CSE 486/586 Distributed Systems
Domain Name System

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Last Time

» Two multicast algorithms for total ordering
— Sequencer
- 18IS

« Multicast for causal ordering
— Uses vector timestamps

CSE 486/586, Spring 2013

~

Review: Causally Ordered Multicast

« Each process keeps a vector clock.
— Each counter represents the number of messages received
from each of the other processes.

« When multicasting a message, the sender process
increments its own counter and attaches its vector
clock.

« Upon receiving a multicast message, the receiver
process waits until it can preserve causal ordering:

— It has delivered all the messages from the sender.

— It has delivered all the messages that the sender had
delivered before the multicast message.

CSE 486/586, Spring 2013 3

Review: Causal Ordering

Algorithm for group member p; (i = 1,2..., N)
On initialization The number of group-g messages
V’g[j] =0(=12..,N) from process | that have been seen at

To CO-multicast message m to group g ~ Process iso far
&y — 1781 .
vilil = V;lil+ lg,
B-multicast(g, <V, m>);
On B-deliver(< V‘?, m>) from Pp with g = group(m)
place < V‘?, m> in hold-back queue;
wait until Vj.[j] = VLj1+ Land VKIS VETK] (k#);
CO-deliver m; /| after removing it from the hold-back queue
ViUl = VLT L

CSE 486/586, Spring 2013 4

Example: Causal Ordering Multicast

Accept

Accept
Buffer, Buffered
missing essage

Physical Time

CSE 486/586, Spring 2013 5

Today’s Question

* How do we organize the nodes in a distributed
system?

* Up to the 90’s
— Prevalent architecture: client-server (or master-slave)
— Unequal responsibilities
* Now
— Emerged architecture: peer-to-peer
— Equal responsibilities
« Studying an example client-server: DNS (today)

« Studying peer-to-peer as a paradigm (not just as a
file-sharing application)
— Learn the techniques and principles

CSE 486/586, Spring 2013 6

7 Separating Names and IP Addresses

* Names are easier (for us!) to remember
— www.cnn.com vs. 64.236.16.20
« |P addresses can change underneath
— Move www.cnn.com to 173.15.201.39
— E.g., renumbering when changing providers
« Name could map to multiple IP addresses
— www.cnn.com to multiple replicas of the Web site
« Map to different addresses in different places
— Address of a nearby copy of the Web site
— E.g., to reduce latency, or return different content
« Multiple names for the same address
— E.g., aliases like ee.mit.edu and cs.mit.edu

CSE 486/586, Spring 2013 7

Two Kinds of Identifiers

* Host name (e.g., www.cnn.com)

— Mnemonic name appreciated by humans

— Provides little (if any) information about location

— Hierarchical, variable # of alpha-numeric characters
« IP address (e.g., 64.236.16.20)

— Numerical address appreciated by routers

— Related to host’s current location in the topology

— Hierarchical name space of 32 bits

CSE 486/586, Spring 2013

Hierarchical Assignment Processes

* Host name: www.cse.buffalo.edu
— Domain: registrar for each top-level domain (e.g., .edu)
— Host name: local administrator assigns to each host

« IP addresses: 128.205.32.58
— Prefixes: ICANN, regional Internet registries, and ISPs
— Hosts: static configuration, or dynamic using DHCP

CSE 486/586, Spring 2013

©

Domain Name System (DNS)

Proposed in 1983 by Paul Mockapetris

CSE 486/586, Spring 2013

Overview: Domain Name System

» A client-server architecture

— The server-side is still distributed for scalability.

— But the servers are still a hierarchy of clients and servers
» Computer science concepts underlying DNS

— Indirection: names in place of addresses

— Hierarchy: in names, addresses, and servers

— Caching: of mappings from names to/from addresse[iﬂ/
» DNS software components =

— DNS resolvers ﬂ

— DNS servers @
* DNS queries

— lterative queries

— Recursive queries

* DNS caching based on time-to-live (3TTL)

CSE 486/586, Spring 201 11

)

Strawman Solution #1: Local File

« Original name to address mapping
— Flat namespace
— letc/hosts
— SRl kept main copy
— Downloaded regularly
« Count of hosts was increasing: moving from a
machine per domain to machine per user
— Many more downloads
— Many more updates

