
C 1 

CSE 486/586, Spring 2012 

CSE 486/586 Distributed Systems 
Case Study: Amazon Dynamo 

Steve Ko 
Computer Sciences and Engineering 

University at Buffalo 
 
 
 

CSE 486/586, Spring 2012 

Recap 
•  CAP Theorem? 

– Consistency, Availability, Partition Tolerance 
–  Pick two 

•  Eventual consistency? 
–  Availability and partition tolerance over consistency 

•  Lazy replication? 
– Replicate lazily in the background 

•  Gossiping? 
– Contact random targets, infect, and repeat in the next round 

2 

CSE 486/586, Spring 2012 

Amazon Dynamo 
•  Distributed key-value storage 

– Only accessible with the primary key 
–  put(key, value) & get(key) 

•  Used for many Amazon services (“applications”) 
–  Shopping cart, best seller lists, customer preferences, 

product catalog, etc. 
– Now in AWS as well (DynamoDB) (if interested, read 

http://www.allthingsdistributed.com/2012/01/amazon-
dynamodb.html) 

•  With other Google systems (GFS & Bigtable), 
Dynamo marks one of the first non-relational storage 
systems (a.k.a. NoSQL) 

3 CSE 486/586, Spring 2012 

Amazon Dynamo 
•  A synthesis of techniques we discuss in class 

– Well, not all but mostly 
–  Very good example of developing a principled distributed 

system 
– Comprehensive picture of what it means to design a 

distributed storage system 

•  Main motivation: shopping cart service 
–  3 million checkouts in a single day 
– Hundreds of thousands of concurrent active sessions 

•  Properties (in the CAP theorem sense) 
–  Eventual consistency 
–  Partition tolerance 
–  Availability (“always-on” experience) 

4 

CSE 486/586, Spring 2012 

Overview of Key Design Techniques 
•  Gossiping for membership and failure detection 

–  Eventually-consistent membership 

•  Consistent hashing for node & key distribution 
–  Similar to Chord 
–  But there’s no ring-based routing; everyone knows everyone 

else 

•  Object versioning for eventually-consistent data objects 
–  A vector clock associated with each object 

•  Quorums for partition/failure tolerance 
–  “Sloppy” quorum similar to the available copies replication 

strategy 
•  Merkel tree for resynchronization after failures/partitions 

–  (This was not covered in class) 

5 CSE 486/586, Spring 2012 

Membership 
•  Nodes are organized as a ring just like Chord using 

consistent hashing 
•  But everyone knows everyone else. 
•  Node join/leave 

– Manually done 
–  An operator uses a console to add/delete a node 
– Reason: it’s a well-maintained system; nodes come back 

pretty quickly and don’t depart permanently most of the time 
•  Membership change propagation 

–  Each node maintains its own view of the membership & the 
history of the membership changes 

–  Propagated using gossiping (every second, pick random 
targets) 

•  Eventually-consistent membership protocol 

6 



C 2 

CSE 486/586, Spring 2012 

Failure Detection 
•  Does not use a separate protocol; each request 

serves as a ping 
– Dynamo has enough requests at any moment anyway 

•  If a node doesn’t respond to a request, it is 
considered to be failed. 

7 CSE 486/586, Spring 2012 

Node & Key Distribution 
•  Original consistent hashing 
•  Load becomes uneven 

8 

CSE 486/586, Spring 2012 

Node & Key Distribution 
•  Consistent hashing with “virtual nodes” for better load 

balancing 
•  Start with a static number of virtual nodes uniformly 

distributed over the ring 

9 CSE 486/586, Spring 2012 

Node & Key Distribution 
•  One node joins and gets all virtual nodes 

10 

Node 1 

CSE 486/586, Spring 2012 

Node & Key Distribution 
•  One more node joins and gets 1/2 

11 

Node 1 
Node 2 

CSE 486/586, Spring 2012 

Node & Key Distribution 
•  One more node joins and gets 1/3 (roughly) from the 

other two 

12 

Node 1 
Node 2 
Node 3 



C 3 

CSE 486/586, Spring 2012 

Replication 
•  N: # of replicas; configurable 
•  The first is stored regularly with consistent hashing 
•  N-1 replicas are stored in the N-1 (physical) 

successor nodes (called preference list) 

13 CSE 486/586, Spring 2012 

Replication 
•  Any server can handle read/write in the preference 

list, but it walks over the ring 
–  E.g., try A first, then B, then C, etc. 

