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Abstract

The new developments in deep generative networks have
significantly improve the quality and efficiency in generat-
ing realistically-looking fake face videos. In this work, we
describe a new method to expose fake face videos generated
with deep neural network models. Our method is based on
detection of eye blinking in the videos, which is a physio-
logical signal that is not well presented in the synthesized
fake videos. Our method is evaluated over benchmarks of
eye-blinking detection datasets and shows promising per-
formance on detecting videos generated with DNN based
software DeepFake.

1. Introduction

The increasing sophistication of camera technology,
the wide availability of cellphones and the ever-growing
popularity of social networks (FaceBook, Twitter, What-
sApp, InstaGram, and SnapChat) and video sharing por-
tals (YouTube and Vemeo) have made the creation, edit-
ing and propagation of digital videos more convenient than
ever. This has also brought forth tampering of digital
videos. Unlike digital images, editing videos has been a
time-consuming and painstaking task due to the lack of so-
phisticated editing tools like Adobe PhotoShop and the
large number of editing operations involved for a video — as
a case in point, a 20 second video with 25 frames per sec-
ond requires editing of 500 images. As such, highly realistic
fake videos were rare, and most can be identified relatively
easily based on some conspicuous visual artifacts.

However, the situation was changed dramatically with
the recent development of generative deep neural networks,
in particular, generative adversary networks (GANs) [11,
21], which has led the development of tools that can gen-
erate videos from large volume of images with minimum
manual editing. The situation first caught the public atten-
tion in earlier 2018, when a software known as DeepFake
was made publicly available. In particular, DeepFake uses
GANSs to replace faces of one individual in a video with
synthesized faces of another individual (see Figurel). Sub-
sequently, there have been a surge of fake videos generated
using this tool and uploaded to YouTube for gross viola-

tions of privacy and identity, some with serious legal impli-
cations '. Detecting such fake videos becomes a pressing
need for the research community of digital media forensics.

While traditional media forensic methods based on sig-
nal level cues (e.g, sensor noise, CFA interpolation and dou-
ble JPEG compression), physical level evidence (e.g, light-
ing condition, shadow and reflection) or semantic level con-
sistencies (e.g, consistency of meta-data) can be applied for
this purpose, they are not sufficiently reliable or efficient for
detecting DeepFake videos. This situation calls for novel
detection techniques. In this work, we describe a method
to expose DeepFake videos by detecting the lack of eye
blinking of the synthesized faces.

Blinking refers to the rapid closing and opening move-
ment of the eyelid. The spontaneous blink, which refers to
blinking without external stimuli and internal effort, is con-
trolled by the pre-motor brain stem and happens without
conscious effort and serves an important biological func-
tion that moisturizes with tears and remove irritants from
the surface of the cornea and conjunctiva. For a health
adult human, generally, between each blink is an interval
of 2-10 seconds but the actual rates vary by individual, and
the length of a typical blink is 0.1-0.4 seconds/blink?. As
such, we should expect to observe spontaneous eye blink-
ing from a video of real humans with the aforementioned
frequency and duration. However, this is not the case for
many DeepFake videos, as the example in Figure 2 shows.
This can be attributed to the fact that the core GAN model in
DeepFake is trained based on large number of human face
images. If we assume an average exposure time of 1/30 sec-
ond, then the probability of capturing a photo with someone
blinking is about 7.5%. Most photos of a person that can be
obtained online will not show them with their eyes closed,
so this likelihood is even smaller in practice. Therefore, the
lack of eye blinking is thus a telltale sign of a DeepFake
video.

For example, see
https://www.lawfareblog.com/deep-fakes—looming—
crisis—-national-security-democracy-and-privacy.
As a result, DeepFake has been banned and excluded from the online
community.

2http://bionumbers.hms.harvard.edu/bionumber.
aspx?id=100706\&ver=0.



Our method uses a deep neural network model that com-
bines CNN and recursive neural network, known as long-
term recurrent CNN (LRCN) [7], to distinguish open and
close eye states with the consideration of previous tem-
poral knowledge. Our method is evaluated over bench-
marks of eye-blinking detection datasets and also show
promising performance on detecting videos generated with
DeepFake.

