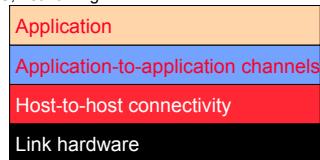


CSE 486/586 Distributed Systems The Internet in 2 Hours: The Second Hour

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Recap


- The Internet
 - A network of networks
 - A case study as a distributed system
- Protocol
 - An agreement between multiple parties
 - Syntax & semantics
- Design a system
 - Why, what, and how
- The Internet
 - Connecting by layering

CSE 486/586, Spring 2013

2

Layering: A Modular Approach

- Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
- Interface between layers defines interaction
 - Hides implementation details
 - Layers can change without disturbing other layers
- “The” computer science approach
 - ISA, OS, networking...

CSE 486/586, Spring 2013

3

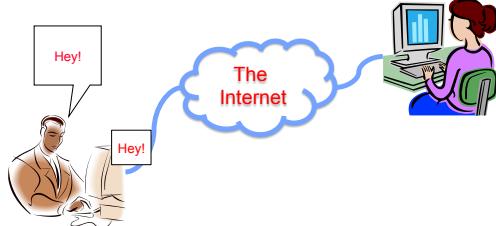
Challenges in Layering

- What to put on top of physical networks?
- Assumption (for the sake of the discussion):
 - Packet switching (a conversation is divided into smaller units called packets).
- Basic things for enabling a conversation between remote hosts:
 - Addressing (where do I send a msg?)
 - Routing (how do I reach that address?)
- Most importantly, survivability
 - Protection of a conversation as long as there's a physical path between entities communicating and they are alive.
- What are some of the threats that disrupt a conversation?
 - Packet loss, out-of-order delivery, duplicate packets, etc.

CSE 486/586, Spring 2013

4

We Must Ask Ourselves...


- In a conversation, there are two components involved
 - Hosts
 - Network
- So, one more question: where do we want to put the functionalities? More specifically, what would be a good network/host division of labor?
- Addressing and routing?
 - Yeah, probably in the network
- What about conversation protection mechanisms?
 - The network or hosts?

CSE 486/586, Spring 2013

5

So, How to Protect a Conversation?

- Think about the following scenario

CSE 486/586, Spring 2013

6

Two Approaches to Survability

- Approach 1: "stateful" network
 - The network keeps the state information about conversations

CSE 486/586, Spring 2013

7

Two Approaches to Survability

- Approach 2: "stateless" network
 - The ends keep the state information about conversations

CSE 486/586, Spring 2013

8

Two Approaches to Survability

- Stateless networks' principle: **fate-sharing**
 - The conversation shares the same fate with the "ends."
 - "*it is acceptable to lose the state information associated with an entity if, at the same time, the entity itself is lost.*"
- Advantages
 - Fate-sharing protects against **any number of intermediate network failures** (what about replication?)
 - Fate-sharing is **much easier to engineer**.
- The result: a "best-effort" network
 - The IP (Internet Protocol) layer doesn't really provide anything other than "best-effort" delivery (i.e., **addressing and routing**).
 - The end hosts provide conversation protection mechanisms.

CSE 486/586, Spring 2013

9

The Internet Protocol Suite

The waist facilitates interoperability

CSE 486/586, Spring 2013

10

IP Suite: End Hosts vs. Routers

CSE 486/586, Spring 2013

11

End-to-End Arguments

- Helps **resisting the tendency to put and hide complicated things in the lower layers**
- If a functionality **must be implemented end-to-end**, then **don't implement it in the network**.
 - Exception: when there are clear performance improvements
- Laid out in "*End-to-End Arguments in System Design*" by J.H. Saltzer, D.P. Reed and D.D. Clark (optional reading)
- A good rule of thumb in **any** system design, but still not something to follow blindly

CSE 486/586, Spring 2013

12

CSE 486/586 Administrivia

- Recitations from next week.
 - M (10:00 – 10:50) & F (2:00 – 2:50) @ 106 Baldy
- PA 1 description is out.
 - Please try it out right away and see how much it takes you.
- Please use Piazza; all announcements will go there.
 - Anonymous/private posting: generally questions are beneficial to the whole class; please consider posting it publicly first.
 - If you want an invite, let me know.
- Please come to my office during the office hours!
 - Give feedback about the class, ask questions, etc.
- **Please don't forget to bring your laptop next time!**
 - We'll do some lab sessions.

