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Recap: Consensus 
•  On a synchronous system 

–  There’s an algorithm that works. 

•  On an asynchronous system 
–  It’s been shown (FLP) that it’s impossible to guarantee. 

•  Getting around the result 
– Masking faults 
– Using failure detectors 
–  Still not perfect 

•  Impossibility Result 
–  Lemma 1: schedules are commutative 
–  Lemma 2: some initial configuration is bivalent 
–  Lemma 3: from a bivalent configuration, there is always 

another bivalent configuration that is reachable.  
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Why Mutual Exclusion? 
•  Bank’s Servers in the Cloud: Think of two 

simultaneous deposits of $10,000 into your bank 
account, each from one ATM.  

–  Both ATMs read initial amount of $1000 concurrently from 
the bank’s cloud server 

–  Both ATMs add $10,000 to this amount (locally at the ATM) 
–  Both write the final amount to the server 
– What’s wrong? 

3 CSE 486/586, Spring 2013 

Why Mutual Exclusion? 
•  Bank’s Servers in the Cloud: Think of two 

simultaneous deposits of $10,000 into your bank 
account, each from one ATM.  

–  Both ATMs read initial amount of $1000 concurrently from 
the bank’s cloud server 

–  Both ATMs add $10,000 to this amount (locally at the ATM) 
–  Both write the final amount to the server 
– What’s wrong? 

•  The ATMs need mutually exclusive access to your  
account entry at the server (or, to executing the code 
that modifies the account entry) 
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Mutual Exclusion 
•  Critical section problem 

–  Piece of code (at all clients) for which we need to ensure 
there is at most one client executing it at any point of time. 

•   Solutions: 
–   Semaphores, mutexes, etc. in single-node OS 
–   Message-passing-based protocols in distributed systems: 

»   enter() the critical section 
»   AccessResource() in the critical section 
»   exit() the critical section   

•   Distributed mutual exclusion requirements: 
–  Safety – At most one process may execute in CS at any 

time 
–  Liveness – Every request for a CS is eventually granted 
– Ordering (desirable) – Requests are granted in the order 

    they were made 
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Mutexes 
•  To synchronize access of multiple threads to 

common data structures 
Allows two operations: 

 lock() 
  while true:   // each iteration atomic 
   if lock not in use: 
    label lock in use 
    break   
 unlock() 
  label lock not in use 
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Semaphores 
•  To synchronize access of multiple threads to 

common data structures 
•  Semaphore S=1; 

–  Allows two operations 
– wait(S) (or P(S)):  

  while(1){ // each execution of the while loop is atomic 
    if (S > 0) 
       S--; 
       break; 
  } 

–  signal(S) (or V(S)):  
  S++; 

–  Each while loop execution and S++ are each atomic 
operations 
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How Are Mutexes Used? 
mutex L= UNLOCKED; 
 
ATM1: 

 lock(L); // enter 
  // critical section 
 obtain bank amount; 
 add in deposit; 
 update bank amount; 
 unlock(L); // exit 
  

extern mutex L; 
 
ATM2   

 lock(L); // enter 
  // critical section 
 obtain bank amount; 
 add in deposit; 
 update bank amount; 
 unlock(L); // exit 
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Distributed Mutual Exclusion 
Performance Criteria 
•  Bandwidth: the total number of messages sent in 

each entry and exit operation. 
•  Client delay: the delay incurred by a process at each 

entry and exit operation (when no other process is in, 
or waiting) 

–  (We will prefer mostly the entry operation.) 

•  Synchronization delay: the time interval between 
one process exiting the critical section and the next 
process entering it (when there is only one process 
waiting) 

•  These translate into throughput — the rate at which 
the processes can access the critical section, i.e., x 
processes per second. 

•  (these definitions more correct than the ones in the 
textbook) 
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Assumptions/System Model 
•  For all the algorithms studied, we make the following 

assumptions: 
–  Each pair of processes is connected by reliable channels 

(such as TCP).  
– Messages are eventually delivered to recipients’ input buffer 

in FIFO order. 
–  Processes do not fail (why?) 

•  Four algorithms 
– Centralized control 
–  Token ring 
– Ricart and Agrawala 
– Maekawa 
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1. Centralized Control 
•  A central coordinator (master or leader) 

–   Is elected (next lecture) 
–   Grants permission to enter CS & keeps a queue of requests to 

enter the CS. 
–   Ensures only one process at a time can access the CS 
–   Has a special token per CS 

•   Operations (token gives access to CS) 
–  To enter a CS Send a request to the coord & wait for token. 
– On exiting the CS Send a message to the coord to release the 

token. 
– Upon receipt of a request, if no other process has the token, the 

coord  replies with the token; otherwise, the coord queues the 
request. 

– Upon receipt of a release message, the coord removes the oldest 
entry in the queue (if any) and replies with a token. 
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1. Centralized Control 
•  Safety, liveness, ordering? 
•  Bandwidth? 

– Requires 3 messages per entry + exit operation. 

•  Client delay: 
–  one round trip time (request + grant) 

•  Synchronization delay 
–  one round trip time (release + grant)  

•  The coordinator becomes performance bottleneck 
and single point of failure. 
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2. Token Ring Approach  
•  Processes are organized in a logical ring: pi has a communication 

channel to p(i+1)mod (n). 
•  Operations: 

–  Only the process holding the token can enter the CS.  
–  To enter the critical section, wait passively for the token. When in CS, hold 

on to the token.  
–  To exit the CS, the process sends the token onto its neighbor. 
–   If a process does not want to enter the CS when it receives the token, it 

forwards the token to the next neighbor. 