2. Related Works
2.1. AI Generation of Fake Videos

Previously, realistic images/videos were generated us-
ing detailed 3D computer graphics models. Recently, the
development of new deep learning algorithms, especially
those based on the generative adversarial networks (GANSs).
Goodfellow et al. [11] first proposed generative adversarial
networks (GANSs), which typically consist of two networks:
the generator network and the discriminator network. The
generator aims to produce an image that cannot be distin-
guished from training images, while the discriminator dif-
ferentiates training images from images synthesized by the
generator network. The two networks are trained in tandem
with the generator and the discriminator competing with
each other — the generator tries to create images that can
confuse the discriminator, while the discriminator tries to
classify the synthetic images from the real training images.

Subsequently, many general image synthesis or face syn-
thesis works have been proposed based on the idea of
GANs. Denton et al. [5] proposed a Laplacian pyramid
GAN to generate images in a coarse-to-fine fashion. Rad-
ford et al. [24] proposed deep convolutional GANs (DC-
GAN) and showed the potential for unsupervised learning.
Arjovsky et al. [1] used Wasserstein distance to make train-
ing stable. Isola ef al. [15] investigated conditional adver-
sarial networks to learn mapping from input image to out-
put image and also the loss function to train the mapping.
Taigman et al. [32] proposed the domain transfer network
(DTN) to map a sample from one domain to an analogous
sample in another domain and achieved favorable perfor-
mance on small resolution face and digit images. Shrivas-
tava et al. [25] reduced the gap between synthetic and real
image distribution using a combination of the adversarial
loss and the self-regularization loss. Liu et al. [21] pro-
posed an unsupervised image to image translation frame-
work based on coupled GANs, which aims to learn the joint
representation of images in different domains. This algo-
rithm is the basis for the DeepFake algorithm , the process
of which is given in Figure 1.

2.2. Eye Blinking Detection

Detecting eye blinking has previously been studied in
computer visions for applications in fatigue detection [14,
34, 8, 2, 22] and face spoof detection [4, 10, 20, 30, 19]. Pan

et al. [23] constructed undirected conditional random field
framework to infer eye closeness such that eye blinking is
detected. Sukno e al. [31] employed active shape models
with invariant optimal features to delineate the outline of
eyes and computed the eye vertical distance to decide eye
state. Torricelli et al. [33] utilized the difference between
consecutive frames to analyze state of eyes. Divjak et al.
[6] employed optical flow to obtain eye movement and ex-
tract the dominant vertical eye movement for blinking anal-
ysis. Yang et al. [35] modeled the shape of eyes based on a
pair of parameterized parabolic curves, and fit the model in
each frame to track eyelid. Drutarovsky et al. [9] analyzed
the variance of the vertical motions of eye region which is
detected by a Viola-Jones type algorithm. Then a flock of
KLT trackers are used on the eye region. Each eye region is
divided into 3x3 cells and an average motion in each cell is
calculated. Soukupova et al. [28] proposed a scalar quantity
that measures the aspect ratio of the rectangular bounding
box of an eye (eye aspect ratio — EAR) corresponding to the
eye openness degree in each frame. They then trained an
SVM of EARs within a short time window to classify final
eye state. Kim ez al. [16] studied CNN-based classifiers to
detect eye open and close state. To date, we are not aware
of deep NN based eye blinking detection algorithms.

3. Method

In this section, we describe in detail our method to detect
eye blinking in a video. We extend the work on CNN-based
classifier to LRCN [7], which incorporates the temporal re-
lationship between consecutive frames, as eye blinking is a
temporal process which is from opening to closed, such that
LRCN can memorize the long term dynamics to remedy the
effect by artifacts introduced from single image. The gen-
eral overview of our algorithm is provided in Figure 2.

3.1. Pre-processing

The first step in our method is to locate the face areas in
each frame of the video using a face detector. Then facial
landmarks, which are locations on the face carrying impor-
tant structural information such as tip of the eyes, noses and
mouths and contours of the cheek, are extracted from each
detected face area.

The head movement and changes in face orientation in
the video frames introduce distractions in facial analysis.
As such, we first align the face regions to a unified coordi-
nate space using landmark based face alignment algorithms.
Specifically, given a set of face landmarks in original coor-
dinate, 2D face alignment is to warp and transform the im-
age to another coordinate space, where the transformed face
is (1) in the center of image, (2) rotated to make eyes lie on
a horizontal line and (3) scaled to a similar size.

