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Last Time 
•  Models of Distributed Systems 

–  Synchronous systems 
–  Asynchronous systems 

•  Failure detectors---why? 
–  Because things do fail. 

•  Failure detectors---what? 
–  Properties: completeness & accuracy 
– Metrics: bandwidth, detection time, scale, accuracy 

•  Failure detectors---how? 
–  Two processes: Heartbeating and Ping 
– Multiple processes: Centralized, ring, all-to-all 
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Today’s Question 
•  Servers in the cloud need to timestamp events  
•  Server A and server B in the cloud have different 

clock values 
–  You buy an airline ticket online via the cloud 
–  It’s the last airline ticket available on that flight  
–  Server A timestamps your purchase at 9h:15m:32.45s 
– What if someone else also bought the last ticket (via server 

B) at 9h:20m:22.76s? 
– What if Server A was > 10 minutes ahead of server B? 

Behind?  
– How would you know what the difference was at those 

times? 
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Physical Clocks & Synchronization 

•  Some definitions: Clock Skew versus Drift 
•  Clock Skew = Relative Difference in clock values of two 

processes 

•  Clock Drift = Relative Difference in clock frequencies (rates) 
of two processes 

•  A non-zero clock drift will cause skew to continuously 
increase. 

•  Real-life examples 
–  Ever had “make: warning: Clock skew detected. Your build 

may be incomplete.”? 
–  It’s reported that in the worst case, there’s 1 sec/day drift in 

modern HW. 
–  Almost all physical clocks experience this. 
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Synchronizing Physical Clocks 
•  Ci(t): the reading of the software clock at process i when the 

real time is t. 
•  External synchronization: For a synchronization bound D>0, 

and for source S of UTC time, 
     
    for i=1,2,...,N and for all real times t. 
    Clocks Ci are accurate to within the bound D. 
•  Internal synchronization: For a synchronization bound D>0, 
  
    for i, j=1,2,...,N and for all real times t. 
    Clocks Ci agree within the bound D. 
•  External synchronization with D ⇒ Internal synchronization with 

2D 
•  Internal synchronization with D ⇒ External synchronization 

with ?? 
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Clock Synchronization Using a Time 
Server 
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Cristian’s Algorithm: External Sync 

•  Uses a time server to synchronize clocks 

•  Mainly designed for LAN 

•  Time server keeps the reference time (say UTC) 

•   A client asks the time server for time, the server 
responds with its current time, and the client uses the 
received value T to set its clock 

•  But network round-trip time introduces an error. 

•  So what do we need to do? 
–  Estimate one-way delay 
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Cristian’s Algorithm 
•  Let RTT = response-received-time – request-sent-

time (measurable at client) 

•  Also, suppose we know 
–  The minimum value min of the client-server one-way 

transmission time [Depends on what?] 

–  That the server timestamped the message at the last 
possible instant before sending it back 

•  Then, the actual time could be between [T+min,T
+RTT— min] 
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Cristian’s Algorithm 
•  (From the previous slide), the accuracy is: +-(RTT/2 

– min) 
•  Cristian’s algorithm 

–  A client asks its time server. 
–  The time server sends its time T. 
–  The client estimates the one-way delay and sets its time. 

»  It uses T + RTT/2 

•  Want to improve accuracy? 
–  Take multiple readings and use the minimum RTT à tighter 

bound 
–  For unusually long RTTs, ignore them and repeat the 

request à removing outliers 
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Berkeley Algorithm: Internal Sync 

•  Uses an elected master process to synchronize 
among clients, without the presence of a time server  

•  The elected master broadcasts to all machines 
requesting for their time and adjusts times received 
for RTT & latency, averages times 

•  The master tells each machine the difference. 

•  Issues 
•  Averaging client’s clocks may cause the entire system to 

drift away from UTC over time 

•  Failure of the master requires some time for re-election, so 
accuracy cannot be guaranteed 
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CSE 486/586 Administrivia 
•  How was the assignment? 
•  PA2 will be out soon. 
•  Please read the Android docs. 

– OnClickListener, OnKeyListener, AsyncTask, Thread, 
Socket, etc. 

•  Please understand the flow of PA1. 
•  Please be careful about your coding style. 
•  Lecture slides 

–  I will try posting them a day before. 
–  I will also post a PDF version. 

•  There is a course website. 
–  Schedule, syllabus, readings, etc. 
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The Network Time Protocol (NTP) 

•  Uses a network of time servers to synchronize all 
processes on a network.  

•  Designed for the Internet 
•  Why not Christian’s algo.? 

•  Time servers are connected by a synchronization 
subnet tree.  The root is in touch with UTC.  Each 
node synchronizes its children nodes. 

•  Why? 
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Messages Exchanged Between a 
Pair of NTP Peers (“Connected 
Servers”) 
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Each message bears timestamps of recent message events: the local time 

when the previous NTP message was sent and received, and the local time 

when the current message was transmitted. 
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Theoretical Base for NTP 

•  oi: estimate of the actual offset between the two 
clocks 

•  di: estimate of accuracy of oi ; total transmission 
times for m and m’; di=t+t’ 

•  For better accuracy, 
– One NTP server talks to many other peers. 
–  Each NTP server applies a data filtering algorithm. 
–  Then keeps the 8 most recent pairs of <oi, di>, and selects 

the minimum di 14 
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Theoretical Base for NTP 
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First, let's get o :
i−2T = i−3T + t + o

iT = i−1T + t'−o
⇒ o = ( i−2T − i−3T + i−1T − iT ) /2 + (t '−t) /2
Then, get the bound for (t '−t) /2 :
−t '−t ≤ t '−t ≤ t '+t (since t ',t ≥ 0)

€ 

Finally, we set :
io = ( i−2T − i−3T + i−1T − iT ) /2
id = t + t'= i−2T − i−3T + iT − i−1T

Then we get :
io − id /2 ≤ o ≤ io + id /2.
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Then a Breakthrough… 
•  We cannot sync multiple clocks perfectly. 
•  Thus, if we want to order events happened at 

different processes (remember the ticket reservation 
example?), we cannot rely on physical clocks. 

•  Then came logical time. 
–  First proposed by Leslie Lamport in the 70’s 
–  Based on causality of events 
– Defined relative time, not absolute time 

•  Critical observation: time (ordering) only matters if 
two or more processes interact, i.e., send/receive 
messages. 
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Events Occurring at Three 
Processes 
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Summary 
•  Time synchronization important for distributed 

systems 
– Cristian’s algorithm 
–  Berkeley algorithm 
– NTP 

•  Relative order of events enough for practical 
purposes 

–  Lamport’s logical clocks 

•  Next: continue on logical clocks and the global 
system state 
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