CSE 486/586 Distributed Systems
Concurrency Control --- 1

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Recap: Concurrent Transactions

* Process 1 * Process 2
lock(mutex); lock(mutex);
savings.deduct(100); savings.deduct(100);
checking.add(100); checking.add(100);
mnymkt.deduct(200); mnymkt.deduct(200);
checking.add(200); checking.add(200);
checking.deduct(400); checking.deduct(400);
dispense(400); dispense(400);
unlock(mutex); unlock(mutex);

CSE 486/586, Spring 2013

~

Why Not Satisfied?

1. savings.deduct(100)
72 . Afailure at

2. checking. 1 N
Afailure at these checkingzaddiian) ~— these points
points means the 3. mnymkt.deduct(200) does not cause
customerloses [[4. checking.add(200) lost money, but
money; we need h ~ old steps
to restore old state | I\ 9- checking.deduct(400) cannot be

6. dispense(400) repeated

CSE 486/586, Spring 2013

Recap: Locks & Transactions

« What we discussed in mutual exclusion is one big
lock.

— Everyone else has to wait.
— It does not necessarily deal with failures.
» Performance

— Observation: we can interleave some operations from
different processes.

« Failure
— If a process crashes while holding a lock

« Let's go beyond simple locking!

CSE 486/586, Spring 2013 4

Transaction

« Abstraction for grouping multiple operations into one
« A transaction is indivisible (atomic) from the point of
view of other transactions
— No access to intermediate results/states
— Free from interference by other operations
* Primitives
— begin(): begins a transaction
— commit(): tries completing the transaction
— abort(): aborts the transaction
» Implementing transactions
— Performance: finding out what operations we can interleave

— Failure: dealing with failures, rolling back changes if
necessary

CSE 486/586, Spring 2013

Properties of Transactions: ACID

Atomicity: All or nothing

Consistency: if the server starts in a consistent state,
the transaction ends with the server in a consistent
state.

Isolation: Each transaction must be performed
without interference from other transactions, i.e., the
non-final effects of a transaction must not be visible
to other transactions.

Durability: After a transaction has completed
successfully, all its effects are saved in permanent
storage.

CSE 486/586, Spring 2013 6

¥ What Can Go Wrong?

a: 100 b:liiil C:IIIII

Transaction T1 | Transaction T2

balance = b.getBalance()

balance = b.getBalance
ey ez

.setBalance(balance*1.1
‘ " ol]
a
c.withdraw(balance*0.1) ¢
* T1/T2’ s update on the shared object, “b”, is lost

b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1)

CSE 486/586, Spring 2013 7

Lost Update Problem

* One transaction causes loss of info. for another:
consider three account objects

a: 100 b:liiil C:IIIII

Transaction T1 | Transaction T2

balance = b.getBalance()
balance = b.getBalance()

b.setBalance(balance*1.1) ~ b:[220
b.setBalance = (balance*1.1) b:
a.withdraw(balance* 0.1) a

c.withdraw(balance*0.1) c:

* T1/T2’ s update on the shared object, “b”, is lost

CSE 486/586, Spring 2013 8

,/3What Can Go Wrong?

Transaction T1 Transaction T2

a.withdraw(100) . total
total = a.getBalance()

= +
total = total + b.getBalance 200

b.deposit(100) b:

total = total + c.getBalance [5q,

* T1’ s partial result is used by T2, giving the wrong
result

CSE 486/586, Spring 2013 9

Inconsistent Retrieval Problem

* Partial, incomplete results of one transaction are
retrieved by another transaction.

a: [100 b:[200 | c:[300 |

Transaction T1 Transaction T2

a.withdraw(100) total
total = a.getBalance()

total = total + b.getBalance |[5gg

b.deposit(100) b:

total = total + c.getBalance |500

* T1’ s partial result is used by T2, giving the wrong
result

CSE 486/586, Spring 2013 10

What is “Correct”?

* How would you define correctness?

a: | 100 b:l!ill c:IHiII

Transaction T1 Transaction T2
balance = b.getBalance() balance = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) c.withdraw(balance*0.1)

CSE 486/586, Spring 2013 1

Concurrency Control: Providing
“Correct” Interleaving

An interleaving of the operations of 2 or more transactions is
said to be serially equivalent if the combined effect is the same
as if these transactions had been performed sequentially (in

some order).
a: | 100 b:l!ill c:IHiII

Transaction T1 Transaction T2

balance = b.getBalance() ==T1 (complete) followed
b.setBalance = (balance*1.1) by T2 (complete)
b: [220

balance = b.getBalance()

b.setBalance(balance*1.1) b:
a.withdraw(balance* 0.1) a: |80

:c.lwithdraw(balance‘o.ﬂ o

CSE 486/586, Spring 2013 12

Ny

CSE 486/586 Administrivia

« Midterm: 3/6 (Wednesday) in class
— 45 minutes
— Everything up to leader election
— 1-page cheat sheet is allowed.

