounds to the indicator function in Eq.(1).
Specifically, denoting the prediction scores for xi and
xj as ci and cj , respectively, the surrogate loss function

takes the form as 1
N+N−

∑
i∈I+

∑
j∈I− `(ci − cj), and

common choices for ` include

1. the hinge loss [10], `h(ci, cj) = [1 − (ci − cj)]+,
where [a]+ = max{0, a} is the hinge function,

2. the squared hinge loss [11, 9], `sh(ci, cj) = [1 −
(ci − cj)]2+,

3. the logistic loss, `lg = log2(1 + eci−cj),

4. and the rank-boost loss [12], `e(ci, cj) = eci−cj .

All these surrogates are nonnegative, monotonic decreas-
ing and satisfy `(ci, cj) = 1 when ci = cj . One sig-
nificant problem with these surrogates is that they all
rely on pairwise comparisons between positive and neg-
ative training examples, which lead to algorithms with
quadratic running time complexity. For large datasets,
such quadratic running time will significantly slow down
the training process, and the pairwise comparisons pro-
hibit efficient online learning algorithms for AUC opti-
mization.

One exception is the work of [11], which shows that
the squared hinge surrogate of AUC risk, `sh(ci, cj), af-
fords an equivalent saddle point reformulation. An on-
line stochastic gradient descent method is then developed
based on this reformulation that has complexities O(N)
in time and O(1) in space. However, there are two is-
sues of this method that this work aims to improve on.
First, the original surrogate loss still requires pairwise
comparison, and to decouple them, one needs to intro-
duce auxiliary variables for a saddle point reformulation.
In contrast, our surrogate loss obviates pairwise compar-
ison all together. Second, our surrogate loss reduces to
a minimization problem, which is easier to analyze and
implement than the saddle point reformulation of [11].

In parallel with methods directly optimizing AUC, em-
pirical observations suggest that learning objectives not
designed for AUC optimization (e.g., SVM or boosting)
can achieve low AUC risk [5, 6, 7, 8]. For instance,
in [6], a generalized SVM approach was developed that
is able to optimize multivariate non-linear performance
measures in polynomial time, including AUC. However,
when assessed with respect to the AUC, the superiority
of the direct AUC optimization approach over standard
SVMs seemed less convincing. The work of [7] many
performance measures for binary classification are com-
pared experimentally, and it was found that maximum
margin methods such as boosting and SVMs yield ex-
cellent performance when measured with AUC. In [5] it
was shown that optimizing standard SVMs leads to max-
imizing the AUC in the special (trivial) case when the
given data is separable. As a perfect separation implies a
zero AUC risk. The work [13] uses the rank-equivalent

definition of AUC to derive a hinge rank loss and shows
that it is analogous to the SVM objective. However, no
explicit relation between the SVM objective and AUC or
AUC surrogates are established in previous works.

Further along this line, several studies have provided re-
sults on the consistency of the univariate losses to AUC
risk, i.e., in the asymptotic sense, minimizing the univari-
ate losses under certain conditions may also lead to the
minimization of AUC risk [14, 15], and a similar analy-
sis is conducted for binary surrogate losses to AUC risk
in [16]. These analyses show that univariate losses such
as the `2, squared hinge and exponential losses are con-
sistent with AUC risk, yet the widely used hinge loss
in SVM are inconsistent. This seems to put in ques-
tion whether minimizing AUC risk based on pairwise
comparisons is really warranted. However, these stud-
ies are still of limited in practice due to several reasons.
First, they can not explain the observation that the SVM
algorithm which is based on the hinge loss, oftentimes
leads to good performance when evaluated with AUC
risk, though it is not theoretically consistent with AUC
risk. In addition, these analysis does not reveal a direct
relation between the univariate losses and AUC risk, and
it is more illustrative if some bounding relation between
them can be revealed. Furthermore, these analyses may
not be as relevant in practice, as the learning objective in
actual algorithms is usually combined with extra terms
such as the regularizers.

4 METHOD

In this section, we start with an equivalent definition of
AUC risk, which does not require pairwise comparisons
of positive and negative examples. From this equivalent
definition, we establish our AUC surrogate loss and its
equivalent form for efficient optimization.

4.1 AUC Risk Without Pairwise Comparison

Besides the WMW statistics, Eq.(1), there exists another
equivalent formulation of AUC risk (and AUC itself),
which depends on the ranking of the prediction scores in-
stead of all pairwise comparisons of the prediction scores
of the positive and negative examples [4, 13]. To explain
this equivalent form of AUC risk, we first introduce sev-
eral additional notations. For simplicity, we assume there
are no ties in the prediction scores, i.e., ci 6= cj for i 6= j,
though this condition will be relaxed later.