From the aligned face areas, we can extract a surround-
ing rectangular regions of the landmarks corresponding to
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Figure 1. Overview of fake face generation. (a) The original input image. The green dash box in (b) is the face area localized by face
detector. (c) Detected face landmarks. (d) Face after alignment. DeepFake takes (d) as input and convert it to (g). The artifacts are
introduced by directly affine warping generated face back to (a), as shown in (f, e). (h) The convex polygon mask that generated face inside

is retained. (i) Smoothed boundary of mask. (j) The final fake image.
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Figure 2. Overview of our LRCN method. (a) is the original sequence. (b) is the sequence after face alignment. We crop out eye region
of each frame based on eye landmarks p1~¢ in (b) and pass it to (c) LRCN, which consists of three parts: feature extraction, sequence

learning and state prediction.

the contours of the eyes into a new sequence of input
frames, see Figure 2(b). Specifically, the rectangle region
is generated by first extracting the bounding boxes of each
eye’s landmark points, then scaling the bounding box by
1.25 in the horizontal direction and 1.75 in the vertical di-
rection, respectively, to ensure that the eye region is in-
cluded in the cropped region. The cropped eye area se-
quences are passed into LRCN for dynamic state prediction.

3.2. Long-Term Recurrent CNNs

As human eye blinking shows strong temporal depen-
dencies, we employ the long-term recurrent convolutional
neural networks (LRCN) model [7] to capture such tem-
poral dependencies. As shown in Figure 2(c), the LRCN
model is composed by three parts, namely, feature extrac-
tion, sequence learning and state prediction. Feature ex-
traction module converts the input eye region into discrim-
inative features. It is implemented with a Convolutional

Neural Network (CNN) based on the VGG16 framework
[26] but without fc7 and f£c8 layers3. VGG16 is com-
posed by five blocks of consecutive convolutional layers
convl ~ 5, where max-pooling operation follows each
block. Then three fully connected layers fc6 ~ 8 are
appended on the last block. The output from the feature
extraction is fed into sequence learning, which is imple-
mented with a recursive neural network (RNN) with Long
Short Term Memory (LSTM) cells [13]. The use of LSTM-
RNN is to increase the memory capacity of the RNN model
and avoid the gradient vanishing in the back-propagation-
through-time (BPTT) algorithm in the training phase.

3.3. LSTM-RNN

LSTMs are memory units that control when and how to
forget previous hidden states and when and how to update

30ther deep CNN architecture such as ResNet [12] can also be used
but for simplicity we choose VGG16 in the current work.
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Figure 3. A diagram of LSTM structure.

hidden states [13]. We use LSTM as illustrated in Figure
3, where o(x) = is sigmoid function to push input

1
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into [0, 1] range, tanh(z) = St is hyperbolic tangent
function which squash input into [—1, 1] range, ® denotes
inner product of two vectors. Given input C;_1, ht_1, T4,

the LSMT updates along with time ¢ by
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where f; is forget gate to control what previous memories
will be discard, ¢, is input gate to selectively pass the current
input, which is manipulated by g;. o; is output gate to con-
trol how much memory will be transferred into hidden state
ht. Memory cell C is combined by previous memory cell
C;_1 controlled by f; and manipulated input g; controlled
by 4;. We use 256 hidden units in LSTM cell, which is the
dimension of LSTM output z;.

For the final state prediction stage, the output of each
RNN neuron is further sent to neural network consists of a
fully connected layer, which takes the output of LSTM and
generate the probability of eye open and close state, denoted
by 0 and 1 respectively.

3.4. Model Training

The training of the LRCN model is performed in two
steps. In the first step, we train the VGG based CNN model
using a set of labeled training data consisting of eye re-
gions corresponding to open and closed eyes. The model is
trained using back-propagation implemented with stochas-
tic gradient descent with dropout [29] in fully connected
layers. In the second step, the LSTM-RNN and fully con-
nected part of the network are trained jointly using the back-
propagation-through-time (BPTT) algorithm. In both cases,
the loss objective is cross entropy loss with binary classes
(open or closed). Implementation details are given in the
next section.

4. Experiments

We train the LRCN model based on image datasets of
eye open states. We then test the algorithm detecting eye
blinking on authentic and fake videos generated with the
DeepFake algorithm.