•  Update propagation: by the server that handled the 
request 

14 

CSE 486/586, Spring 2012 

Object Versioning 
•  Writes should succeed all the time 

–  E.g., “Add to Cart” 

•  Used to reconcile inconsistent data due to network 
partitioning/failures 

•  Each object has a vector clock 
–  E.g., D1 ([Sx, 1], [Sy, 1]): Object D1 has written once by 

server Sx and Sy. 
–  Each node keeps all versions until the data becomes 

consistent 

•  Causally concurrent versions: inconsistency 
•  If inconsistent, reconcile later. 

–  E.g., deleted items might reappear in the shopping cart. 

15 CSE 486/586, Spring 2012 

Object Versioning 
•  Consistency revisited 

–  Linearizability: any read operation reads the latest write. 
–  Sequential consistency: per client, any read operation reads 

the latest write. 
–  Eventual consistency: a read operations might not read the 

latest write & sometimes inconsistent versions need to be 
reconciled. 

•  Conflict detection & resolution required 
•  Dynamo uses vector clocks to detect conflicts 
•  Simple resolution done by the system (last-write-wins 

policy) 
•  Complex resolution done by each application 

–  System presents all conflicting versions of data 

16 

CSE 486/586, Spring 2012 

Object Versioning 
•  Example 

17 CSE 486/586, Spring 2012 

Object Versioning Experience 
•  Over a 24-hour period 
•  99.94% of requests saw exactly one version 
•  0.00057% saw 2 versions 
•  0.00047% saw 3 versions 
•  0.00009% saw 4 versions 
•  Usually triggered by many concurrent requests 

issued busy robots, not human clients 

18 



C 4 

CSE 486/586, Spring 2012 

Quorums 
•  Parameters 

– N replicas 
– R readers 
– W writers 

•  Static quorum approach: R + W > N 
•  Typical Dynamo configuration: (N, R, W) == (3, 2, 2) 
•  But it depends 

– High performance read (e.g., write-once, read-many): R==1, 
W==N 

–  Low R & W might lead to more inconsistency 

•  Dealing with failures 
–  Another node in the preference list handles the requests 

temporarily 
– Delivers the replicas to the original node upon recovery 

19 CSE 486/586, Spring 2012 

Replica Synchronization 
•  Key ranges are replicated. 
•  Say, a node fails and recovers, a node needs to 

quickly determine whether it needs to resynchronize 
or not. 

–  Transferring entire (key, value) pairs for comparison is not 
an option 

•  Merkel trees 
–  Leaves are hashes of values of individual keys 
–  Parents are hashes of (immediate) children 
– Comparison of parents at the same level tells the difference 

in children 
– Does not require transferring entire (key, value) pairs 

20 

CSE 486/586, Spring 2012 

Replica Synchronization 
•  Comparing two nodes that are synchronized 

–  Two (key, value) pairs: (k0, v0) & (k1, v1) 

21 

h0 = hash(v0) h1 = hash(v1) 

h2 = hash(h0 + h1) 

h0 = hash(v0) h1 = hash(v1) 

h2 = hash(h0 + h1) 

Node0 Node1 

Equal 

CSE 486/586, Spring 2012 

Replica Synchronization 
•  Comparing two nodes that are not synchronized 

– One: (k0, v2) & (k1, v1) 
–  The other: (k0, v0) & (k1, v1) 

22 

h3 = hash(v2) h1 = hash(v1) 

h4 = hash(h2 + h1) 

h0 = hash(v0) h1 = hash(v1) 

h2 = hash(h0 + h1) 

Node0 Node1 

Not equal 

CSE 486/586, Spring 2012 

Summary 
•  Amazon Dynamo 

– Distributed key-value storage with eventual consistency 

•  Techniques 
– Gossiping for membership and failure detection 
– Consistent hashing for node & key distribution 
– Object versioning for eventually-consistent data objects 
– Quorums for partition/failure tolerance 
– Merkel tree for resynchronization after failures/partitions 

•  Very good example of developing a principled 
distributed system 

23 CSE 486/586, Spring 2012 24 

Acknowledgements 
•  These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC). 