* Tech Talk: Dave Parfitt (Basho) Tonight March 4 at
6PM in Davis 338A

* PA3is out.

* No recitations this week

» Anonymous feedback form still available.
* Please come to me!

CSE 486/586, Spring 2013 13

Providing Serial Equivalence

* What operations are we considering?

* Read/write

/5”' * What operations matter for correctness?

* When write is involved

a: 100 b: c:

Transaction T1 Transaction T2
balance = b.getBalance() balance = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) c.withdraw(balance*0.1)
CSE 486/586, Spring 2013 14

Conflicting Operations

* Two operations are said to be in conflict, if their combined effect
depends on the order they are executed, e.g., read-write, write-
read, write-write (all on same variables). NOT read-read, not on
different variables.

Operations of different Conflict Reason
transactions
read read No Because the effect of a pair of read operations
does not depend on the order in which they are
executed
read write Yes Because the effect of a read and a write operation

depends on the order of their execution
write write Yes Because the effect of a pair of write operations
depends on the order of their execution

CSE 486/586, Spring 2013 15

¥ Conditions for Correct Interleaving

¢ What should we need to do to guarantee serial
equivalence with conflicting operations?

* Case 1

* T11->T1.2>T21->T22->T1.3->T23
* Case 2

e T1.1->T21->T22->T12->T1.3->T2.3

* Which one’s correct and why?

Transaction T1 Transaction T2
1. balance = b.getBalance() 1. balance = b.getBalance()
2.b = 1.1) 2.b balance*1.1)
3. a.withdraw(balance* 0.1) 3. c.withdraw(balance*0.1)
CSE 486/586, Spring 2013 16

Conflicting Operations

* Insight for serial equivalence
* Outcomes of write operations in one transaction to all
shared objects should be either consistently visible to the
other transaction or the other way round.

* The effect of an operation refers to

* The value of an object set by a write operation
* The result returned by a read operation.

* Two transactions are serially equivalent if and only if all pairs of
conflicting operations (pair containing one operation from each
transaction) are executed in the same order (transaction order)
for all objects (data) they both access.

CSE 486/586, Spring 2013 17

Example of Conflicting Operations

* An interleaving of the operations of 2 or more transactions is said
to be serially equivalent if the combined effect is the same as if
these transactions had been performed sequentially (in some

o

Transaction T1 Transaction T2

balance = b.getBalance()

b.setBalance = (balance*1.1) ==T1 (complete) followed

b: [220 by T2 (complete)
balance = b.getBalance()
b:

b.setBalance(balance*1.1)

a.withdraw(balance* 0.1) a [80
' jﬂl/ ithdraw(balance*0.1)

Pairs of Conflicting Operations

CSE 486/586, Spring 2013 18

(&%)

Another Example

Transaction T1

Transaction T2

x= a.read()

a.write(20) o\

b.write(x) o—]

[Conflicting
S.

Non-
serially
y=bread) gquivalent
b.write(30) interleaving
of

z=aread() operations

Inconsistent Retrievals Problem

TransactionV:
a.withdraw(100)
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100);

b.deposit(100) /

$100

$300

total = a.getBalance()
|, total = total+b.getBalance()
total = total+c.getBalance()

$100
$300

Both withdraw and deposit contain a write operation

CSE 486/586, Spring 2013

Summary

« Transactions need to provide ACID
« Serial equivalence defines correctness of executing

concurrent transactions

« Itis handled by ordering conflicting operations

CSE 486/586, Spring 2013

x= a.read()
a.write(20) s-aread) Serially
b.write(x) equivalent
y = b.read() g}terleavmg
b-write(30) 5herations
CSE 486/586, Spring 2013 19
Serially-Equivalent Ordering
TransactionV: Transaction W:
a.withdraw(100); B b WToral
b.deposit(100) aBranch.branchTotal()
a.withdraw(100); $100
total = a.getBalance() $100
b.deposit(100) $300
total = total+b.getBalance() $400
total = total+c.getBalance()
CSE 486/586, Spring 2013 21
Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2013 23

