CSE 486/586 Distributed Systems
Mutual Exclusion

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Recap: Consensus

* On a synchronous system
— There’s an algorithm that works.
« On an asynchronous system
— It's been shown (FLP) that it's impossible to guarantee.
« Getting around the result
— Masking faults
— Using failure detectors
— Still not perfect
« Impossibility Result
— Lemma 1: schedules are commutative
— Lemma 2: some initial configuration is bivalent

— Lemma 3: from a bivalent configuration, there is always
another bivalent configuration that is reachable.

CSE 486/586, Spring 2013

~

Why Mutual Exclusion?

« Bank’s Servers in the Cloud: Think of two
simultaneous deposits of $10,000 into your bank
account, each from one ATM.

— Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

— Both ATMs add $10,000 to this amount (locally at the ATM)
— Both write the final amount to the server
— What’s wrong?

CSE 486/586, Spring 2013

Why Mutual Exclusion?

Bank’s Servers in the Cloud: Think of two
simultaneous deposits of $10,000 into your bank
account, each from one ATM.

— Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

— Both ATMs add $10,000 to this amount (locally at the ATM)
— Both write the final amount to the server
— What’s wrong?

The ATMs need mutually exclusive access to your
account entry at the server (or, to executing the code
that modifies the account entry)

CSE 486/586, Spring 2013

Mutual Exclusion

« Critical section problem
— Piece of code (at all clients) for which we need to ensure
there is at most one client executing it at any point of time.
+ Solutions:
— Semaphores, mutexes, etc. in single-node OS
— Message-passing-based protocols in distributed systems:
» enter() the critical section
» AccessResource() in the critical section
» exit() the critical section
« Distributed mutual exclusion requirements:
— Safety — At most one process may execute in CS at any
time
— Liveness — Every request for a CS is eventually granted

— Ordering (desirable) — Requests are granted in the order
they were made

CSE 486/586, Spring 2013

Mutexes

« To synchronize access of multiple threads to
common data structures
Allows two operations:

lock()
while true: /I each iteration atomic
if lock not in use:
label lock in use
break
unlock()

label lock not in use

CSE 486/586, Spring 2013

Semaphores

» To synchronize access of multiple threads to
common data structures
« Semaphore S=1;
— Allows two operations
— wait(S) (or P(S)):
while(1){ // each execution of the while loop is atomic
if (S > 0)
S--;
break;
}
— signal(S) (or V(S)):
S++;

— Each while loop execution and S++ are each atomic
operations

CSE 486/586, Spring 2013 7

How Are Mutexes Used?

mutex L= UNLOCKED; extern mutex L;
ATM1: ATM2
lock(L); // enter lock(L); // enter
I/ critical section I/ critical section
obtain bank amount; obtain bank amount;
add in deposit; add in deposit;
update bank amount; update bank amount;
unlock(L); // exit unlock(L); // exit
CSE 486/586, Spring 2013 8

Distributed Mutual Exclusion
Performance Criteria

Bandwidth: the total number of messages sent in
each entry and exit operation.

Client delay: the delay incurred by a process at each
entry and exit operation (when no other process is in,
or waiting)

— (We will prefer mostly the entry operation.)
Synchronization delay: the time interval between
one process exiting the critical section and the next
process entering it (when there is only one process
waiting)

These translate into throughput — the rate at which
the processes can access the critical section, i.e., x
processes per second.

(these definitions more correct than the ones in the
textbook)

CSE 486/586, Spring 2013 9

Assumptions/System Model

« For all the algorithms studied, we make the following
assumptions:

— Each pair of processes is connected by reliable channels
(such as TCP).

— Messages are eventually delivered to recipients’ input buffer
in FIFO order.

— Processes do not fail (why?)
« Four algorithms

— Centralized control

— Token ring

— Ricart and Agrawala

— Maekawa

CSE 486/586, Spring 2013 10

1. Centralized Control

« A central coordinator (master or leader)
— Is elected (next lecture)

— Grants permission to enter CS & keeps a queue of requests to
enter the CS.

— Ensures only one process at a time can access the CS
— Has a special token per CS
« Operations (token gives access to CS)
— To enter a CS Send a request to the coord & wait for token.

— On exiting the CS Send a message to the coord to release the
token.

— Upon receipt of a request, if no other process has the token, the
coord replies with the token; otherwise, the coord queues the
request.

— Upon receipt of a release message, the coord removes the oldest
entry in the queue (if any) and replies with a token.

CSE 486/586, Spring 2013 1

¥ 1. Centralized Control

« Safety, liveness, ordering?
« Bandwidth?
— Requires 3 messages per entry + exit operation.
« Client delay:
— one round trip time (request + grant)
» Synchronization delay
— one round trip time (release + grant)

« The coordinator becomes performance bottleneck
and single point of failure.

CSE 486/586, Spring 2013 12

Ny

2. Token Ring Approach

» Processes are organized in a logical ring: pi has a communication
channel to p(i+1)mod (n).
» Operations:
— Only the process holding the token can enter the CS.

— To enter the critical section, wait passively for the token. When in CS, hold
on to the token.

— To exit the CS, the process sends the token onto its neighbor.
— If a process does not want to enter the CS when it receives the token, it
forwards the token to the next neighbor.
¥ Features:
« Safety & liveness, ordering? Previous holder of token

* Bandwidth: 1 message per exit current holder
* Client delay: 0 to N message @ 6 Q[token
transmissions.

