

CSE 486/586 Distributed Systems Introduction

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Welcome to CSE 486/586

- Why do you want to take this course?
- Some positive feedback of this course...
 - *"(CSE 486/586) didn't only helped with understanding the concepts involved, but have also always given me something cool and interesting to talk about in interviews."*
 - *"I am actually learning new things."*
- Some negative feedback of this course...
 - *"Projects are a bit too much on the difficult side."*
 - *"The midterm came almost out of nowhere."*
- Are you ready? ;-)

CSE 486/586, Spring 2013

2

Building a Distributed System

- *"The number of people who know how to build really solid distributed systems...is about ten"*
 - Scott Shenker, Professor at UC Berkeley
- The point: it's hard to build a solid distributed system.
- So, why is it hard?...but first of all...

CSE 486/586, Spring 2013

3

What is a Distributed System?

CSE 486/586, Spring 2013

4

What is a Distributed System?

- *A distributed system is a collection of entities with a common goal, each of which is autonomous, programmable, asynchronous and failure-prone, and which communicate through an unreliable communication medium.*
- This will be a working definition for us.

CSE 486/586, Spring 2013

5

Why Is It Hard to Build One?

- **Scale:** hundreds or thousands of machines
 - Google: 4K-machine MapReduce cluster
 - Yahoo!: 4K-machine Hadoop cluster
 - Akamai: 70K machines distributed over the world
 - Facebook: 60K machines providing the service
 - Hard enough to program one machine!
- **Dynamism:** machines do fail!
 - 50 machine failures out of 20K machine cluster per day (reported by Yahoo!)
 - 1 disk failure out of 16K disks every 6 hours (reported by Google)
- **What else?**
 - Concurrent execution, consistency, etc.

CSE 486/586, Spring 2013

6

OK; But Who Cares?

- This is where all the actions are!
 - What are the two biggest driving forces in the computing industry for the last 5 years?
 - It's the cloud!
 - And smartphones!
 - They are distributed!
- Now --- it's all about distributed systems!
 - Well...with a bit of exaggeration... ;-)

CSE 486/586, Spring 2013

7

OK, Cool; How Am I Going to Learn?

- Textbook
 - Main: *Distributed Systems: Concepts and Design, 5th Edition* (Courtois, Dollimore, Kindberg, Blair)
 - Optional: *Distributed Systems: Principles and Paradigms, 2nd Edition*, (Tanenbaum, Van Steen)
- Prerequisites
 - Minimum: *CSE 250 Data Structures and Algorithms*
 - Ideal: Basic networking concepts (TCP/IP, routing), basic OS concepts (processes, threads, synchronization, file systems), systems programming (pthread, socket)
- Lectures
- (Non-graded) HW assignments
- Programming assignments
- Exams

CSE 486/586, Spring 2013

8

What Am I Going to Build?

- A "starter" project: project 0
- A distributed key-value storage (based on Amazon Dynamo) on Android in 3 stages: project 1 ~ project 3
- For each project, submit a solution/design document as well as code
- Individual submission

CSE 486/586, Spring 2013

9

Important Policies

- Late submission: 20% penalty per day
- Regrading
 - If requested, the entire work will be regraded
- No "I"
- No makeup exam
- No grade negotiation

CSE 486/586, Spring 2013

10

Academic Integrity Policies

- Academic integrity: exams, HW, and code
 - Copying others' code: no
 - Copying from other sources (the Web, books, etc.): get permission
 - Exceptions: <http://developer.android.com> (copy freely, but mark clearly that you copied)
 - <http://stackoverflow.com> (generally OK to see how things get done; but do not copy and paste.)
 - If found, the incident will be reported to the university
- Will use an automatic similarity checker.
 - When similar submissions are found, both will get F for the entire semester.
- Please be careful when using an online code repository, e.g., GitHub, BitBucket, etc.

CSE 486/586, Spring 2013

11

How Can I Reach the Teaching Staff?