4.1. Datasets

To date, there are a few image datasets that can be used
for evaluating algorithms that detect closed eyes, such as
the CEW Dataset [27]*, which includes 1,193 images of
closed eyes and 1,232 images of open eyes. However, no
existing video dataset specially designed for the same pur-
pose is available, which is important due to the temporal
nature of eye blinking.

To be able to experimentally evaluate our algorithm, we
downloaded 50 videos, where each represents one individ-
ual and lasts approximate 30 seconds with at least one blink-
ing occurred, to form the eye blinking video (EBV) dataset.
We annotate the left and right eye states of each frame of
the videos using an annotation tool we developed®. In our
experiments, we select 40 videos as our training set for the
overall LRCN model and 10 videos as the testing set. We
use the CEW dataset together with our training set to train
the front-end CNN model.

Furthermore, we use DeepFake with post-processing
to generate fake face videos, see Figure 1. Specifically, we
first use d1ib to detect face area in each image. Then face
landmarks are extracted for face alignment as described in
section 3. We then generate the corresponding fake faces
using the DeepFake algorithm. If we directly affine warp
this rectangle of fake face back to image using similarity
transformation matrix, the boundary of rectangle is visible
in most cases as the slight color difference of real and fake
face area, as shown in Figure 1(e). To reduce such artifacts,
we generate a specific mask which is a convex polygon de-
termined by landmarks of left and right eyebrow, and the
bottom mouth. As such, we only retain content inside this
mask after affine warping fake face back to original image.
To further smooth the transformation, we apply Gaussian
blur to the boundary of mask. We collect interview and pre-
sentation episodes from web and generated 49 such fake
videos in total.

4.1.1 Data preparation

Face detection, landmark extraction and face alignment are
implemented based on library d1ib [17], which integrates

“Downloaded from http://parnec.nuaa.edu.cn/xtan/
data/ClosedEyeDatabases.html. The other dataset, the EEG
Eye State Data Set https://archive.ics.uci.edu/ml/
datasets/EEG+Eye+State, is not available to download. Similarly,
the ZJU Eyeblink Video Database [23] is not accessible.

5Qur dataset and annotation tool will be made available to download
after the reviewer period.
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Figure 4. Illustration of ROC curve for CNN, LRCN and EAR.

the current state-of-the-art face analysis algorithms. We
generate eye sequences by cropping out eye area of each
frame of our video dataset.

We augment data to increase training robustness. The
training of the front-end CNN model takes images as input,
so we use each frame of generated eye sequences as train-
ing sample, with additional augmentation: horizontal flip-
ping image, modifying image color contrast, brightness and
color distortion. For LRCN joint training, eye sequences
are required. In particular, the augmentation process for se-
quence should be consistent to avoid affect temporal rela-
tionship, such that the process for each frame in sequence
should be same.

With combination of our cropped eye images and CEW
dataset, we train VGG16 as a binary image classifier to dis-
tinguish eye state in image domain. The input size is fixed
as 224x224 and the batch size is 16. The learning rate starts
from 0.01 and decays by 0.9 each 2 epochs. We employ
stochastic gradient descent optimizer and terminate train-
ing until it reaches the maximum epoch number 100. Then
we remove fc7, £c8 layers from trained VGG16 to be the
feature extraction part of LRCN.

We randomly select a sequence which contains a vari-
ety of temporal consecutive eye images with at least one
blinking occurred as LRCN input. Each sample has vari-
able length between 10 to 20 images. We fix the parameters
of CNN layers we obtain above and perform training on
rest part: LSTM cells and fc layer. We set batch size as
4. The learning rate starts from 0.01 and decay by 0.9 each
2 epochs. We use the ADAM optimizer [18] and terminate
training until 100 epochs.

4.2. Evaluations

We evaluate our LRCN method with comparison to other
methods: the eye aspect ratio (EAR) based method [28] and
a CNN-based method. The EAR-based method replies on
eye landmarks to analyze eye state, in terms of the ratio
between the distance of upper and lower eyelid, and the
distance between left and right corner point, which is de-

fined as EAR = %7wherepi(i = ]_’. .. ’6)

Table 1. Performance of our method on collected original videos
and corresponding fake videos.