We denote (c↑1, · · · , c
↑
N) as the result of sorting

(c1, · · · , cN) in ascending order, i.e., c↑1 < c↑2 < · · · <
c↑N . Moreover, let r+

i ∈ {1, · · · , N} (i = 1, · · · , N+) be
the rank of the ith positive example encountered in the or-

Figure 1: An illustration of the ranking definition of the AUC.
Note that in this case, we have N+ = 7, N− = 6, and
(r+1 , r

+
2 , r

+
3 , r

+
4 , r

+
5 , r

+
6 , r

+
7) = (4, 6, 7, 8, 9, 11, 13). For the

positive example highlighted with circle, it is the second posi-
tive example in the ordered list, and it is outranked by two neg-
ative examples (shown by arrows). So its contribution to AUC
risk is N−+i−r+i = 6+2−6 = 2. Repeating for all 7 positive
examples the total wrong pairs is 3+2+2+2+2+1+0 = 12
and AUC risk is 12

6×7
= 2

7
, which is the same as computed with

Eq.(1).

dered list (c↑1, · · · , c
↑
N) starting from the beginning. With

a slight abuse of notation, let c↑+i be the correspond-
ing value of the ith positive example in the ordered list
(c↑1, · · · , c

↑
N), i.e., c↑+i = c↑

r+i
. An example illustrating

these definitions is given in Fig.1. These definitions im-
mediately lead to the following simple result that will be
important subsequently.

Lemma 1. For i = 1, · · · , N+, we have

r+
i ≤ N

− + i, c↑N−+i ≥ c
↑+
i .

Proof of Lemma 1 is provided in the Appendix A.

With these definitions, AUC risk can be defined using
the rankings of the predictions [4], which is equivalent to
the definition based on the WMW statistics as given in
Eq.(1). The intuition behind this equivalent form is a dif-
ferent way to count the number of reverse ordered pairs
of positive and negative examples, which is illustrated
with the numerical example in Figure 1.

Lemma 2 ([4]). When there is no ties in training data,
i.e., ci 6= cj for i 6= j, we have

LAUC = 1
N+N−

∑N+

i=1(N− + i− r+
i)

= 1 + N++1
2N− −

1
N+N−

∑N+

i=1 r
+
i .

(2)

Proof of Lemma 2 is provided in the Appendix A. Note
that

∑N+

i=1(N− + i) corresponds to (trivially) the sum of
the indices of the largest N+ (top-N+) elements in the
ranked list of prediction scores, and

∑N+

i=1 r
+
i is the sum

of the indices of positive examples in the ranked list of
predictions. As such, AUC risk as defined in Eq.(2) is
proportional to the difference between the two sums.

This gives another intuitive explanation of AUC risk: in
a perfect separable case, when the prediction scores of
all the positive examples rank higher than those of the
negative examples, i.e., all prediction scores of positive
examples have ranks N− + 1, · · · , N in the ordered list,
AUC risk is zero. In the more general cases, AUC risk
measures how the rankings of the prediction scores devi-
ate from this ideal case.

4.2 Univariate Bound on AUC risk

The equivalent form of AUC risk of Eq.(2) inspires a new
surrogate loss based on the values of the sorted prediction
scores (c↑1, · · · , c

↑
N). To be specific, let us define a new

quantity

L̃ =
1

N+N−

N∑
i=N−+1

c↑i −
1

N+N−

∑
i∈I+

ci. (3)

Like AUC risk, L̃ is always nonnegative, as the sec-
ond term, which is the sum of the prediction scores of
all the positive examples, is less than or equal to the
first term, which is the sum of the top-N+ elements of
(c1, · · · , cN). Equality holds only when the predictions
of all positive examples rank higher than any of the neg-
ative examples. Our next result shows that we can bound
AUC risk using L̃.

Theorem 1. When there is no ties in training data, i.e.,
ci 6= cj for i 6= j, we have L̃ ≥ 0. Furthermore, there
exist constants ᾱ ≥ α > 0, such that ᾱL̃ ≥ LAUC ≥ αL̃.

Proof. Using Lemma 1, we have∑N+

i=1

(
c↑N−+i − c

↑+
i

)
≥ 0, therefore L̃ ≥ 0, and

it is zero when c↑N−+i = c↑+i for all i = 1, · · · , N+, i.e.,
all positive examples outrank all negative examples.

We set ᾱ−1 = mini(c
↑
i+1 − c

↑
i) > 0, and for i > j, we

have c↑i − c↑j = (c↑i − c↑i−1) + (c↑i−1 − c↑i−2) + · · · +
(c↑j+1 − c

↑
j) ≥

i−j
ᾱ . Then we have

ᾱL̃ = ᾱ
N+N−

∑N
i=N−+1 c

↑
i − ᾱ

N+N−

∑
i∈I+ ci

= ᾱ
N+N−

∑N+

i=1

(
c↑N−+i − c

↑+
i

)
= ᾱ

N+N−

∑N+

i=1

(
c↑N−+i − c

↑
r+i

)
≥ 1

N+N−

∑N+

i=1

(
N− + i− r+

i

)
= LAUC.

