
C 1

CSE 486/586, Spring 2013

CSE 486/586 Distributed Systems
Mutual Exclusion

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2013

Recap: Consensus
•  On a synchronous system

–  There’s an algorithm that works.

•  On an asynchronous system
–  It’s been shown (FLP) that it’s impossible to guarantee.

•  Getting around the result
– Masking faults
– Using failure detectors
–  Still not perfect

•  Impossibility Result
–  Lemma 1: schedules are commutative
–  Lemma 2: some initial configuration is bivalent
–  Lemma 3: from a bivalent configuration, there is always

another bivalent configuration that is reachable.

2

CSE 486/586, Spring 2013

Why Mutual Exclusion?
•  Bank’s Servers in the Cloud: Think of two

simultaneous deposits of $10,000 into your bank
account, each from one ATM.

–  Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

–  Both ATMs add $10,000 to this amount (locally at the ATM)
–  Both write the final amount to the server
– What’s wrong?

3 CSE 486/586, Spring 2013

Why Mutual Exclusion?
•  Bank’s Servers in the Cloud: Think of two

simultaneous deposits of $10,000 into your bank
account, each from one ATM.

–  Both ATMs read initial amount of $1000 concurrently from
the bank’s cloud server

–  Both ATMs add $10,000 to this amount (locally at the ATM)
–  Both write the final amount to the server
– What’s wrong?

•  The ATMs need mutually exclusive access to your
account entry at the server (or, to executing the code
that modifies the account entry)

4

CSE 486/586, Spring 2013

Mutual Exclusion
•  Critical section problem

–  Piece of code (at all clients) for which we need to ensure
there is at most one client executing it at any point of time.

•  Solutions:
–  Semaphores, mutexes, etc. in single-node OS
–  Message-passing-based protocols in distributed systems:

»  enter() the critical section
»  AccessResource() in the critical section
»  exit() the critical section

•  Distributed mutual exclusion requirements:
–  Safety – At most one process may execute in CS at any

time
–  Liveness – Every request for a CS is eventually granted
– Ordering (desirable) – Requests are granted in the order

 they were made
5 CSE 486/586, Spring 2013

Mutexes
•  To synchronize access of multiple threads to

common data structures
Allows two operations:

 lock()
 while true: // each iteration atomic
 if lock not in use:
 label lock in use
 break
 unlock()
 label lock not in use

6

C 2

CSE 486/586, Spring 2013

Semaphores
•  To synchronize access of multiple threads to

common data structures
•  Semaphore S=1;

–  Allows two operations
– wait(S) (or P(S)):

 while(1){ // each execution of the while loop is atomic
 if (S > 0)
 S--;
 break;
 }

–  signal(S) (or V(S)):
 S++;

–  Each while loop execution and S++ are each atomic
operations

7 CSE 486/586, Spring 2013

How Are Mutexes Used?
mutex L= UNLOCKED;

ATM1:

 lock(L); // enter
 // critical section
 obtain bank amount;
 add in deposit;
 update bank amount;
 unlock(L); // exit

extern mutex L;

ATM2

 lock(L); // enter
 // critical section
 obtain bank amount;
 add in deposit;
 update bank amount;
 unlock(L); // exit

8

CSE 486/586, Spring 2013

Distributed Mutual Exclusion
Performance Criteria
•  Bandwidth: the total number of messages sent in

each entry and exit operation.
•  Client delay: the delay incurred by a process at each

entry and exit operation (when no other process is in,
or waiting)

–  (We will prefer mostly the entry operation.)

•  Synchronization delay: the time interval between
one process exiting the critical section and the next
process entering it (when there is only one process
waiting)

•  These translate into throughput — the rate at which
the processes can access the critical section, i.e., x
processes per second.

•  (these definitions more correct than the ones in the
textbook)

9 CSE 486/586, Spring 2013

Assumptions/System Model
•  For all the algorithms studied, we make the following

assumptions:
–  Each pair of processes is connected by reliable channels

(such as TCP).
– Messages are eventually delivered to recipients’ input buffer

in FIFO order.
–  Processes do not fail (why?)

•  Four algorithms
– Centralized control
–  Token ring
– Ricart and Agrawala
– Maekawa

10

CSE 486/586, Spring 2013

1. Centralized Control
•  A central coordinator (master or leader)

–  Is elected (next lecture)
–  Grants permission to enter CS & keeps a queue of requests to

enter the CS.
–  Ensures only one process at a time can access the CS
–  Has a special token per CS

•  Operations (token gives access to CS)
–  To enter a CS Send a request to the coord & wait for token.
– On exiting the CS Send a message to the coord to release the

token.
– Upon receipt of a request, if no other process has the token, the

coord replies with the token; otherwise, the coord queues the
request.

– Upon receipt of a release message, the coord removes the oldest
entry in the queue (if any) and replies with a token.

11 CSE 486/586, Spring 2013

1. Centralized Control
•  Safety, liveness, ordering?
•  Bandwidth?

– Requires 3 messages per entry + exit operation.

•  Client delay:
–  one round trip time (request + grant)

•  Synchronization delay
–  one round trip time (release + grant)

•  The coordinator becomes performance bottleneck
and single point of failure.

12

C 3

CSE 486/586, Spring 2013

2. Token Ring Approach
•  Processes are organized in a logical ring: pi has a communication

channel to p(i+1)mod (n).
•  Operations:

–  Only the process holding the token can enter the CS.
–  To enter the critical section, wait passively for the token. When in CS, hold

on to the token.
–  To exit the CS, the process sends the token onto its neighbor.
–  If a process does not want to enter the CS when it receives the token, it

forwards the token to the next neighbor.

P0!

P1!

P2!

P3!

PN-1!