CSE 486/586, Spring 2013

13

TCP/IP

- IP “best-effort” network
 - The network knows the source and the destination.
 - A conversation is divided into packets.
 - Makes the best effort to deliver packets
 - Packet loss, corruption, out-of-order delivery, etc. could all happen.
- TCP (Transmission Control Protocol)
 - Handles the problems
 - Implemented at the end hosts

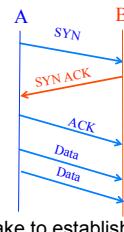
14

OK; Let's Think about It Together...

- Is this always a good thing?
- Is today's Internet still stateless?

CSE 486/586, Spring 2013

15

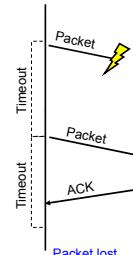

TCP

- An end-to-end protocol
- Protects conversations
 - Receiver is supposed to send an ack (acknowledgement) packet.
 - Packet loss → retransmission
 - Out-of-order delivery, duplicate packets → sequence numbers
 - Packet corruption → checksum
- Controls congestion
 - The network might be over-utilized
 - Prevents the network from collapsing (which was actually a concern in the late 80's)
- TCP is an abstraction: a reliable, byte-stream connection

CSE 486/586, Spring 2013

16

A (Very) Brief Overview of TCP


- Three-way handshake to establish connection
 - Host A sends a **SYN** (open) to the host B
 - Host B returns a **SYN ACK**
 - Host A sends an **ACK** to acknowledge the **SYN ACK**
- Why 3-way instead of 2-way?
 - Reachability

CSE 486/586, Spring 2013

17

Retransmission

- Timeout & retransmission to handle packet loss

CSE 486/586, Spring 2013

18

The Dark Side of TCP

- There's overhead associated.
 - Connection establishment: 3-way handshake
 - Packet loss: retransmission timeout
 - Congestion control: doesn't utilize full bandwidth
- More importantly, some applications **do not** need these.
- Examples?
- So, enter **UDP (User Datagram Protocol)**: exposes almost exactly what IP can give you.

CSE 486/586, Spring 2013

19

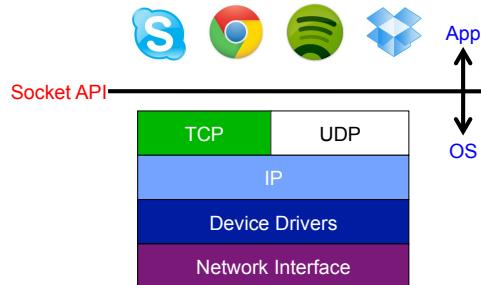
Why Would Anyone Use UDP?


- **Fine control over what data is sent and when**
 - As soon as an application process writes
 - ... UDP will package the data and send the packet
- **No delay for connection establishment**
 - UDP just blasts away without any formal preliminaries
 - ... which avoids introducing any unnecessary delays
- **No connection state**
 - No allocation of buffers, parameters, sequence #s, etc.
 - ... making it easier to handle many active clients at once
- **Small packet header overhead**
 - UDP header is only eight-bytes long

CSE 486/586, Spring 2013

20

Popular Applications That Use UDP


- **Multimedia streaming**
 - Retransmitting lost/corrupted packets is not worthwhile
 - By the time the packet is retransmitted, it's too late
 - E.g., telephone calls, video conferencing, gaming
- **Simple query protocols like Domain Name System**
 - Overhead of connection establishment is overkill
 - Easier to have the application retransmit if needed
 - Will cover this in a separate lecture

CSE 486/586, Spring 2013

21

What Applications See

CSE 486/586, Spring 2013

22

Summary

- **What to put on top of physical networks?**
 - Layers providing **survivability**
- **Where to put functionalities?**
 - **Fate-sharing & end-to-end arguments**
 - IP layer doesn't provide much
 - TCP handles most of the survivability issues
- **TCP & UDP: the two transport protocols of the Internet**
- **What interface do applications see?**
 - Socket API
- Next: An introduction to Android programming

CSE 486/586, Spring 2013

23

Acknowledgements

- These slides contain material developed and copyrighted by
 - Indranil Gupta at UIUC
 - Mike Freedman and Jen Rexford at Princeton

CSE 486/586, Spring 2013

24