
C 1

CSE 486/586, Spring 2013

CSE 486/586 Distributed Systems
Time and Synchronization

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2013

Last Time
•  Models of Distributed Systems

–  Synchronous systems
–  Asynchronous systems

•  Failure detectors---why?
–  Because things do fail.

•  Failure detectors---what?
–  Properties: completeness & accuracy
– Metrics: bandwidth, detection time, scale, accuracy

•  Failure detectors---how?
–  Two processes: Heartbeating and Ping
– Multiple processes: Centralized, ring, all-to-all

2

CSE 486/586, Spring 2013

Today’s Question
•  Servers in the cloud need to timestamp events
•  Server A and server B in the cloud have different

clock values
–  You buy an airline ticket online via the cloud
–  It’s the last airline ticket available on that flight
–  Server A timestamps your purchase at 9h:15m:32.45s
– What if someone else also bought the last ticket (via server

B) at 9h:20m:22.76s?
– What if Server A was > 10 minutes ahead of server B?

Behind?
– How would you know what the difference was at those

times?

3 CSE 486/586, Spring 2013

Physical Clocks & Synchronization

•  Some definitions: Clock Skew versus Drift
•  Clock Skew = Relative Difference in clock values of two

processes

•  Clock Drift = Relative Difference in clock frequencies (rates)
of two processes

•  A non-zero clock drift will cause skew to continuously
increase.

•  Real-life examples
–  Ever had “make: warning: Clock skew detected. Your build

may be incomplete.”?
–  It’s reported that in the worst case, there’s 1 sec/day drift in

modern HW.
–  Almost all physical clocks experience this.

4

CSE 486/586, Spring 2013

Synchronizing Physical Clocks
•  Ci(t): the reading of the software clock at process i when the

real time is t.
•  External synchronization: For a synchronization bound D>0,

and for source S of UTC time,

 for i=1,2,...,N and for all real times t.
 Clocks Ci are accurate to within the bound D.
•  Internal synchronization: For a synchronization bound D>0,

 for i, j=1,2,...,N and for all real times t.
 Clocks Ci agree within the bound D.
•  External synchronization with D ⇒ Internal synchronization with

2D
•  Internal synchronization with D ⇒ External synchronization

with ??

5

,)()(DtCtS i <−

DtCtC ji <−)()(

CSE 486/586, Spring 2013

Clock Synchronization Using a Time
Server

6

m	

r	

m	

t	

p	

 Time server,S	

C 2

CSE 486/586, Spring 2013

Cristian’s Algorithm: External Sync

•  Uses a time server to synchronize clocks

•  Mainly designed for LAN

•  Time server keeps the reference time (say UTC)

•  A client asks the time server for time, the server
responds with its current time, and the client uses the
received value T to set its clock

•  But network round-trip time introduces an error.

•  So what do we need to do?
–  Estimate one-way delay

7 CSE 486/586, Spring 2013

Cristian’s Algorithm
•  Let RTT = response-received-time – request-sent-

time (measurable at client)

•  Also, suppose we know
–  The minimum value min of the client-server one-way

transmission time [Depends on what?]

–  That the server timestamped the message at the last
possible instant before sending it back

•  Then, the actual time could be between [T+min,T
+RTT— min]

8

Request sent Response received
RTT

min
T

min

CSE 486/586, Spring 2013

Cristian’s Algorithm
•  (From the previous slide), the accuracy is: +-(RTT/2

– min)
•  Cristian’s algorithm

–  A client asks its time server.
–  The time server sends its time T.
–  The client estimates the one-way delay and sets its time.

»  It uses T + RTT/2

•  Want to improve accuracy?
–  Take multiple readings and use the minimum RTT à tighter

bound
–  For unusually long RTTs, ignore them and repeat the

request à removing outliers

9 CSE 486/586, Spring 2013

Berkeley Algorithm: Internal Sync

•  Uses an elected master process to synchronize
among clients, without the presence of a time server

•  The elected master broadcasts to all machines
requesting for their time and adjusts times received
for RTT & latency, averages times

•  The master tells each machine the difference.

