CSE 486/586 Distributed Systems
Distributed Hash Tables

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Last Time

» Evolution of peer-to-peer

— Central directory (Napster)

— Query flooding (Gnutella)

— Hierarchical overlay (Kazaa, modern Gnutella)
 BitTorrent

— Focuses on parallel download

— Prevents free-riding

CSE 486/586, Spring 2013

~

Today’s Question

* How do we organize the nodes in a distributed
system?
« Upto the 90’s
— Prevalent architecture: client-server (or master-slave)
— Unequal responsibilities
* Now
— Emerged architecture: peer-to-peer
— Equal responsibilities
« Studying an example of client-server: DNS
» Today: studying peer-to-peer as a paradigm

CSE 486/586, Spring 2013 3

What We Want

 Functionality: lookup-response
E.g., Gnutella

CSE 486/586, Spring 2013

What We Don’t Want

« Cost (scalability) & no guarantee for lookup

Memory Lookup #Messages
Latency |for a lookup
Napster | O(1) o(l) o(l)
(O(N)@server)
Gnutella | O(N) O(N) O(N)

» Napster: cost not balanced, too much for the server-
side
* Gnutella: cost still not balanced, just too much, no

guarantee for looku
CSE 486/586, Spring 2013 5

What We Want

, &+ What data structure provides lookup-response?

» Hash table: data structure that associates keys with

values hash [Table Index | Values
keys function hashes

John Smith e
= 01 —
- - ——

Lisa Smith
03—t
Lo 04 ——t—p

Sam Doe
05—

Sandra Dee y

o 15 —T*

* Name-value pairs (or key-value pairs)
- E.g., “http://www.cnn.com/foo.html” and the Web page
— E.g., “BritneyHitMe.mp3” and “12.78.183.2"

CSE 486/586, Spring 2013

Hashing Basics

» Hash function

— Function that maps a large, possibly variable-sized datum
into a small datum, often a single integer that serves to
index an associative array

— In short: maps n-bit datum into k buckets (k << 2")

— Provides time- & space-saving data structure for lookup
* Main goals:

— Low cost

— Deterministic

— Uniformity (load balanced)
« E.g., mod

— k buckets (k << 2"), data d (n-bit)

— b=dmod k

— Distributes load uniformly only when data is distributed
uniformly
CSE 486/586, Spring 2013 7

DHT: Goal

« Let’s build a distributed system with a hash table
abstraction!

® ®
®\&/

lookup(key) —»f key |valuej—> value
\ ®
@ % ®

CSE 486/586, Spring 2013 8

Where to Keep the Hash Table

« Server-side > Napster
 Client-local > Gnutella

What are the requirements?
— Deterministic lookup
— Low lookup time (shouldn’t grow linearly with the system
size)
— Should balance load even with node join/leave
What we’ll do: partition the hash table and distribute
them among the nodes in the system

We need to choose the right hash function

We also need to somehow partition the table and
distribute the partitions with minimal relocation of
partitions in the presence of join/leave

%

CSE 486/586, Spring 2013 9

Where to Keep the Hash Table

« Consider problem of data partition:
— Given document X, choose one of k servers to use
« Two-level mapping

— Map one (or more) data item(s) to a hash value (the
distribution should be balanced)

— Map a hash value to a server (each server load should be
balanced even with node join/leave)

CSE 486/586, Spring 2013 10

Using Basic Hashing?

« Suppose we use modulo hashing
— Number servers 1.k
y ¥ . Place X on server i = (X mod k)
— Problem? Data may not be uniformly distributed

Mod Table Index Values
keys hashes
00 ——tp —_— Server 0
John Smith
o —
- —_— —_—
Lisa Smith L
03—ty —_— [d
L o[04 —t— —_— o
Sam Doe []
05—y —_—
Sandmbee 5 T —

CSE 486/586, Spring 2013 1

Using Basic Hashing?