Next, setting α−1 = maxi(c
↑
i+1 − c↑i), and follow a

similar derivation, we can obtain the other bound, i.e.,
LAUC ≥ αL̃. The equalities in the bounds hold when
c↑i+1 − c

↑
i is a constant for i = 1, · · · , N , i.e., they are

equally spaced.

4.3 Computing L̃ without Explicit Ranking

However, the ranking operation in L̃ is the main obsta-
cle of using Eq.(3) as a learning objective. This can be
solved based on the following result on the sum of the
top k elements in a set [17, 18], from which we can de-
rive an equivalent form of Eq.(3) that does not rely on
ranking elements explicitly.

Lemma 3 ([17, 18]). For N real numbers z1 < . . . <
zN , we have the equivalence of the sum-of-top-k ele-
ments with an optimization problem as

N∑
i=N−k+1

zi = min
λ

{
kλ+

N∑
i=1

[zi − λ]+

}
, (4)

with the optimal λ? satisfying zN−k ≤ λ? < zN−k+1.
Proof of Lemma 3 is provided in the Appendix A. Using
Lemma 3, we can rewrite L̃ by as a minimization prob-
lem over the auxiliary variable λ, as

N+N−L̃ = min
λ

{
N+λ+

N∑
i=1

[ci − λ]+

}
−
∑
i∈I+

ci,

which can be further converted to

min
λ

∑
i∈I+

(
[ci − λ]+ − (ci − λ)

)
+
∑
j∈I−

[cj − λ]+

 .

Using the property of the hinge function that [a]+ − a =
[−a]+, we can further simplify L̃, as

L̃ = 1
N+N− minλ

{∑
i∈I+ [λ− ci]+ +

∑
j∈I− [cj − λ]+

}
= 1

N+N− minλ
∑N
i=1 [yi(λ− ci))]+ .

Bringing back the parametric model to form a learning
objective based on L̃ as

L̃(w) =
1

N+N−
min
λ

N∑
i=1

[yi(λ− fw(xi))]+ . (5)

This reformulation of L̃ is still a bound for AUC risk, but
it does not require pairwise comparisons between pre-
dictions of positive and negative examples, and there is
no need to explicitly ranking the predictions. Further-
more, in Eq.(5), the auxiliary variable λ can be under-
stood as a threshold that separates the two classes, and
L̃(w) becomes independent of the choice of threshold
by taking the overall minimum over all possible values
for the threshold, as in the case of the original definition
of AUC risk.

The learning objective L̃(w) affords an intuitive interpre-
tation in the context of binary classification. It only pe-
nalizes those positive examples with predictions less than
the threshold, i.e., [λ− fw(xi)]+ for i ∈ I+, and nega-
tive examples with predictions greater than the threshold,
i.e., [fw(xi)− λ]+ for i ∈ I−. All examples that are
on the “correct” side of the threshold receive no penalty.
According to Lemma 3, the optimal λ takes value in the
range of [c↑N+ , c

↑
N++1).

4.4 Relation with SVM Objective

There are some strong similarities between L̃(w) and the
SVM objective, which is particularly striking in the case
of linear prediction function fw(x) = w>x. This be-
comes clearer if we reformulate the SVM objective: if
we regard the threshold λ as the bias term in the linear
prediction function for SVM1, w>x− λ, we can formu-
late the linear SVM objective [19] as

L̃SVM(w, λ) =

N∑
i=1

[1 + yi(λ−w>xi)]+.

Now comparing with Eq.(5), the two objectives has sim-
ilar forms involving the hinge function. We can further
show that L̃SVM(w, λ) is an upper-bound of L̃(w). This
is because we have [1 + yi(λ − w>xi)]+ ≥ [yi(λ −
w>xi)]+, so

L̃SVM(w, λ) =
∑N
i=1[1 + yi(λ−w>xi)]+

≥
∑N
i=1[yi(λ−w>xi)]+

≥ minλ
∑N
i=1[yi(λ−w>xi)]+

= L̃(w).

As we have shown in Theorem 1, an upper-bound of
AUC risk can be established with L̃(w), and this rela-
tion suggests the SVM objective L̃SVM(w, λ) is also an
upper-bound (albeit looser than L̃) of AUC risk.

This helps to explain some long standing experimental
observations (e.g., [5, 6, 7, 8]) that when assessed with
AUC, standard SVMs could not be consistently outper-
formed by other approaches tailored to directly maxi-
mize AUC, such as RankBoost [20], AUCsplit (local op-
timization of AUC) [21], or ROC-SVM [8].

The two learning objectives also differ in two important
aspects. The first is the constant 1 in the SVM objec-
tive, which corresponds to the margin in constructing the
binary classifier. The second difference is that the bias
λ in L̃ is eliminated through minimization, but it is still
present in the SVM objective.

5 OPTIMIZATION

In this section, we discuss batch and online learning algo-
rithms based on learning objectives formed from Eq.(5).