P0!

P1!

P2!

P3!

PN-1!

Previous holder of token"

next holder of 
token"

current holder 
of token"

•  Features: 
•  Safety & liveness, ordering? 
•  Bandwidth: 1 message per exit 
•  Client delay: 0 to N message 

transmissions. 
•  Synchronization delay between one 

process’s exit from the CS and the 
next process’s entry is between 1 
and N-1 message transmissions. 
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CSE 486/586 Administrivia 
•  PA2 due this Friday. 

– More help by TAs this week 

•  PA3 will be out this weekend. 
•  Practice problem set 1 & midterm example posted on 

the course website. 
– Will post solutions today 

•  Midterm on Wednesday (3/6) @ 3pm 
– Not Friday (3/8) 

•  Come talk to me! 
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3. Ricart & Agrawala’s Algorithm  
•  Processes requiring entry to critical section multicast 

a request, and can enter it only when all other 
processes have replied positively. 

•  Messages requesting entry are of the form <T,pi>, 
where T is the sender’s timestamp (Lamport clock) 
and pi the sender’s identity (used to break ties in T).  
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3. Ricart & Agrawala’s Algorithm   
•  To enter the CS 

–   set state to wanted 
–   multicast “request”  to all processes (including timestamp) 
–   wait until all processes send back “reply” 
–   change state to held and enter the CS 

•   On receipt of a request <Ti, pi> at pj: 
–   if (state = held) or (state = wanted & (Tj, pj)<(Ti,pi)), 

enqueue request 
–   else “reply” to pi 

•   On exiting the CS  
–   change state to release and “reply” to all queued requests. 
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3. Ricart & Agrawala’s Algorithm  

On initialization	


	

state := RELEASED; 	



To enter the section	


	

state := WANTED;	


	

Multicast request to all processes; 	

 	

	


	

T := request’s timestamp;	


	

Wait until (number of replies received = (N – 1));	


	

state := HELD;	



On receipt of a request <Ti, pi> at pj (i ≠ j)	


	

if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))	


	

then 	


	

 	

queue request from pi without replying; 	


	

else 	


	

 	

reply immediately to pi;	


	

end if	



To exit the critical section	


	

state := RELEASED;	


	

reply to any queued requests;	
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3. Ricart & Agrawala’s Algorithm  
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Analysis: Ricart & Agrawala  
•  Safety, liveness, and ordering? 
•  Bandwidth: 

–  2(N-1) messages per entry operation 
– N-1 unicasts for the multicast request + N-1 replies 
– N-1 unicast messages per exit operation  

•  Client delay 
– One round-trip time 

•  Synchronization delay 
– One message transmission time 
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4. Maekawa’s Algorithm 
•  Observation: no need to have all peers reply 
•  Only need to have a subset of peers as long as all 

subsets overlap. 
•  Voting set: a subset of processes that grant 

permission to enter a CS 
•  Voting sets are chosen so that for any two 

processes, pi and pj, their corresponding voting sets 
have at least one common process. 

–  Each process pi is associated with a voting set vi (of 
processes) 

–  Each process belongs to its own voting set 
–  The intersection of any two voting sets is non-empty 
–  Each voting set is of size K 
–  Each process belongs to M other voting sets 
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4. Maekawa’s Algorithm 
•  Simple example 
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4. Maekawa’s Algorithm  
•   Multicasts messages to a (voting) subset of 

processes 
–  To access a critical section, pi requests permission from all 

other processes in its own voting set vi  
–  Voting set member gives permission to only one requestor 

at a time, and queues all other requests 
– Guarantees safety  
– Maekawa showed that K=M=√N works best 
– One way of doing this is to put N processes in a √N by √N  

matrix and take union of row & column containing pi as its 
voting set. 
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Maekawa’s Algorithm – Part 1 

On initialization	


	

state := RELEASED;	


	

voted := FALSE;	



For pi to enter the critical section	


	

state := WANTED;	


	

Multicast request to all processes in Vi;	


	

Wait until (number of replies received = K);	


	

state := HELD;	



On receipt of a request from pi at pj	


	

if (state = HELD or voted = TRUE)	


	

then 	


	

 	

queue request from pi without replying; 	


	

else 	


	

 	

send reply to pi;	


	

 	

voted := TRUE;	


	

end if	



	



Continues on 
next slide!
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Maekawa’s Algorithm – Part 2 

For pi to exit the critical section	


	

state := RELEASED;	


	

Multicast release to all processes in Vi;	



On receipt of a release from pi at pj 	


	

if (queue of requests is non-empty)	


	

then 	


	

 	

remove head of queue – from pk, say; 	


	

 	

send reply to pk;	


	

 	

voted := TRUE;	


	

else 	


	

 	

voted := FALSE;	


	

end if	
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Maekawa’s Algorithm – Analysis 
•  Bandwidth: 2√N messages per entry, √N messages 

per exit 
–  Better than Ricart and Agrawala’s (2(N-1) and N-1 

messages) 

•  Client delay: One round trip time 
–  Same as Ricart and Agrawala 

•  Synchronization delay: One round-trip time 
– Worse than Ricart and Agrawala 

•  May not guarantee liveness (may deadlock) 
•  How? 
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Summary 
•  Mutual exclusion 

– Coordinator-based token 
–  Token ring 
– Ricart and Agrawala’s timestamp algorithm 
– Maekawa’s algorithm 
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