Video | Average video length | FPS | Rate of blinks
Origin | 10 seconds 30 34.1/ min
Fake 10 seconds 30 3.4/ min

correspond to the landmark points of an eye (see Figure
2(b)). The EAR-based method runs fast as the computation
of EAR is simple. However, the main drawback of EAR
method is that it fully depends on eye landmarks, which
cannot be reliably detected in many practical videos. CNN
image classifier is trained on image domain to distinguish
different classes. We employ VGG16 as our CNN model
to distinguish eye state. The problem with the CNN based
method is that it cannot take into consideration of the tem-
poral consistency during eye blinking.

We evaluate these three methods on the test videos with
32 blinking events. Figure 4 illustrate the ROC curve of
three methods. Note that LRCN show the best performance
0.99 compared to CNN 0.98 and EAR (.79 in terms of the
area under ROC (AUC). CNN-based method shows a good
performance to distinguish the eye state on image domain,
but it can be further improved with LRCN, which considers
long term dynamics to effectively predict eye state. A com-
parison is shown in Figure 5. When the actual eye area is
small, CNN-based model using only image input is ineffec-
tive, while LRCN using temporal correlation can correctly
predict.

We set 0.5 as threshold to distinguish eye open and close
state. We define a blink as a peak above threshold 0.5 with
duration less than 7 frames. Table 1 shows the performance
of our method on 49 collected videos and corresponding
49 fake videos generated using DeepFake, as in Figure
1. Rate of blinks is the number of detected blinks per 60
seconds. We can detect 34.1/min blinks in original videos
6, whereas only 3.4/min blinks is detected in fake videos. If
we set the average blinking rate of a normal human being to
10/min [3], then all DeepFake generated videos are below
this standard. One visual example is shown in Figure 6, with
more examples provided in the supplementary materials.

5. Conclusion

The new developments in deep generative networks have
significantly improve the quality and efficiency in generat-
ing realistically-looking fake face videos. In this work, we
describe a new method to expose fake face videos gener-
ated with deep neural networks. Our method is based on
detection of eye blinking in the videos, which is a physio-
logical signal that is not well presented in the synthesized
fake videos. Our method is tested over benchmarks of eye-
blinking detection datasets and also show promising perfor-

©As the collected videos are mainly interview/presentation episodes,
the rate of blink is a bit higher than normal case.



Original

CNN

probability

Original

LRCN

probability

Seconds

Figure 5. lllustration of comparing CNN and LRCN on left eye of Trump video. LRCN exhibits more smooth and accurate results than
CNN, e.g, if blinking has just occurred, the eyes in next couple frames are likely to be open (frame #139). If there is no trend of eye closing

before, the eye state of next frame is likely to be open (frame #205)

#105’ #135’ #165’

—

]

5

3

8

S ~
! ! '
4 . : :
g [ . ]
&
4 5 6
#135’ #155’

£

4 *

7~

> i i
4 ' .
3 : :
2 L H
4

&

0 1 2 4 5 6

Seconds

Figure 6. Example of eye blinking detection on an original video (top) and a DeepF ake generated fake video (bottom). Note that in the
former, an eye blinking can be detected within 6 seconds, while none is detected in the latter.

mance on detecting videos generated with the DNN-based
software DeepFake.

There are several directions that we would like to fur-
ther improve the current work. First, we will explore other
deep neural network architectures for more effective meth-
ods to detect closed eyes. Second, our current method only
uses the lack of blinking as a cue for detection. However,
the dynamic pattern of blinking should also be considered
— too frequent blinking that is deemed physiologically un-
likely could also be a sign of tampering. Finally, eye blink-

ing is a relatively easy cue in detecting fake face videos,
and sophisticated forgers can still create realistic blinking
effects with post-processing and advanced models trained
with more data. Therefore, we will continue explore other
types of physiological signals that are intrinsic to a live hu-
man but ignored in the Al synthesis methods.

Acknowledgement. This material is based upon work sup-
ported by the United States Air Force Research Labora-
tory (AFRL) and the Defense Advanced Research Projects
Agency (DARPA) under Contract No. FA8750-16-C-0166.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

T. Azim, M. A. Jaffar, and A. M. Mirza. Fully automated
real time fatigue detection of drivers through fuzzy expert
systems. Applied Soft Computing, 18:25-38, 2014.

A. R. Bentivoglio, S. B. Bressman, E. Cassetta, D. Carretta,
P. Tonali, and A. Albanese. Analysis of blink rate patterns
in normal subjects. Movement Disorders, 12(6):1028-1034,
1997.