5.1 Resolving Ties in Prediction Scores

However, Eq.(5) cannot be used as a learning objective
due to one important issue. Note that in Eq.(5), the scale

1Typically in SVM we define the linear prediction function
as w>x + b, but here we flip the sign of the bias so to better
compare with L̃(w).

of the parameter w is not fixed, so the learning objective
can be reduced by shrinking the scale of w, which leads
to a trivial solution with w = 0. The underlying reason
is that the formulation of L̃ is based on the assumption of
no ties in the prediction scores, while the trivial solution
corresponds to the extreme contrary, i.e., the prediction
function always produce the same output (zero) regard-
less of the data.

To resolve this problem, we augment the objective func-
tion with two other terms

min
w

L̃(w) +
β

2

N∑
i=1

(1− yifw(xi))
2 + γΩ(w), (6)

where the second term corresponds to a least squares
term to counteract the effect of concentrating w to zero,
the third term Ω(w) is a regularizer on parameter w, and
(β, γ) are weights to the two extra terms.

5.2 Linear Predictor

In general, the learning objective of Eq.(6) is not a con-
vex function of w, but if we choose fw(x) = w>x
and Ω(w) is convex with respect to w (i.e., Ω(w) =
1
2‖w‖

2), then we can show it is a convex function of w.
We first show that [x>w−λ]+ is a convex function. For
α ∈ [0, 1], w, w′, λ, and λ′, we have

[x>(αw + (1− α)w′)− (αλ+ (1− α)λ′)]+ =
[α(x>w − λ) + (1− α)(x>w′ − λ′)]+ ≤
α[x>w − λ]+ + (1− α)[x>w′ − λ′]+.

(7)
Therefore,

∑N
i=1

[
x>w − λ

]
+

+N+λ is a convex func-
tion jointly for (w, λ). As the minimization of one vari-
able in a joint convex function, minλ

∑N
i=1 [ci − λ]+ +

N+λ is also a convex function of w.

In summary, for the linear case, we can obtain the fol-
lowing convex learning objective with regards to w and
λ jointly,

(w?, λ?)← argminw,λ
γ
2 ‖w‖

2+∑N
i=1

{[
yi(λ− x>i w)

]
+

+ β
2 (1− yix>i w)2

}
(8)

In the following, we discuss the batch and online opti-
mization of Eq.(8), for which the convergence to global
minimum is guaranteed.

5.2.1 Batch Learning

In the batch setting, where we have access to all training
examples, we can use block coordinate descent algorithm
to optimize Eq.(8). We initialize w and λ, then iterate
between

w(t+1) ← argminw

∑N
i=1

[
yi(λ

(t) −w>xi)
]
+

+
β
2

∑N
i=1(1− yix>i w)2 + γ

2 ‖w‖
2;

λ(t+1) ← 1
2 (c↑N+ + c↑N++1),

where c↑i is the rerank of {x>i w(t+1)}Ni=1 in the ascend-
ing order. The w sub-problem can be converted to a con-
strained optimization problem as

minw,t

∑N
i=1 ti + β

2

∑N
i=1(1− yix>i w)2 + γ

2 ‖w‖
2;

s.t. yi(λ
(t) −w>xi) ≥ ti, ti ≥ 0.

This is a quadratic convex optimization problem and can
be solved with interior point method when the dimen-
sionality of w is low to medium. For high dimensional
w, the online learning algorithm is more effective as it
avoids building the Hessian matrix.

5.2.2 Online Learning

Because Eq.(8) does not involve pairwise comparison,
we can also derive an online learning algorithm based
on stochastic gradient descent [22, 23]. The runtime of
the online algorithm does not depend on the number of
training examples and thus this algorithm is especially
suited for large datasets. Specifically, with initial choice
for the value of w(0), at the tth iteration, a single training
example (xit , yit) is chosen at random from the training
set and used to estimate a sub-gradient of the objective,
and a step with pre-determined step-size is taken in the
opposite direction, as

w(t+1) ← w(t) − ηt
(
(γI + βx>itxit)w

(t)−
(β + Iyi(λ(t)−w>xi)>0)yitxit

)
λ(t+1) ← λ(t) − ηtyitIyi(λ(t)−w>xi)>0,

(9)

where we can choose the step-size ηt ∼ 1√
t
, then the

SGD algorithm will converge in O(1/ε) steps to the ε-
accuracy of the global optimal value of Eq.(5) [22, 23].
Note that each step of our online iterative algorithm has
space and time complexity of O(d) and O(1), and ob-
viates the need to store or buffer data in previous online
AUC optimization methods [10, 9].

6 EXPERIMENTS

We perform several experiments of learning binary clas-
sifiers to evaluate the batch and online algorithms opti-
mizing learning objectives given in Eq.(8) (subsequently
denoted as ba-UBAUC and ol-UBAUC, respectively),
and compare their performance with existing learning al-
gorithms for AUC optimization.