CSE 486/586, Spring 2013

12

Ny

Strawman Solution #2: Central
Server
» Central server
— One place where all mappings are stored
— All queries go to the central server
* Many practical problems
— Single point of failure
— High traffic volume
— Distant centralized database
— Single point of update
— Does not scale

Need a distributed, hierarchical collection of servers

CSE 486/586, Spring 2013 13

Domain Name System (DNS)

* Properties of DNS
— Hierarchical name space divided into zones
— Distributed over a collection of DNS servers
+ Hierarchy of DNS servers
— Root servers
— Top-level domain (TLD) servers
— Authoritative DNS servers
» Performing the translations
— Local DNS servers
— Resolver software

CSE 486/586, Spring 2013 14

DNS Root Servers

» 13 root servers (see http://www.root-servers.org/)
+ Labeled A through M

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles)

D U Maryland College Park, MD

G US DoD Vienna, VA
H ARL Aberdeen, MD

_’on/

K RIPE London (+ Amsterdam, Frankfurt)

| Autonomica, Stockholm
(plus 3 other locations)

E NASA Mt View, CA

F Internet Software C. Pal
Alto, CA (and 17 other
locations)

m WIDE Tokyo

B USC-ISI Marina del Rey, CA :
L ICANN Los Angeles, CA ‘ 7

CSE 486/586, Spring 2013

TLD and Authoritative DNS Servers

* Top-level domain (TLD) servers
— Generic domains (e.g., com, org, edu)
— Country domains (e.g., uk, fr, ca, jp)
— Typically managed professionally
» Network Solutions maintains servers for “com”
» Educause maintains servers for “edu”
 Authoritative DNS servers
— Provide public records for hosts at an organization
— For the organization’s servers (e.g., Web and mail)
— Can be maintained locally or by a service provider

CSE 486/586, Spring 2013 16

Distributed Hierarchical Database

unnamed root

O
oRcle

generic domains country domains

my.cast.bar.edu usr.cam.ac.uk

CSE 486/586, Spring 2013 12.34.56.024

Using DNS

* Local DNS server (“default name server”)
— Usually near the end hosts who use it

— Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn the server via DHCP

« Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code
« Server application
— Extract client IP address from socket
— Optional gethostbyaddr() to translate into name

CSE 486/586, Spring 2013 18

(&%)

CSE 486/586 Administrivia

» Please start PA2 if you haven't.
* AWS codes are distributed on UBLearns.
— Will post setup instructions.

« Practice problem set 1 & midterm example posted on
the course website.

* Moving the midterm from Friday (3/8) to Wednesday
(3/16)?

* Come talk to me!

CSE 486/586, Spring 2013 19

Example

root DNS server
Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu ,

3

TLD DNS server
4

local DNS server
dns.poly.edu

authoritative DNS server
requesfT T

dns.cs.umass.edu
cis.poly.edu

gaia.cs.umass.edu

CSE 486/586, Spring 2013 ’ 20

Recursive vs. Iterative Queries

Recursive query

— Ask server to get
answer for you

root DNS server

- E.g., request 1 and 2
response 8 TLD DNS server
Iterative query — 4 L7
—]
— Ask server who local DNS server 5
to ask next dns.poly.edu
— E.g., all other request-
response pairs A 7 6

z

authoritative DNS server

requesting host dns.cs.umass.edu

cis.poly.edu ‘@
21

CSE 486/586, Spring 2013

,” DNS Caching

« Performing all these queries take time
— And all this before the actual communication takes place
— E.g., 1-second latency before starting Web download
« Caching can substantially reduce overhead
— The top-level servers very rarely change
— Popular sites (e.g., www.cnn.com) visited often
— Local DNS server often has the information cached
» How DNS caching works
— DNS servers cache responses to queries
— Responses include a “time to live” (TTL) field
— Server deletes the cached entry after TTL expires

CSE 486/586, Spring 2013 22

Negative Caching

* Remember things that don’t work
— Misspellings like www.cnn.comm and www.cnnn.com
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

CSE 486/586, Spring 2013 23

DNS Resource Records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

» Type=A
— name is hostname
— value is IP address

* Type=CNAME
— name is alias for some
“canonical” (the real) name:
www.ibm.com is really
srveast.backup2.ibm.com
— value is canonical name

* Type=MX

— value is name of mailserver
associated with name

* Type=NS
- name is domain
(e.g. foo.com)

