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Last Time

* Models of Distributed Systems
— Synchronous systems
— Asynchronous systems
« Failure detectors---why?
— Because things do fail.
« Failure detectors---what?
— Properties: completeness & accuracy
— Metrics: bandwidth, detection time, scale, accuracy
« Failure detectors---how?
— Two processes: Heartbeating and Ping
— Multiple processes: Centralized, ring, all-to-all
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Today’s Question

« Servers in the cloud need to timestamp events
« Server A and server B in the cloud have different
clock values
— You buy an airline ticket online via the cloud
— It's the last airline ticket available on that flight
— Server A timestamps your purchase at 9h:15m:32.45s

— What if someone else also bought the last ticket (via server
B) at 9h:20m:22.76s?

— What if Server A was > 10 minutes ahead of server B?
Behind?

— How would you know what the difference was at those
times?
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Physical Clocks & Synchronization

* Some definitions: Clock Skew versus Drift
« Clock Skew = Relative Difference in clock values of two
processes

« Clock Drift = Relative Difference in clock frequencies (rates)
of two processes

« A non-zero clock drift will cause skew to continuously
increase.

» Real-life examples

— Ever had “make: warning: Clock skew detected. Your build
may be incomplete.”?

— It's reported that in the worst case, there’s 1 sec/day drift in
modern HW.

— Almost all physical clocks experience this.
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Synchronizing Physical Clocks

» C(1): the reading of the software clock at process i when the
real time is t.

. : For a synchronization bound D>0,
and for source S of UTC time,

|S(t)-Ci(1)| < D,
for i=1,2,...,N and for all real times t.
Clocks C; are accurate to within the bound D.
. : For a synchronization bound D>0,
() -C, (0] <D
for i, j=1,2,...,N and for all real times .
Clocks C; agree within the bound D.

External synchronization with D = Internal synchronization with
2D

Internal synchronization with D = External synchronization
with ??
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Clock Synchronization Using a Time
Server
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Cristian’s Algorithm: External Sync

Uses a time server to synchronize clocks
Mainly designed for LAN

Time server keeps the reference time (say UTC)

A client asks the time server for time, the server
responds with its current time, and the client uses the
received value T to set its clock

But network round-trip time introduces an error.

So what do we need to do?

— Estimate one-way delay
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Cristian’s Algorithm

« Let RTT = response-received-time — request-sent-
time (measurable at client)

« Also, suppose we know

— The minimum value min of the client-server one-way
transmission time [Depends on what?]

— That the server timestamped the message at the last
possible instant before sending it back

« Then, the actual time could be between [T+min,T

+RTT— min]
. T .
- min 1 1 C min
RTT .
Request sent Response received
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Cristian’s Algorithm

« (From the previous slide), the accuracy is: +-(RTT/2
— min)

« Cristian’s algorithm

— A client asks its time server.

— The time server sends its time T.

— The client estimates the one-way delay and sets its time.

» Ituses T+ RTT/2

« Want to improve accuracy?

— Take multiple readings and use the minimum RTT -> tighter
bound

— For unusually long RTTs, ignore them and repeat the
request - removing outliers
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Berkeley Algorithm: Internal Sync

Uses an elected master process to synchronize
among clients, without the presence of a time server

The elected master broadcasts to all machines
requesting for their time and adjusts times received
for RTT & latency, averages times

The master tells each machine the difference.

Issues

« Averaging client’s clocks may cause the entire system to
drift away from UTC over time

« Failure of the master requires some time for re-election, so
accuracy cannot be guaranteed
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CSE 486/586 Administrivia

* How was the assignment?
« PA2 will be out soon.
* Please read the Android docs.

— OnClickListener, OnKeyListener, AsyncTask, Thread,
Socket, etc.

« Please understand the flow of PA1.
« Please be careful about your coding style.
 Lecture slides

— | will try posting them a day before.
— | will also post a PDF version.

» There is a course website.
— Schedule, syllabus, readings, etc.
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The Network Time Protocol (NTP)

» Uses a network of time servers to synchronize all
processes on a network.

« Designed for the Internet

) ¥ Why not Christian’s algo.?

« Time servers are connected by a synchronization
subnet tree. The root is in touch with UTC. Each

node synchronizes its children nodes.
& Primary server, direct syn

Secondry servers,
sync’ed by the
primary server
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Messages Exchanged Between a
Pair of NTP Peers (“Connected

Servers”)
Server B Tio T4
* Time
\ m \m'
Time
Server A Ti-3 Ti

Each message bears timestamps of recent message events: the local time
when the previous NTP message was sent and received, and the local time

when the current message was transmitted.
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Theoretical Base for NTP

ServerB T2 T .
Time
T

Time
Server A Ti-3

« o, estimate of the actual offset between the two
clocks
« d; estimate of accuracy of o; ; total transmission
times for m and m’; d=t+t’
« For better accuracy,
— One NTP server talks to many other peers.
— Each NTP server applies a data filtering algorithm.
— Then keeps the 8 most recent pairs of <o, d>, and selects

the minimum d;
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Theoretical Base for NTP

T2 T )
Time
m m'
(with delay t) \with delay ¢’
T3 T

ServerB

Time
Server A

First, let's get o :

Tia=Tis+t+o0

Ti=Tia+t'-0
=0=(Ti2-Tis+Tia—T)I12+(t'-1)/2
Then, get the bound for (#'-1)/2:
—t'-t<t'-t < t'+t (since t',t =0)

Finally, we set :
0i=Tia=Tis+Tia=T)/2
di=t+1'=Ti,=Tis+Ti=Tis
Then we get :
oi—dil2so=0;+d;/2.
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Then a Breakthrough...

We cannot sync multiple clocks perfectly.
Thus, if we want to order events happened at
different processes (remember the ticket reservation
example?), we cannot rely on physical clocks.
Then came logical time.

— First proposed by Leslie Lamport in the 70’s

— Based on causality of events

— Defined relative time, not absolute time
Critical observation: time (ordering) only matters if
two or more processes interact, i.e., send/receive
messages.
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Events Occurring at Three

Processes
P1
a b my
0 N Physical
i
c d m, 1me
P3
e f
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Summary

« Time synchronization important for distributed
systems
— Cristian’s algorithm
— Berkeley algorithm
- NTP
« Relative order of events enough for practical
purposes
— Lamport’s logical clocks

« Next: continue on logical clocks and the global
system state
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