As in previous works [10, 11], we perform experiments
on 12 benchmark datasets that have been used in pre-
vious studies. A summary of the data in these datasets

train test data dim.
diabetes 389 389 8
fourclass 431 431 2
german 500 500 24
splice 1,000 2,175 60
usps 7,291 2,007 256
a9a 32,561 16,281 123
w8a 49,749 14,951 300
mnist 60,000 10,000 780
acoustic 78,823 19,705 50
ijcnn1 49,990 91,701 22
sector 6,412 3,207 55,197
news20 15,935 3,993 62,061

Table 1: Summary of the 12 benchmark datasets used in our
experiments. The training/testing splitting is from the original
datasets.

is given in Table 1, with the training/testing split ob-
tained from the original dataset. For datasets that are
for data with more than 2 class labels (i.e., news20 and
sector), following the convention of previous work
[10, 11], we convert them to binary classification prob-
lems by randomly partitioning the data into two groups,
each with equal number of classes. Then the binary class
labels are determined from the group to which the orig-
inal class label belongs. Following the evaluation proto-
col of [10, 11], the performance of reported is obtained
by averaging the AUC scores on the test set for 25 mod-
els learned from subsets of the same training set, each is
chosen as a random 80% of the original training data.

On these datasets, we evaluate and compare UBAUC-
based algorithms with four state-of-the-art online and
two batch learning algorithms for learning linear binary
classifiers that minimizes various pairwise surrogates to
the original AUC riskLAUC. The hyper parameters (β, γ)
for UBAUC are determined by a grid search on the vali-
dation set. The initial learning rate for the online learning
algorithm is also set for different dataset by a grid search.
We compare the following algorithms with UBAUC-
based algorithms.

• SOLAM [11], an online AUC optimization algo-
rithm based on a saddle point reformulation of the
pairwise `2 surrogate loss of AUC risk;

• OPAUC [9], an online AUC optimization algorithm
that uses the pairwise `2 loss surrogate of the AUC
objective function;

• OAM [10], an online AUC optimization algorithm
that uses the pairwise hinge loss surrogate of the
AUC objective function with two variants, one with
sequential update (OAMseq) and the other using
gradient update (OAMgra);

• B-SVM-OR [6], a batch learning algorithm using
the pairwise hinge loss surrogate of the AUC objec-
tive function;

ol-UBAUC ba-UBAUC SOLAM OPAUC OAMseq OAMgra B-SVM-OR SVM
diabetes .8326±.0299 .8328±.0352 .8253±.0314 .8309±.0350 .8264±.0367 .8262±.0338 .8326±.0328 .7821±.0145
fourclass .8301±.0318 .8310±.0296 .8226±.0240 .8310±.0251 .8306±.0247 .8295±.0251 .8305±.0311 .7717±.0294
german .7928±.0371 .7933±.0324 .7882±.0243 .7978±.0347 .7747±.0411 .7723±.0358 .7935±.0348 .7641±.0283
splice .9231±.0224 .9269±.0094 .9253±.0097 .9232±.0099 .8594±.0194 .8864±.0166 .9239±.0089 .8439±.0096
usps .9728±.0051 .9730±.0066 .9766±.0032 .9620±.0040 .9310±.0159 .9348±.0122 .9630±.0047 .8930±.0075
a9a .9005±.0019 .9009±.0041 .9001±.0042 .9002±.0047 .8420±.0174 .8571±.0173 .9009±.0036 .8213±.0064
w8a .9673±.0993 .9695±.0079 .9114±.0075 .9633±.0035 .9304±.0074 .9418±.0070 .9495±.0082 .8964±.0029

mnist .9327±.0239 .9340±.0024 .9324±.0020 .9242±.0021 .8615±.0087 .8643±.0112 .9340±.0020 .8406±.0072
acoustic .8871±.0035 .8962±.0046 .8898±.0026 .8192±.0032 .7113±.0590 .7711±.0217 .8262±.0032 .7629±.0045
ijcnn1 .9264±.0039 .9337±.0038 .9215±.0045 .9269±.0021 .9209±.0079 .9100±.0092 .9337±.0024 .8793±.0094
sector .9845±.0033 - .9834±.0023 .9292±.0081 .9163±.0087 .9043±.0100 - .8815±.0062

news20 .9468±.0045 - .9467±.0039 .8871±.0083 .8543±.0099 .8346±.0094 - .8431±.0127

Table 2: Comparison of the AUC scores (mean±std.) on test sets of the evaluated datasets.

• UNI-SVM, a linear SVM algorithm implemented
using LIBSVM with SMO minimization [24].

Classification performances measured by the AUC score
on the testing dataset of all compared methods for all
12 benchmark datasets are given in Table 2. For fair
comparison, we implement all algorithms using MAT-
LAB, and following the default parameter settings in the
original papers. Note that the simple implementation
of the two batch algorithms cannot handle datasets with
high dimensional datasets, i.e., sector and news20,
due to the memory requirement. However, for those
datasets that it is feasible to run, ba-UBAUC, the batch
version optimizing the proposed learning objective, per-
forms best. On the other hand, the results of uUNI-SVM,
though optimizing a different objective, still achieves
reasonable performance when evaluated with AUC. The
online algorithm based on the proposed learning objec-
tive, ol-UBAUC, achieves comparable performance as
other state-of-the-art online algorithms based on pairwise
surrogate losses to AUC risk, although the improvements
of performance on some of the datasets are not conspic-
uous due to the nature of the data.

