Welcome to CSE 486/586

- Why do you want to take this course?
- Some positive feedback of this course...
 - "(CSE 486/586) didn't only helped with understanding the concepts involved, but have also always given me something cool and interesting to talk about in interviews."
 - "I am actually learning new things."
- Some negative feedback of this course...
 - "Projects are a bit too much on the difficult side."
 - "The midterm came almost out of nowhere."
- Are you ready? :-)

Building a Distributed System

- "The number of people who know how to build really solid distributed systems...is about ten"
 - Scott Shenker, Professor at UC Berkeley

- The point: it's hard to build a solid distributed system.
- So, why is it hard?...but first of all...

What is a Distributed System?

- A distributed system is a collection of entities with a common goal, each of which is autonomous, programmable, asynchronous and failure-prone, and which communicate through an unreliable communication medium.
- This will be a working definition for us.

Why Is It Hard to Build One?

- Scale: hundreds or thousands of machines
 - Google: 4K-machine MapReduce cluster
 - Yahoo!: 4K-machine Hadoop cluster
 - Akamai: 70K machines distributed over the world
 - Facebook: 60K machines providing the service
 - Hard enough to program one machine!
- Dynamism: machines do fail!
 - 50 machine failures out of 20K machine cluster per day (reported by Yahoo!)
 - 1 disk failure out of 16K disks every 6 hours (reported by Google)
- What else?
 - Concurrent execution, consistency, etc.
OK; But Who Cares?

• This is where all the actions are!
 – What is the two biggest driving forces in the computing industry for the last 5 years?
 – It's the cloud!
 – And smartphones!
• Now --- it's all about distributed systems!
 – Well...with a bit of exaggeration...:-)
What Exactly Am I Going to Learn?
Distributed Systems 10 Questions!

• Course goal: answering 10 questions on distributed systems
 – At the end of the semester, if you can answer only 10 questions about distributed systems, you’ll probably get an A.
 – Easy enough!
• What are those questions?
 – Organized in 6 themes
 – 1–2 questions in each theme
 – A few (or several) lectures to answer each question

Theme 1: Communications

• Q1: how do you talk to another machine?
 – Networking basics
• Q2: how do you talk to multiple machines at once?
 – Multicast
• Q3: can you call a function/method/procedure running in another machine?
 – RPC

Theme 2: Concurrency

• Q4: how do you control access to shared resources?
 – Distributed mutual exclusion, distributed transactions, 2-phase commit, etc.
Theme 3: Hint

I want to shake my tail.

OK

No, I don’t want to.

No way!

Theme 3: Consensus

- Q5: how do multiple machines reach an agreement?
 - Time & synchronization, global states, snapshots, mutual exclusion, leader election, paxos
- Bad news: it’s impossible!
 - The impossibility of consensus

Theme 4: Hint

Who has a brain?

I do.

I don’t.

Theme 4: Storage Management

- Q6: how do you locate where things are and access them?
 - DHT, DFS

Theme 5: Hint

I have a feeling that something went wrong...

ZZZ...

Theme 5: Non-Byzantine Failures

- Q7: how do you know if a machine has failed?
 - Failure detection
- Q8: how do you program your system to operate continually even under failures?
 - Replication, gossiping
Theme 6: Hint

We’re under attack!

Theme 6: Byzantine Failures

• Q9: how do you deal with attackers?
 – Security
• Q10: what if some machines malfunction?
 – Byzantine fault tolerance

Acknowledgements

• These slides heavily contain material developed and copyrighted by Indranil Gupta at UIUC.
• The material was originally developed for courses CS425/CSE424/ECE428 at UIUC.