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,” Recap

* CAP Theorem?
— Consistency, Availability, Partition Tolerance
— Pick two
« Eventual consistency?
— Availability and partition tolerance over consistency
« Lazy replication?
— Replicate lazily in the background
» Gossiping?
— Contact random targets, infect, and repeat in the next round
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Amazon Dynamo

« Distributed key-value storage

— Only accessible with the primary key

— put(key, value) & get(key)

« Used for many Amazon services (“applications”)

— Shopping cart, best seller lists, customer preferences,
product catalog, etc.

— Now in AWS as well (DynamoDB) (if interested, read
http://www_.allthingsdistributed.com/2012/01/amazon-
dynamodb.html)

« With other Google systems (GFS & Bigtable),
Dynamo marks one of the first non-relational storage
systems (a.k.a. NoSQL)
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Amazon Dynamo

« A synthesis of techniques we discuss in class
— Well, not all but mostly

— Very good example of developing a principled distributed
system

— Comprehensive picture of what it means to design a
distributed storage system

« Main motivation: shopping cart service

— 3 million checkouts in a single day

— Hundreds of thousands of concurrent active sessions
 Properties (in the CAP theorem sense)

— Eventual consistency

— Partition tolerance

— Availability (“always-on” experience)
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Overview of Key Design Techniques

« Gossiping for membership and failure detection
— Eventually-consistent membership

< Consistent hashing for node & key distribution
— Similar to Chord

— But there’s no ring-based routing; everyone knows everyone
else

« Object versioning for eventually-consistent data objects
— A vector clock associated with each object
« Quorums for partition/failure tolerance

— “Sloppy” quorum similar to the available copies replication
strategy

« Merkel tree for resynchronization after failures/partitions
— (This was not covered in class)
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Membership

» Nodes are organized as a ring just like Chord using
consistent hashing

But everyone knows everyone else.
Node join/leave
— Manually done
— An operator uses a console to add/delete a node
— Reason: it’s a well-maintained system; nodes come back
pretty quickly and don’t depart permanently most of the time
Membership change propagation

— Each node maintains its own view of the membership & the
history of the membership changes

— Propagated using gossiping (every second, pick random
targets)

Eventually-consistent membership protocol
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Failure Detection

« Does not use a separate protocol; each request
serves as a ping
— Dynamo has enough requests at any moment anyway
« If a node doesn’t respond to a request, it is
considered to be failed.
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Node & Key Distribution

« Original consistent hashing
* Load becomes uneven
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Node & Key Distribution

« Consistent hashing with “virtual nodes” for better load
balancing

« Start with a static number of virtual nodes uniformly
distributed over the ring
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Node & Key Distribution

* One node joins and gets all virtual nodes

o Node 1
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Node & Key Distribution

» One more node joins and gets 1/2

e Node 1
e Node 2
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Node & Key Distribution
» One more node joins and gets 1/3 (roughly) from the
other two

e Node 1
o Node 2
o Node 3
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Replication

* N: # of replicas; configurable
« The first is stored regularly with consistent hashing

* N-1 replicas are stored in the N-1 (physical)
successor nodes (called preference list)
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Replication

* Any server can handle read/write in the preference
list, but it walks over the ring

— E.g., try Afirst, then B, then C, etc.
« Update propagation: by the server that handled the

request
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Object Versioning

« Writes should succeed all the time
- E.g., “Add to Cart”
« Used to reconcile inconsistent data due to network
partitioning/failures
« Each object has a vector clock

— E.g., D1 ([Sx, 1], [Sy, 1]): Object D1 has written once by
server Sx and Sy.

— Each node keeps all versions until the data becomes
consistent

« Causally concurrent versions: inconsistency

« If inconsistent, reconcile later.
— E.g., deleted items might reappear in the shopping cart.

CSE 486/586, Spring 2012

Object Versioning

« Consistency revisited
— Linearizability: any read operation reads the latest write.

— Sequential consistency: per client, any read operation reads
the latest write.

— Eventual consistency: a read operations might not read the
latest write & sometimes inconsistent versions need to be
reconciled.

» Conflict detection & resolution required
» Dynamo uses vector clocks to detect conflicts
« Simple resolution done by the system (last-write-wins
policy)
« Complex resolution done by each application
— System presents all conflicting versions of data

CSE 486/586, Spring 2012 16

Object Versioning

« Example

wnite
handled by Sx

D1 ([Sx.1])
write
l handled by Sx
D2 ([Sx,2])
write write
handled by Sy handled by Sz
D3 ([Sx,2].[Sy.1]) D4 ([Sx,2],[Sz,1))
reconciled
and written by
Sx
D5 ([Sx,3L.[Sy.1][Sz,1])
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Object Versioning Experience

« Over a 24-hour period

* 99.94% of requests saw exactly one version
* 0.00057% saw 2 versions

* 0.00047% saw 3 versions

* 0.00009% saw 4 versions

« Usually triggered by many concurrent requests
issued busy robots, not human clients
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Quorums

» Parameters
— N replicas
— Rreaders
— W writers
« Static quorum approach: R + W > N
« Typical Dynamo configuration: (N, R, W) == (3, 2, 2)
< But it depends
- ngh performance read (e.g., write-once, read-many): R==1,

— Low R & W might lead to more inconsistency

« Dealing with failures

— Another node in the preference list handles the requests
temporarily

— Delivers the replicas to the original node upon recovery
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Replica Synchronization

« Key ranges are replicated.

« Say, a node fails and recovers, a node needs to
quickly determine whether it needs to resynchronize
or not.

— Transferring entire (key, value) pairs for comparison is not
an option

* Merkel trees

— Leaves are hashes of values of individual keys
— Parents are hashes of (immediate) children

— Comparison of parents at the same level tells the difference
in children

— Does not require transferring entire (key, value) pairs
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Replica Synchronization

« Comparing two nodes that are synchronized
— Two (key, value) pairs: (kO, v0) & (k1, v1)

Replica Synchronization

« Comparing two nodes that are not synchronized
- One: (kO, v2) & (k1, v1)
— The other: (k0, v0) & (k1, v1)

h4 = hash(hZ +ht) Not gqual h2 = hash hO + h1)

VARIVAN

h2 = hash(hO +h1) h2 = hash ho + h1)
h0 = hash(v0) | [ h1 = hash(v1) | [0 = hash(v0) | [n1 = hash(v1) |
NodeO Node1
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Summary

* Amazon Dynamo

— Distributed key-value storage with eventual consistency
« Techniques

— Gossiping for membership and failure detection

— Consistent hashing for node & key distribution

— Object versioning for eventually-consistent data objects

— Quorums for partition/failure tolerance

— Merkel tree for resynchronization after failures/partitions
« Very good example of developing a principled

distributed system

CSE 486/586, Spring 2012 23

h3 = hash(v2) | [ 1 = hash(v1) | [h0 = hash(v0) | [n1 = hash(v1) |
Node0 Node1
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