On the other hand, the main advantage of ol-UBAUC
in comparison with other online algorithms is the run-
ning efficiency – its per-iteration running time and space
complexity is linear in data dimension and do not depend
on the iteration number. Furthermore, each iteration of
ol-UBAUC Eq. (9) corresponds to a simpler update step
than the saddle point solve in SOLAM [11]. In Table
3, we show the per-iteration running time and the total
running time for the learning objective function to con-
verge to have smaller than 10−7 relative changes2 of the
five online algorithms we compared. Note that the on-
line version of the UBAUC-based algorithms has more
efficient running time with comparable performances in

2Experiments were performed with running time reported
based on a cluster with 12 nodes, each with an Intel Xeon E5-
2620 2.0GHz CPU and 64GB RAM. All algorithms are imple-
mented using MATLAB, with available code obtained from the
authors of the corresponding publications.

a9a usps sector

ol-UBAUC 0.48 0.15 11.24

SOLAM 0.50 0.19 19.90

OPAUC 6.24 4.62 120.30

OAMseq 34.31 13.98 1350.41

OAMgra 34.35 12.54 1350.50

a9a usps sector

ol-UBAUC 0.83 0.15/0.58 276.41

SOLAM 0.99 0.19/0.81 721.52

OPAUC 14.21 4.62/11.23 5540.24

OAMseq 78.42 13.98/32.71 6730.75

OAMgra 69.23 12.54/39.54 6324.64

Table 3: (top)The average running time (in seconds) per pass
over training data for each online algorithm, and (bottom)
the average running time (in seconds) for the learning objec-
tive function to converge to have smaller than 10−7 relative
changes for each online algorithm.
comparison to existing AUC optimization methods.

7 POPULATION FORM

So far, we have described the proposed learning objec-
tive over a set of finite training data. In this section, we
discuss the population form of the surrogate loss using
probability distributions of data. This analysis will shed
light on the formal connection of the new surrogate loss
with existing methods and can lead to deeper theoretical
studies.

We start with the population form of the equivalent def-
inition of AUC risk in Eq.(2). We assume that the input
data and label are from a joint model p(x, y), which in-
duces density models for the predictions c = f(x). As
such, we denote ρ+(c) = p(c|y = 1) and ρ−(c) =
p(c|y = −1) as the (conditional) probability density
functions (PDFs) for positive and negative class, respec-
tively. For simplicity, we assume both PDFs have infinite
support, i.e., is non-zero for the whole R. Also, we de-
note p = Pr(y = 1) as the class prior probability.

The joint probability density function of the classifica-
tion output c is then given by ρ(c) = pρ+(c) + (1 −

p)ρ−(c). We also denote F+(c) =
∫ c
−∞ ρ+(c′)dc′,

F−(c) =
∫ c
−∞ ρ−(c′)dc′, and F (c) =

∫ c
−∞ ρ(c′)dc′ as

the cumulative distribution functions (CDFs) for ρ+, ρ−

and ρ, respectively, with F (c) = pF+(c)+(1−p)F−(c).
F+(c) is the false negative rate (FNR) and 1− F−(c) is
the false positive rate (FPR).

AUC risk is defined as the area under the whole curve of
FNR vs. FPR, as LAUC =

∫∞
−∞(1− F−(c))dF+(c) [4].

Using relation F−(c) = 1
1−p (F (c)− pF+(c)) yields

LAUC =
1

1− p

∫ ∞
−∞

(1− p+ pF+(c)− F (c))dF+(c).

Because F is a CDF is a continuous monotonic function
and F (c) ≤ 1− p+ pF+(c) ≤ 1, using the mean value
theorem, there exists c′ ≥ c0 = max{c|F (c) = 1 − p},
such that 1−p = F (c0) ≤ F (c′) = 1−p+pF+(c) ≤ 1,
and

LAUC =
1

1− p

∫ ∞
−∞

(F (c′)− F (c))dF+(c).

Next, note that F (c) is Lipschitz with constant α′ ≥
maxc |ρ(c)|, i.e., |F (c′)− F (c)| ≤ α′|c′ − c|, we have

LAUC ≤
α′

1− p

∫ ∞
−∞

(c′ − c)dF+(c). (10)

Next, we use the following result

Lemma 4. For F (c′) = 1− p+ pF+(c), we have∫ ∞
−∞

c′dF+(c) = min
λ

∫ ∞
−∞

(c− λ)+

p
dF (c) + λ.