- Steve: 304 Davis
 - Lectures (MWF 3:00pm-3:50pm)
 - Office hours (MWF 4pm-5pm)
- TAs
 - (Tentative) Recitations: M (10:00 – 10:50) & F (2:00 – 2:50) @ Baldy 106
 - Office hours: generally 3 hours for each and every weekday will be covered.
 - Please do not expect that the TAs will stay more than 3 hours.
- Use Piazza (<http://piazza.com/class>), instead of email, mailing list, blog, etc.

CSE 486/586, Spring 2013

12

What Exactly Am I Going to Learn? Distributed Systems 10 Questions!

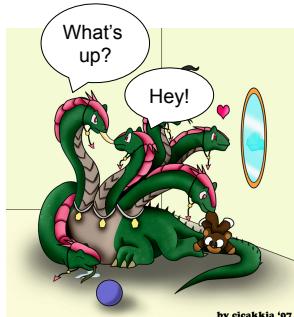
- Course goal: answering **10 questions on distributed systems**
 - At the end of the semester, if you can answer only 10 questions about distributed systems, you'll probably get an A.
 - Easy enough!
- What are those questions?
 - Organized in 6 themes
 - 1~2 questions in each theme
 - A few (or several) lectures to answer each question

CSE 486/586, Spring 2013

13

What Exactly Am I Going to Learn?

- Introducing...
- Hydie!



by cicakkia '07

CSE 486/586, Spring 2013

14

Theme 1: Hint

CSE 486/586, Spring 2013

15

Theme 1: Communications

- Q1: **how do you talk to another machine?**
 - Networking basics
- Q2: **how do you talk to multiple machines at once?**
 - Multicast
- Q3: **can you call a function/method/procedure running in another machine?**
 - RPC

CSE 486/586, Spring 2013

16

Theme 2: Hint

CSE 486/586, Spring 2013

17

Theme 2: Concurrency

- Q4: **how do you control access to shared resources?**
 - Distributed mutual exclusion, distributed transactions, 2-phase commit, etc.

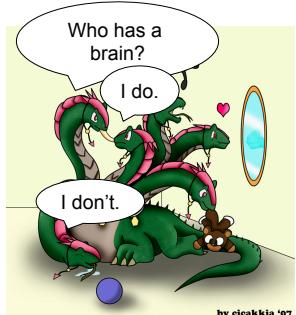
CSE 486/586, Spring 2013

18

Theme 3: Hint

CSE 486/586, Spring 2013

19


Theme 3: Consensus

- Q5: **how do multiple machines reach an agreement?**
 - Time & synchronization, global states, snapshots, mutual exclusion, leader election, paxos
- **Bad news:** it's impossible!
 - The impossibility of consensus

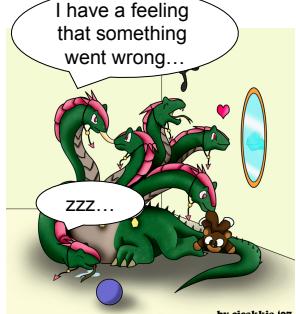
CSE 486/586, Spring 2013

20

Theme 4: Hint

CSE 486/586, Spring 2013

21


Theme 4: Storage Management

- Q6: **how do you locate where things are and access them?**
 - DHT, DFS

CSE 486/586, Spring 2013

22

Theme 5: Hint

CSE 486/586, Spring 2013

23

Theme 5: Non-Byzantine Failures

- Q7: **how do you know if a machine has failed?**
 - Failure detection
- Q8: **how do you program your system to operate continually even under failures?**
 - Replication, gossiping

CSE 486/586, Spring 2013

24

Theme 6: Hint

CSE 486/586, Spring 2013

25

Theme 6: Byzantine Failures

- Q9: [how do you deal with attackers?](#)
 - Security
- Q10: [what if some machines malfunction?](#)
 - Byzantine fault tolerance

CSE 486/586, Spring 2013

26

Acknowledgements

- These slides heavily contain material developed and copyrighted by Indranil Gupta at UIUC.
- The material was originally developed for courses CS425/CSE424/ECE428 at UIUC.

CSE 486/586, Spring 2013

27