- value is hostname of
authoritative name server for
this domain

CSE 486/586, Spring 2013 24

Reliability

* DNS servers are replicated
— Name service available if at least one replica is up
— Queries can be load balanced between replicas
« UDP used for queries
— Need reliability: must implement this on top of UDP
 Try alternate servers on timeout
— Exponential backoff when retrying same server
« Same identifier for all queries
— Don’t care which server responds

Inserting Resource Records into
DNS

« Example: just created startup “FooBar”

« Register foobar.com at Network Solutions

— Provide registrar with names and IP addresses of your
authoritative name server (primary and secondary)

— Registrar inserts two RRs into the com TLD server:
» (foobar.com, dns1.foobar.com, NS)
» (dns1.foobar.com, 212.212.212.1, A)
 Put in authoritative server dns1.foobar.com
— Type A record for www.foobar.com
— Type MX record for foobar.com

« Play with “dig” on UNIX

CSE 486/586, Spring 2013 26

CSE 486/586, Spring 2013 25

$ dig nytimes.com ANY

; QUESTION SECTION:

;nytimes.com. IN ANY

;; ANSWER SECTION:

nytimes.com. 267 IN MX 100
NYTIMES.COM.S7AL.PSMTP. com.

nytimes.com. 267 IN MX 200
NYTIMES.COM.S7A2.PSMTP.com.

nytimes.com. 267 IN A 199.239.137.200

nytimes.com. 267 IN a 199.239.136.200

nytimes.com. 267 IN TXT "v=spfl mx ptr
ip4:199.239.138.0/24 include:alerts.wallst.com include:authsmtp.com
~all"

nytimes.com. 267 IN SOA nslt.nytimes.com.
root.nslt.nytimes.com. 2009070102 1800 3600 604800 3600

nytimes.com. 267 IN NS nydns2.about.com.

nytimes.com. 267 IN NS nslt.nytimes.com.

nytimes.com. 267 IN NS nydns1.about.com.

;; AUTHORITY SECTION:

nytimes.com. 267 N NS nydns1.about. com.
nytimes.com. 267 N NS nslt.nytimes.com.
nytimes.com. 267 N NS nydns2.about . com.

;; ADDITIONAL SECTION:

g_'SE 486/586, Spring 2013, 27

$ dig nytimes.com +norec @a.root-servers.net

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53675
;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 14

;; QUESTION SECTION:

;nytimes.com. IN A

3 AUTHORITY SECTION:

com. 172800 IN NS K.GTLD-SERVERS.NET.
com. 172800 IN NS E.GTLD-SERVERS.NET.
com. 172800 IN NS D.GTLD-SERVERS.NET.
com. 172800 IN NS |.GTLD-SERVERS.NET.
com. 172800 IN NS C.GTLD-SERVERS.NET.

;; ADDITIONAL SECTION:

A.GTLD-SERVERS.NET. 172800 IN A 192.5.6.30
A.GTLD-SERVERS.NET. 172800 IN AAAA 2001:503:a83e::2:30
B.GTLD-SERVERS.NET. 172800 IN A 192.33.14.30

E 486/586, Spring201

$ dig nytimes.com +norec @k.gtld-servers.net

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38385
;: flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;nytimes.com. IN A

1y AUTHORITY SECTION:

nytimes.com. 172800 IN NS ns1t.nytimes.com.
nytimes.com. 172800 IN NS nydns1.about.com.
nytimes.com. 172800 IN NS nydns2.about.com.
;; ADDITIONAL SECTION:

nsitnytimes.com. 172800 IN A 199.239.137.15
nydns1.about.com. 172800 IN A 207.241.145.24
nydns2.about.com. 172800 IN A 207.241.145.25

;; Query time: 103 msec

SERVER: 192 52 178 30#53(192 52 3%486/586, Spring 2013 29

$ dig nytimes.com ANY +norec @ns1t.nytimes.com

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39107
;; flags: qr aa; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:

;nytimes.com. IN ANY

;; ANSWER SECTION:

nytimes.com 300 IN SOA ns1t.nytimes.com.
root.ns1t.nytimes.com. 2009070102 1800 3600 604800 3600

nytimes.com. 300 IN MX 200 NYTIMES.COM.S7A2.PSMTP.com.