Proof of Lemma 4 is provided in the Appendix A. Using
Lemma 4, we can rewrite the integral of the right hand
side of Eq.(10) as

min
λ

∫ ∞
−∞

(c− λ)+

p
dF (c) + λ−

∫ ∞
−∞

cdF+(c),

where the terms being minimized can be further simpli-
fied as ∫ ∞

−∞

(c− λ)+

p
dF (c) + (λ− c)dF+(c).

This can be further expanded using the relation dF (c) =
(1− p)dF−(c) + pdF+(c) to have∫∞

−∞(c− λ)+(1− p)dF−(c)+∫∞
−∞ [(λ− c) + (c− λ)+] pdF+(c).

Putting all terms together and using the relation (c −
λ)+ + (λ− c) = (λ− c)+ we have

LAUC ≤
α′

p(1− p)
min
λ
Ec,y[y(c− λ)]+, (11)

where Ec,y represents the expectation over c and y.

8 CONCLUSION

In this work, we describe a new surrogate loss to the
AUC metric based on a formulation of AUC, which does
not require pairwise comparison but rankings of the pre-
diction scores. We further show that the ranking opera-
tion can be avoided and the learning objective obtained
based on this surrogate affords complexity in time and
storage that is linear in the number of training data. We
perform experiments to demonstrate the effectiveness of
the online and batch algorithms for AUC optimization
based on the proposed surrogate.

There are several directions we would like to further ex-
plore for this work. First, from the theoretical point of
view, we would like to establish the consistency of the
proposed learning objective with regards to AUC risk,
i.e., the question if the surrogate loss will also lead to
the convergence to the optimal AUC risk. The form of
our surrogate loss (Eq.(5)) as an optimization problems
makes it difficult to apply the techniques used in previous
works [14, 15] to this case. We would also like to estab-
lish the generalization error between the data form of the
loss Eq.(5) and its population form counterpart Eq.(11).
From the algorithm perspective, we would like to extend
this learning objective to substitute multi-class AUC [4],
where multi-class AUC risk is computed as the average
of binary class AUC between each pairs of classes. Last,
we are interested in applying the online algorithm based
on the proposed surrogate loss to non-convex learning
objectives such as those used for training deep neural net-
works.

Acknowledgement. Siwei Lyu is supported by the Na-
tional Science Foundation (NSF, Grant IIS-1537257) and
Yiming Ying is supported by the Simons Foundation
(#422504) and the 2016-2017 Presidential Innovation
Fund for Research and Scholarship (PIFRS) program
from SUNY Albany.

A Appendix: Proofs

Proof of Lemma 1. Being the ith positive example en-
countered in the ordered list (c↑1, · · · , c

↑
N), c↑+i can out-

rank no more than N− + i elements in the list, i.e., i
positive examples and at most N− negative examples.
Therefore, we have r+

i ≤ N− + i. By the ranking order
we also have c↑N−+i ≥ c

↑
r+i

= c↑+i .

Proof of Lemma 2. Consider the ith positive example en-
countered in (c↑1, · · · , c

↑
N) starting from the beginning,

which has rank r+
i . The number of negative examples

that rank lower than it is r+
i − i, i.e., there will be

N− − (r+
i − i) = N− + i− r+

i negative examples with

ranks higher than this positive example, i.e., forming a
reversed ordered pair with it. This corresponds to the
sum over reversed ordered pairs in the definition of AUC
risks of Eq.(1). Summing over all such reverse ordered
pairs divided by the number of all such positive-negative
pairs (N+N−) proves the result.

Proof of Lemma 3. First, we note that
∑N
i=N−k+1 zi is

the solution of the following linear programming prob-
lem

max
p∈Rn×1

p>z, s.t. p>1 = k, pi ∈ [0, 1], (12)

We form its Lagrangian as

L = −p>z− a>p + b>(p− 1) + λ(p>1− k), (13)

where a ≥ 0, b ≥ 0 and λ are Lagrangian multipliers.
Setting the derivative of L with respect to p to be 0, we
obtain a = b − z + λ1. Substituting this into Eq (13) ,
we get the dual problem of (12) as

min
b,λ

b>1 + kλ, s.t. b ≥ 0,b + λ1− z ≥ 0, (14)

The constraints of Eq. (14) suggest that we should have
b>1 ≥

∑n
i=1 [zi − λ]+. As such, the objective func-

tion achieves its minimum when the equality holds. Re-
organizing terms leads to Eq.(4). Further, when we
choose λ? satisfying zN−k ≤ λ? < zN−k+1, we have
kλ?+

∑N
i=1 [zi − λ?]+ = kλ?+

∑N
i=N−k+1(zi−λ?) =∑N

i=N−k+1 zi. Thus proves the lemma.