Previous holder of token"

next holder of
token"

current holder
of token"

•  Features:
•  Safety & liveness, ordering?
•  Bandwidth: 1 message per exit
•  Client delay: 0 to N message

transmissions.
•  Synchronization delay between one

process’s exit from the CS and the
next process’s entry is between 1
and N-1 message transmissions.

13 CSE 486/586, Spring 2013

CSE 486/586 Administrivia
•  PA2 due this Friday.

– More help by TAs this week

•  PA3 will be out this weekend.
•  Practice problem set 1 & midterm example posted on

the course website.
– Will post solutions today

•  Midterm on Wednesday (3/6) @ 3pm
– Not Friday (3/8)

•  Come talk to me!

14

CSE 486/586, Spring 2013

3. Ricart & Agrawala’s Algorithm
•  Processes requiring entry to critical section multicast

a request, and can enter it only when all other
processes have replied positively.

•  Messages requesting entry are of the form <T,pi>,
where T is the sender’s timestamp (Lamport clock)
and pi the sender’s identity (used to break ties in T).

15 CSE 486/586, Spring 2013

3. Ricart & Agrawala’s Algorithm
•  To enter the CS

–  set state to wanted
–  multicast “request” to all processes (including timestamp)
–  wait until all processes send back “reply”
–  change state to held and enter the CS

•  On receipt of a request <Ti, pi> at pj:
–  if (state = held) or (state = wanted & (Tj, pj)<(Ti,pi)),

enqueue request
–  else “reply” to pi

•  On exiting the CS
–  change state to release and “reply” to all queued requests.

16

CSE 486/586, Spring 2013

3. Ricart & Agrawala’s Algorithm

On initialization	

	

state := RELEASED; 	

To enter the section	

	

state := WANTED;	

	

Multicast request to all processes; 	

 	

	

	

T := request’s timestamp;	

	

Wait until (number of replies received = (N – 1));	

	

state := HELD;	

On receipt of a request <Ti, pi> at pj (i ≠ j)	

	

if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))	

	

then 	

	

 	

queue request from pi without replying; 	

	

else 	

	

 	

reply immediately to pi;	

	

end if	

To exit the critical section	

	

state := RELEASED;	

	

reply to any queued requests;	

17 CSE 486/586, Spring 2013

3. Ricart & Agrawala’s Algorithm

p	

3	

34	

Reply	

34	

41	

41	

41	

34	

p	

1	

p	

2	

Reply	

Reply	

18

C 4

CSE 486/586, Spring 2013

Analysis: Ricart & Agrawala
•  Safety, liveness, and ordering?
•  Bandwidth:

–  2(N-1) messages per entry operation
– N-1 unicasts for the multicast request + N-1 replies
– N-1 unicast messages per exit operation

•  Client delay
– One round-trip time

•  Synchronization delay
– One message transmission time

19 CSE 486/586, Spring 2013

4. Maekawa’s Algorithm
•  Observation: no need to have all peers reply
•  Only need to have a subset of peers as long as all

subsets overlap.
•  Voting set: a subset of processes that grant

permission to enter a CS
•  Voting sets are chosen so that for any two

processes, pi and pj, their corresponding voting sets
have at least one common process.

–  Each process pi is associated with a voting set vi (of
processes)

–  Each process belongs to its own voting set
–  The intersection of any two voting sets is non-empty
–  Each voting set is of size K
–  Each process belongs to M other voting sets

20

CSE 486/586, Spring 2013

4. Maekawa’s Algorithm
•  Simple example

21

P0

P1 P2

P3

CSE 486/586, Spring 2013

4. Maekawa’s Algorithm
•  Multicasts messages to a (voting) subset of

processes
–  To access a critical section, pi requests permission from all

other processes in its own voting set vi
–  Voting set member gives permission to only one requestor

at a time, and queues all other requests
– Guarantees safety
– Maekawa showed that K=M=√N works best
– One way of doing this is to put N processes in a √N by √N

matrix and take union of row & column containing pi as its
voting set.

22

CSE 486/586, Spring 2013

Maekawa’s Algorithm – Part 1

On initialization	

	

state := RELEASED;	

	

voted := FALSE;	

For pi to enter the critical section	

	

state := WANTED;	

	

Multicast request to all processes in Vi;	

	

Wait until (number of replies received = K);	

	

state := HELD;	

On receipt of a request from pi at pj	

	

if (state = HELD or voted = TRUE)	

	

then 	

	

 	

queue request from pi without replying; 	

	

else 	

	

 	

send reply to pi;	

	

 	

voted := TRUE;	

	

end if	

	

Continues on
next slide!

23 CSE 486/586, Spring 2013

Maekawa’s Algorithm – Part 2

For pi to exit the critical section	

	

state := RELEASED;	

	

Multicast release to all processes in Vi;	

On receipt of a release from pi at pj 	

	

if (queue of requests is non-empty)	

	

then 	

	

 	

remove head of queue – from pk, say; 	

	

 	

send reply to pk;	

	

 	

voted := TRUE;	

	

else 	

	

 	

voted := FALSE;	

	

end if	

	

24

C 5

CSE 486/586, Spring 2013

Maekawa’s Algorithm – Analysis
•  Bandwidth: 2√N messages per entry, √N messages

per exit
–  Better than Ricart and Agrawala’s (2(N-1) and N-1

messages)

•  Client delay: One round trip time
–  Same as Ricart and Agrawala

•  Synchronization delay: One round-trip time
– Worse than Ricart and Agrawala

•  May not guarantee liveness (may deadlock)
•  How?

25

P0

P1 P2

CSE 486/586, Spring 2013

Summary
•  Mutual exclusion

– Coordinator-based token
–  Token ring
– Ricart and Agrawala’s timestamp algorithm
– Maekawa’s algorithm

26

CSE 486/586, Spring 2013 27

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