« Place X on server i = hash (X) mod k

* Problem?
— What happens if a server fails or joins (k > k+1)?
— Answer: (Almost) all entries get remapped to new

nodes!
Table Index Values
keys Hash hashes
0 — —
John Smith
o —
Lisa Smith = —
03—ty —_— [d
L 04 —t— —_— [J
Sam Doe []
05—ty >
Sandm Des 5 T —
CSE 486/586, Spring 2013 12

Ny

CSE 486/586 Administrivia

PA2 due in ~2 weeks
PA1 grades will be out soon (only 1 TA’s missing it).
AWS codes are on UBLearns.

— Setup instructions have been posted as well.

Practice problem set 1 & midterm example posted on
the course website.

Midterm on Wednesday (3/6) @ 3pm
— Not Friday (3/8)

Come talk to me!

CSE 486/586, Spring 2013 13

Chord DHT

« A distributed hash table system using consistent
hashing

« Organizes nodes in a ring

» Maintains neighbors for correctness and shortcuts for
performance
* DHT in general
— DHT systems are “structured” peer-to-peer as opposed to
“unstructured” peer-to-peer such as Napster, Gnutella, etc.

— Used as a base system for other systems, e.g., many
“trackerless” BitTorrent clients, Amazon Dynamo, distributed
repositories, distributed file systems, etc.

CSE 486/586, Spring 2013 14

Chord: Consistent Hashing

Represent the hash key space as a ring

Use a hash function that evenly distributes items over
the hash space, e.g., SHA-1

Map nodes (buckets) in the same ring
®1 0 1

Used in DHTs, memcached, etc. z

Id space

represented

as aring.

Hash(name) - object_id
Hash(IP_address) - node_id

CSE 486/586, Spring 2013 15

Chord: Consistent Hashing

* Maps data items to its “successor” node
« Advantages
— Even distribution

— Few changes as
nodes come and go...

Hash(name) - object_id
Hash(IP_address) = node_id

CSE 486/586, Spring 2013 16

Chord: When nodes come and go...

« Small changes when nodes come and go

— Only affects mapping of keys mapped to the node that
comes or goes

Hash(name) - object_id
Hash(IP_address) > node_id

CSE 486/586, Spring 2013 17

Chord: Node Organization

» Maintain a circularly linked list around the ring
— Every node has a predecessor and successor

pred

node

succ

CSE 486/586, Spring 2013 18

(&%)

Chord: Basic Lookup

Lookup
lookup (id):

if (id > pred.id &&
id <= my.id)
return my.id;
else
return succ.lookup(id);

. Object ID
* Route hop by hop via successors jec

— O(n) hops to find destination id

node

CSE 486/586, Spring 2013 19

Chord: Efficient Lookup --- Fingers

« ith entry at peer with id n is first peer with:
- id>= n+2'(mod2™)
Finger Table at N80
i fifi]
96
96

80 +26
N20

0

)

29 mra
3 9 2042
4 96
5 114
6 20

CSE 486/586, Spring 2013

Recap: Finger Table

« Finding a <key, value> using fingers

N20

86 +24

N86
20 +26

CSE 486/586, Spring 2013 21

Chord: Efficient Lookup --- Fingers

lookup (id):
if (id > pred.id &&
id <= my.id)
return my.id;
else
// fingers() by decreasing distance
for finger in fingers():
if id >= finger.id
return finger.lookup(id);

return succ.lookup(id);

» Route greedily via distant “finger” nodes
— O(log n) hops to find destination id

CSE 486/586, Spring 2013

Chord: Node Joins and Leaves

* When a node joins
— Node does a lookup on its own id
— And learns the node responsible for that id
— This node becomes the new node’s successor

— And the node can learn that node’s predecessor (which will
become the new node’s predecessor)

* Monitor

— If doesn’t respond for some time, find new
* Leave

— Clean (planned) leave: notify the neighbors

— Unclean leave (failure): need an extra mechanism to handle
lost (key, value) pairs

CSE 486/586, Spring 2013 23

Summary

« DHT
— Gives a hash table as an abstraction

— Partitions the hash table and distributes them over the
nodes

— “Structured” peer-to-peer
¢ Chord DHT
— Based on consistent hashing
— Balances hash table partitions over the nodes
— Basic lookup based on successors
— Efficient lookup through fingers

CSE 486/586, Spring 2013

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC), Michael
Freedman (Princeton), and Jennifer Rexford
(Princeton).

CSE 486/586, Spring 2013

(@]