Proof of Lemma 4. First, we have dF (c′) = pdF+(c),
then

∫∞
−∞ c′dF+(c) = 1

p

∫∞
c0
c′dF (c′), where the lower

limit of the integral, c0 = max{c|F (c) = 1 − p}, orig-
inates from the range of value c′. Next, we compute
minλ

∫∞
−∞(c − λ)+dF (c) + pλ = minλ

∫∞
λ
cdF (c) −

λ
∫∞
λ
dF (c) + pλ. Differentiating the inner terms with

regards to λ, we obtain
∫∞
λ
dF (c) = p, or

∫ λ
−∞ dF (c) =

1−p, so we have at optimum, λ = c0. Therefore we have
minλ

∫∞
−∞(c−λ)+dF (c) + pλ =

∫∞
c0
c′dF (c′). Further

rearranging terms proves the result.

References

[1] C. Cortes and M. Mohri, “AUC optimization vs. er-
ror rate minimization,” in Advances in Neural In-
formation Processing Systems (NIPS), 2003.

[2] W. Kotlowski, K. Dembczynski, and
E. Hüllermeier., “Bipartite ranking through
minimization of univariate loss,” in International
Conference on Machine Learning (ICML), 2011.

[3] J. A. Hanley and B. J. McNeil, “The meaning and
use of the area under of receiver operating charac-
teristic (ROC) curve,” Radiology, vol. 143, no. 1,
pp. 29–36, 1982.

[4] D. J. Hand and R. J. Till, “A simple generalisa-
tion of the area under the ROC curve for multi-
ple class classification problems,” Machine learn-
ing, vol. 45, pp. 171–186, 2001.

[5] U. Brefeld and T. Scheffer, “AUC maximizing sup-
port vector learning.,” in Workshop ROC Analysis
in AI in conjunction with European Conference on
Artificial Intelligence, 2005.

[6] T. Joachims, “A support vector method for mul-
tivariate performance measures,” in International
Conference on Machine Learning (ICML), 2005.

[7] R. Caruana and A. Niculescu-Mizil, “Data min-
ing in metric space: an empirical anal- ysis of su-
pervised learning performance criteria.,” in Inter-
national Conference on Knowledge Discovery and
Data Mining (KDD), 2004.

[8] A. Rakotomamonjy, “Optimizing area ROC curve
with SVMs,” in Workshop ROC Analysis in AI in
conjunction with European Conference on Artifi-
cial Intelligence, 2004.

[9] P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang, “Online
AUC maximization,” in International Conference
on Machine Learning (ICML), 2011.

[10] W. Gao, R. Jin, S. Zhu, and Z. H. Zhou, “One-pass
AUC optimization,” in International Conference on
Machine Learning (ICML), 2013.

[11] Y. Ying, L. Wen, and S. Lyu, “Stochastic online
AUC maximization,” in Advances in Neural In-
formation Processing Systems (NIPS), (Barcelona,
Spain), December 2016.

[12] C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire,
“Margin-based ranking meets boosting in the mid-
dle,” in Learning Theory (P. Auer and R. Meir,
eds.), (Berlin, Heidelberg), pp. 63–78, Springer
Berlin Heidelberg, 2005.

[13] H. Steck, “Hinge rank loss and the area under the
ROC curve,” in European Conference on Machine
Learning (ECML), 2007.

[14] S. Clemencon and S. Robbiano, “Minimax learn-
ing rates for bipartite ranking and plug-in rules,”
in International Conference on Machine Learning
(ICML), 2011.

[15] S. Agarwal, “Surrogate regret bounds for the area
under the roc curve via strongly proper losses,”
Journal of Machine Learning Research, 2013.

[16] W. Gao and Z. Zhou, “On the consistency of auc
pairwise optimization,” Artificial Intelligence Jour-
nal, 2014.

[17] W. Ogryczak and A. Tamir, “Minimizing the sum
of the k largest functions in linear time,” Informa-
tion Processing Letters, vol. 85, no. 3, pp. 117–122,
2003.

[18] Y. Fan, S. Lyu, Y. Ying, and B. Hu, “Learning with
average top-k loss,” in Advances in Neural Infor-
mation Processing Systems (NIPS), (Long Beach,
CA), 2017.

[19] C. Cortes and V. Vapnik, “Support-vector net-
works,” Machine learning, vol. 20, no. 3, pp. 273–
297, 1995.

[20] Y. Freund, R. Iyer, R. Schapire, and Y. Singer, “An
efficient boosting algorithm for combining pref-
erences,” Journal of Machine Learning Research,
vol. 4, pp. 933–969, 2003.

[21] R. Herbrich, T. Graepel, and K. Obermayer, “Sup-
port vector learning for ordinal re- gression,” in In-
ternational Conference on Neural Networks, 1999.

[22] O. Bousquet and L. Bottou, “The tradeoffs of large
scale learning,” in NIPS, pp. 161–168, 2008.

[23] N. Srebro and A. Tewari, “Stochastic optimization
for machine learning,” ICML Tutorial, 2010.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: A li-
brary for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technol-
ogy, vol. 2, pp. 27:1–27:27, 2011. Soft-
ware available at http://www.csie.ntu.
edu.tw/˜cjlin/libsvm.