nytimes.com 300 IN MX 100 NYTIMES.COM.S7A1.PSMTP.com

nytimes.com. 300 IN NS ns1t.nytimes.com.

nytimes.com. 300 IN NS nydns1.about.com.

nytimes.com. 300 IN NS nydns2.about.com

nytimes.com. 300 IN A 199.239.137.245

nytimes.com. 300 IN A 199.239.136.200

nytimes.com. 300 IN A 199.239.136.245

nytimes.com. 300 IN TXTCSE 488456 SPpRgA05h 239.138.0/24 30

(@)1

Content Distribution Networks (CDNs)

« Content providers are CDN origin server

customers in North America

Content replication

« CDN company installs
thousands of servers
throughout Internet

—In large datacenters / l \
- Or, close to users ﬂ ﬂ
CDN server ﬂ

CDN distribution node

* CDN replicates customers’

content ; CDN server
. in S. America CDN server .
» When provider updates inEurope "SR
content, CDN updates servers
CSE 486/586, Spring 2013

Content Distribution Networks

» Replicate content on many servers
* Challenges

— How to replicate content

— Where to replicate content

— How to find replicated content

— How to choose among replicas

— How to direct clients towards a replica

CSE 486/586, Spring 2013 32

Server Selection

* Which server?
— Lowest load: to balance load on servers
— Best performance: to improve client performance
» Based on what? Location? RTT? Throughput? Load?
— Any alive node: to provide fault tolerance
* How to direct clients to a particular server?
— As part of routing: anycast, cluster load balancer
— As part of application: HTTP redirect
— As part of naming: DNS

CSE 486/586, Spring 2013 33

How Akamai Works

nn.com (content provider) pNS root server

I L
GET e L
index.) ! Akamai
him!__ntte:/eache:enn.com/ Akamai global cluster
1 $rm,com/foo.jpg wDNS server

Akamai regional
. .PNS server

End-user

CSE 486/586, Spring 2013

How Akamai Works

nn.com (content provider) pNS root server

JRIDNS lookup

“cache.cnn.com 5 L.

Akamai global Akamai
; ; LDNS server cluster
17 .
ALIAS: : Akamai regional
g.akamai.net DNS server

End-user

'Il_! I" ster

CSE 486/586, Spring 2013

How Akamai Works

nn.com (content provider) pNS root server

| DNS lookup
lglakamai.net
Akamai global Akamai
3 5 DN server cluster
H] A %
Akamai regional
TS l PNS server
a73.g.akamai.net L.

End-user

'Il_! I" ster

CSE 486/586, Spring 2013

How Akamai Works

nn.com (content provider) pNS root server

Akamai global
3 5 wDNS server
i 4 9 Akamai regi
7 l amai regional
jnet NS server
NS 31395\«3“‘3 8 o

Address
=2 1234

End-user

Akamai
cluster

CSE 486/586, Spring 2013

37

How Akamai Works

nn.com (content provider) pNS root server

GET foo.jpg

Akamai
cluster

l Akamai regional
I

Akamai global
5 ..PNS server

6

I rby
End-user GET ffoo, ramai
Host: cache.cnn.com “cldster
CSE 486/586, Spring 2013 ‘
Summary

* DNS as an example client-server architecture
* Why?
— Names are easier (for us!) to remember
— IP addresses can change underneath
— Name could map to multiple IP addresses
— Map to different addresses in different places
— Multiple names for the same address
* Properties of DNS

— Distributed over a collection of DNS servers
 Hierarchy of DNS servers

— Root servers, top-level domain (TLD) servers, authoritative
DNS servers

CSE 486/586, Spring 2013

How Akamai Works

nn.com (content provider) pNS root server

Akamai global Akamai
3 5 wDNS server Cluster
H] 4 6

7 Akamai regional
.!EPNS server
8

=

End-user GET ffoo.jpg
Host: cache.cnn.com

CSE 486/586, Spring 2013

38

How Akamai Works

nn.com (content provider) pNS root server

Akamai
cluster

l Akamai regional
I

Akamai global
5 ..PNS server

6

20

9
End-user I ,\ r';?gi
1 “claster
CSE 486/586, Spring 2013 -
Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC), Michael

Freedman (Princeton), and Jennifer Rexford
(Princeton).

CSE 486/586, Spring 2013