Z. Boulkenafet, J. Komulainen, and A. Hadid. Face anti-
spoofing based on color texture analysis. In ICIP, pages
2636-2640, 2015.

E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-
tive image models using a laplacian pyramid of adversarial
networks. In Advances in neural information processing sys-
tems, pages 1486—-1494, 2015.

M. Divjak and H. Bischof. Eye blink based fatigue detection
for prevention of computer vision syndrome. In MVA, pages
350-353, 2009.

J. Donahue, L. Anne Hendricks, S. Guadarrama,
M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-
rell. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, pages 2625-2634,
2015.

W. Dong and X. Wu. Fatigue detection based on the distance
of eyelid. In International Workshop on VLSI Design and
Video Technology, pages 365-368, 2005.

T. Drutarovsky and A. Fogelton. Eye blink detection using
variance of motion vectors. In ECCV, pages 436448, 2014.
J. Galbally and S. Marcel. Face anti-spoofing based on gen-
eral image quality assessment. In ICPR, pages 1173-1178,
2014.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672-2680, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770-778, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735-1780, 1997.

W.-B. Horng, C.-Y. Chen, Y. Chang, and C.-H. Fan. Driver
fatigue detection based on eye tracking and dynamk, tem-
plate matching. In International Conference on Networking,
Sensing and Control, volume 1, pages 7-12, 2004.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv preprint, 2017.

K. W. Kim, H. G. Hong, G. P. Nam, and K. R. Park. A study
of deep cnn-based classification of open and closed eyes us-
ing a visible light camera sensor. Sensors, 17(7):1534, 2017.
D. E. King. Dlib-ml: A machine learning toolkit. JMLR,
10:1755-1758, 2009.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

H. Li, P. He, S. Wang, A. Rocha, X. Jiang, and A. C. Kot.
Learning generalized deep feature representation for face
anti-spoofing. TIFS, 13(10):2639-2652, 2018.

L. Li, X. Feng, X. Jiang, Z. Xia, and A. Hadid. Face anti-
spoofing via deep local binary patterns. In ICIP, pages 101—
105, 2017.

M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-
image translation networks. In NIPS, pages 700-708, 2017.
B. Mandal, L. Li, G. S. Wang, and J. Lin. Towards detec-
tion of bus driver fatigue based on robust visual analysis of
eye state. IEEE Transactions on Intelligent Transportation
Systems, 18(3):545-557, 2017.

G. Pan, L. Sun, Z. Wu, and S. Lao. Eyeblink-based anti-
spoofing in face recognition from a generic webcamera. In
ICCV, pages 1-8, 2007.

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsupervised
images through adversarial training. In CVPR, volume 3,
page 6, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

F. Song, X. Tan, X. Liu, and S. Chen. Eyes closeness detec-
tion from still images with multi-scale histograms of prin-
cipal oriented gradients. Pattern Recognition, 47(9):2825—
2838, 2014.

T. Soukupova and J. Cech. Real-time eye blink detection us-
ing facial landmarks. In 21st Computer Vision Winter Work-
shop, pages 1-8, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15:1929-1958, 2014.

H. Steiner, A. Kolb, and N. Jung. Reliable face anti-spoofing
using multispectral swir imaging. In ICB, pages 1-8, 2016.
F. M. Sukno, S.-K. Pavani, C. Butakoff, and A. F. Frangi.
Automatic assessment of eye blinking patterns through sta-
tistical shape models. In International Conference on Com-
puter Vision Systems, pages 33-42, 2009.

Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-
domain image generation. arXiv preprint arXiv:1611.02200,
2016.

D. Torricelli, M. Goffredo, S. Conforto, and M. Schmid.
An adaptive blink detector to initialize and update a view-
basedremote eye gaze tracking system in a natural scenario.
Pattern Recognition Letters, 30(12):1144—-1150, 2009.

Q. Wang, J. Yang, M. Ren, and Y. Zheng. Driver fatigue de-
tection: a survey. In The Sixth World Congress on Intelligent
Control and Automation, volume 2, pages 8587-8591, 2006.
F. Yang, X. Yu, J. Huang, P. Yang, and D. Metaxas. Robust
eyelid tracking for fatigue detection. In ICIP, pages 1829—
1832, 2012.