\

* Synchronization delay between one \ e
process’ s exit from the CS and the S~ i next holder of

next process’ s entry is between 1 foken

and N-1 message transmissions.

CSE 486/586, Spring 2013 13

CSE 486/586 Administrivia

« PA2 due this Friday.
— More help by TAs this week

« PAS3 will be out this weekend.

« Practice problem set 1 & midterm example posted on
the course website.

— Will post solutions today

* Midterm on Wednesday (3/6) @ 3pm
— Not Friday (3/8)

« Come talk to me!

CSE 486/586, Spring 2013 14

3. Ricart & Agrawala’s Algorithm

« Processes requiring entry to critical section multicast
a request, and can enter it only when all other
processes have replied positively.

« Messages requesting entry are of the form <T,pi>,
where T is the sender’s timestamp (Lamport clock)
and pi the sender’s identity (used to break ties in T).

CSE 486/586, Spring 2013 15

3. Ricart & Agrawala’s Algorithm
» To enter the CS

— set state to wanted
— multicast “request” to all processes (including timestamp)
— wait until all processes send back “reply”
— change state to held and enter the CS
« On receipt of a request <Ti, pi> at pj:
— if (state = held) or (state = wanted & (Tj, pj)<(Ti,pi)),
enqueue request
— else “reply” to pi
« On exiting the CS

— change state to release and “reply” to all queued requests.

CSE 486/586, Spring 2013 16

3. Ricart & Agrawala’ s Algorithm

On initialization
state :== RELEASED;
To enter the section
state := WANTED;
Multicast request to all processes;
T :=request’s timestamp;
Wait until (number of replies received = (N — 1));
state := HELD;
On receipt of a request <T;, p> at p; (i # j)
if (state = HELD or (state = WANTED and (T, p)) < (T, p))))
then
queue request from p; without replying;
else
reply immediately to p;;
end if
To exit the critical section
state := RELEASED;
reply to any queued requests;

CSE 486/586, Spring 2013 17

3. Ricart & Agrawala’ s Algorithm

41
P
3
P1 Reply
eply
Repl
34 il
41
34
5
CSE 486/586, Spring 2013 18

(&%)

/ s Analysis: Ricart & Agrawala

» Safety, liveness, and ordering?
« Bandwidth:
— 2(N-1) messages per entry operation
— N-1 unicasts for the multicast request + N-1 replies
— N-1 unicast messages per exit operation
« Client delay
— One round-trip time
» Synchronization delay
— One message transmission time

CSE 486/586, Spring 2013 19

4. Maekawa’s Algorithm

Observation: no need to have all peers reply

Only need to have a subset of peers as long as all
subsets overlap.

Voting set: a subset of processes that grant
permission to enter a CS

Voting sets are chosen so that for any two
processes, p; and p;, their corresponding voting sets
have at least one common process.

— Each process p; is associated with a voting set v, (of
processes)

— Each process belongs to its own voting set

— The intersection of any two voting sets is non-empty
— Each voting set is of size K

— Each process belongs to M other voting sets

CSE 486/586, Spring 2013 20

4. Maekawa’s Algorithm

« Simple example

CSE 486/586, Spring 2013 21

4. Maekawa’s Algorithm

¢ Multicasts messages to a (voting) subset of
processes

— To access a critical section, p; requests permission from all
other processes in its own voting set v;

— Voting set member gives permission to only one requestor
at a time, and queues all other requests

— Guarantees safety
— Maekawa showed that K=M=vN works best

— One way of doing this is to put N processes in a VN by VN
matrix and take union of row & column containing p; as its
voting set.

CSE 486/586, Spring 2013 22

Maekawa’ s Algorithm — Part 1

On initialization
state := RELEASED;
voted := FALSE;
For p; to enter the critical section
state := WANTED;
Multicast request to all processes in V;;
Wait until (number of replies received = K);
state := HELD;
On receipt of a request from p; at p;
if (state = HELD or voted = TRUE)
then
queue request from p; without replying;

else

send reply to p;; I

:'()‘r]ed :i %R(I)J,I)E; COntlnl:les on
end if next slide

CSE 486/586, Spring 2013 23

Maekawa’ s Algorithm — Part 2

For p; to exit the critical section
state := RELEASED;
Multicast release to all processes in V;;
On receipt of a release from p; at p;
if (queue of requests is non-empty)
then
remove head of queue — from p,, say;
send reply to p;

voted := TRUE;
else
voted := FALSE;
end if
CSE 486/586, Spring 2013 24

/ ¥ Maekawa’ s Algorithm — Analysis

» Bandwidth: 2VN messages per entry, VN messages
per exit

— Better than Ricart and Agrawala’ s (2(N-1) and N-1
messages)

» Client delay: One round trip time
— Same as Ricart and Agrawala

« Synchronization delay: One round-trip time
— Worse than Ricart and Agrawala

* How?

CSE 486/586, Spring 2013

Summary

* Mutual exclusion
— Coordinator-based token
— Token ring
— Ricart and Agrawala’s timestamp algorithm
— Maekawa’s algorithm

CSE 486/586, Spring 2013

Acknowledgements

* These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2013

(@]