•  Issues
•  Averaging client’s clocks may cause the entire system to

drift away from UTC over time

•  Failure of the master requires some time for re-election, so
accuracy cannot be guaranteed

10

CSE 486/586, Spring 2013

CSE 486/586 Administrivia
•  How was the assignment?
•  PA2 will be out soon.
•  Please read the Android docs.

– OnClickListener, OnKeyListener, AsyncTask, Thread,
Socket, etc.

•  Please understand the flow of PA1.
•  Please be careful about your coding style.
•  Lecture slides

–  I will try posting them a day before.
–  I will also post a PDF version.

•  There is a course website.
–  Schedule, syllabus, readings, etc.

11 CSE 486/586, Spring 2013

The Network Time Protocol (NTP)

•  Uses a network of time servers to synchronize all
processes on a network.

•  Designed for the Internet
•  Why not Christian’s algo.?

•  Time servers are connected by a synchronization
subnet tree. The root is in touch with UTC. Each
node synchronizes its children nodes.

•  Why?

12

Secondry servers,
sync’ed by the
primary server

Primary server, direct sync.

Strata 3,
sync’ed by the
secondary
servers

1

2 2 2

3 3 3 3 3 3

C 3

CSE 486/586, Spring 2013

Messages Exchanged Between a
Pair of NTP Peers (“Connected
Servers”)

13

T	

i	

T	

i-1	

T	

i	

-2	

T	

i	

-	

3	

Server B	

Server A	

Time	

m	

 m'	

Time	

Each message bears timestamps of recent message events: the local time

when the previous NTP message was sent and received, and the local time

when the current message was transmitted.

CSE 486/586, Spring 2013

Theoretical Base for NTP

•  oi: estimate of the actual offset between the two
clocks

•  di: estimate of accuracy of oi ; total transmission
times for m and m’; di=t+t’

•  For better accuracy,
– One NTP server talks to many other peers.
–  Each NTP server applies a data filtering algorithm.
–  Then keeps the 8 most recent pairs of <oi, di>, and selects

the minimum di 14

T	

i	

T	

i-1	

T	

i	

-2	

T	

i	

-	

3	

Server B	

Server A	

Time	

m	

 m'	

Time	

CSE 486/586, Spring 2013

Theoretical Base for NTP

15

T	

i	

T	

i-1	

T	

i	

-2	

T	

i	

-	

3	

Server B	

Server A	

Time	

m	

 m'	

Time	

(with delay t)	

 (with delay t’)	

€

First, let's get o :
i−2T = i−3T + t + o

iT = i−1T + t'−o
⇒ o = (i−2T − i−3T + i−1T − iT) /2 + (t '−t) /2
Then, get the bound for (t '−t) /2 :
−t '−t ≤ t '−t ≤ t '+t (since t ',t ≥ 0)

€

Finally, we set :
io = (i−2T − i−3T + i−1T − iT) /2
id = t + t'= i−2T − i−3T + iT − i−1T

Then we get :
io − id /2 ≤ o ≤ io + id /2.

CSE 486/586, Spring 2013

Then a Breakthrough…
•  We cannot sync multiple clocks perfectly.
•  Thus, if we want to order events happened at

different processes (remember the ticket reservation
example?), we cannot rely on physical clocks.

•  Then came logical time.
–  First proposed by Leslie Lamport in the 70’s
–  Based on causality of events
– Defined relative time, not absolute time

•  Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive
messages.

16

CSE 486/586, Spring 2013

Events Occurring at Three
Processes

17

p1

p2

p3

a b

c d

e f

m1

m2

Physi cal
time

CSE 486/586, Spring 2013

Summary
•  Time synchronization important for distributed

systems
– Cristian’s algorithm
–  Berkeley algorithm
– NTP

•  Relative order of events enough for practical
purposes

–  Lamport’s logical clocks

•  Next: continue on logical clocks and the global
system state

18

C 4

CSE 486/586, Spring 2013 19

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

