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Last Time 
•  Clock skews do happen 
•  External and internal synchronization 

– Cristian’s algorithm: external synchronization 
–  Berkeley algorithm: internal synchronization 
–  Both designed for LAN 

•  NTP (Network Time Protocol) 
– Hierarchy of time servers 
–  Estimates the actual offset between two clocks 
– Designed for the Internet 

•  Logical time 
–  For ordering events, relative time should suffice. 
– Will continue today 
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Basics: State Machine 
•  State: a collection of values of variables 
•  Event: an occurrence of an action that changes the 

state, (i.e., instruction, send, and receive) 
•  As a program, 

– We can think of all possible execution paths. 

•  At runtime, 
–  There’s only one path that the program takes. 

•  Equally applicable to 
–  A single process 
–  A distributed set of processes 
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Ordering Basics 
•  Why did we want to synchronize physical clocks? 
•  What we need: Ordering of events. 
•  Arises in many different contexts… 
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Abstract View 

•  Above is what we will deal with most of the time. 
•  Ordering question: what do we ultimately want? 

–  Taking two events and determine which one happened 
before the other one. 
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What Ordering? 

•  Ideal? 
–  Perfect physical clock synchronization 

•  Reliably? 
–  Events in the same process 
–  Send/receive events 
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Lamport Timestamps 
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Logical Clocks 
•  Lamport algorithm assigns logical timestamps: 

•  All processes use a counter (clock) with initial value of zero 
•  A process increments its counter when a send or an 

instruction happens at it. The counter is assigned to the 
event as its timestamp. 

•  A send (message) event carries its timestamp   

•  For a receive (message) event the counter is updated by 
max(local clock, message timestamp) + 1 

•  Define a logical relation happened-before (→) 
among events: 
•  On the same process: a → b, if time(a) < time(b)  
•  If p1 sends m to p2: send(m) → receive(m) 
•  (Transitivity) If a → b and  b → c then  a → c 

•  Shows causality of events 
8 

CSE 486/586, Spring 2013 

CSE 486/586 Administrivia 
•  PA2 is out. 

– Due on 3/1 
–  Start with the content provider. 

•  Please understand the flow of PA1. 
•  Please be careful about your coding style. 
•  Lecture slides 

–  I will try posting them a day before. 
–  I will also post a PDF version. 

•  There is a course website. 
–  Schedule, syllabus, readings, etc. 
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Find the Mistake: Lamport Logical 
Time 

10 

   

p  1 

p  2 

p  3 

p  4 

1

2

2

3

3

54

5

3

6

4

6 8 

7

0

0

0

0

1 

2 

4 

3 6 

7 

n Clock Value 

Message timestamp 

Physical Time 

4 

CSE 486/586, Spring 2013 

Corrected Example: Lamport Logical 
Time 
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Vector Timestamps 
•  With Lamport clock 

•  e “happened-before” f ⇒  timestamp(e) < timestamp (f),  but 
•  timestamp(e) < timestamp (f)   ⇒ e “happened-before” f  

•  Idea? 
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Vector Logical Clocks 
•  Vector Logical time addresses the issue: 

•  All processes use a vector of counters (logical clocks), ith 
element is the clock value for process i, initially all zero. 

•  Each process i increments the ith element of its vector upon 
an instruction or send event. Vector value is timestamp of 
the event. 

•  A send(message) event carries its vector timestamp 
(counter vector) 

•  For a receive(message) event, Vreceiver[j] = 
•  Max(Vreceiver[j] , Vmessage[j]),   if j is not self,  

•  Vreceiver[j] + 1, otherwise 
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Find a Mistake: Vector Logical Time 
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Comparing Vector Timestamps 
•  VT1 = VT2, 

•  iff  VT1[i] = VT2[i], for all i = 1, … , n 

•  VT1 <= VT2, 
•  iff  VT1[i] <= VT2[i], for all i = 1, … , n 

•  VT1 < VT2, 
•  iff  VT1 <= VT2 & ∃ j (1 <= j <= n & VT1[j] < VT2 [j]) 

•  VT1 is concurrent with VT2 
•  iff  (not VT1 <= VT2  AND not  VT2 <= VT1) 
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The Use of Logical Clocks 
•  Is a design decision 
•  NTP error bound 

–  Local: a few ms 
– Wide-area: 10’s of ms 

•  If your system doesn’t care about this inaccuracy, 
then NTP should be fine. 

•  Logical clocks impose an arbitrary order over 
concurrent events anyway 

–  Breaking ties: process IDs, etc. 
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Summary 
•  Relative order of events enough for practical 

purposes 
–  Lamport’s logical clocks 
–  Vector clocks 

•  Next: How to take a global snapshot 
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