CSE 486/586 Distributed Systems
Google Chubby Lock Service

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Recap

» Paxos is a consensus algorithm.
— Proposers?
— Acceptors?
— Learners?
* A proposer always makes sure that,
— If a value has been chosen, it always proposes the same
value.
* Three phases
— Prepare: “What's the last proposed value?”
— Accept: “Accept my proposal.”
— Learn: “Let’s tell other guys about the consensus.”

CSE 486/586, Spring 2013

Recap: First Requirement
« In the absence of failure or msg loss, we want a

value to be chosen even if only one value is
proposed by a single proposer.

« P1. An acceptor must accept the first proposal that it
receives.

CSE 486/586, Spring 2013

Recap: Second Requirement

« But the first requirement is not enough!

— There are cases that do not provide any consensus.
We need to accept multiple proposals.
Then we need to guarantee that once a majority
chooses a value, all majorities should choose the
same value.

— l.e., all chosen proposals have the same value.

— This guarantees only one value to be chosen.

— This gives our next requirement.
P2. If a proposal with value V is chosen, then every
higher-numbered proposal that is chosen has value
V.

CSE 486/586, Spring 2013

Recap: Strengthening P2

OK; how do we guarantee that?

Can acceptors do something?
- Yes!

So we can strengthen P2:

P2a. If a proposal with value V is chosen, then every
higher-numbered proposal accepted by any acceptor
has value V.

By doing this, we have change the requirement to be
something that acceptors need to guarantee.

CSE 486/586, Spring 2013

Recap: Strengthening P2

« But guaranteeing P2a might be difficult because of
P1.
+ Scenario
— Avalue V is chosen.

— An acceptor C never receives any proposal (due to
asynchrony).

— A proposer fails, recovers, and issues a different proposal
with a higher number and a different value.

— C accepts it (violating P2a).

CSE 486/586, Spring 2013

Recap: Combining P1 & P2a

» Then can proposers do anything about that?

* P2b. If a proposal with value V is chosen, then every
higher-numbered proposal issued by any proposer
has value V.

* Now we have changed the requirement P2 to
something that each proposer has to guarantee.

CSE 486/586, Spring 2013 7

How to Guarantee P2b

* P2b. If a proposal with value v is chosen, then every
higher-numbered proposal issued by any proposer
has value V.

« Two cases for a proposer proposing (N, V)

— If a proposer knows that there is and will be no proposal N’ <
N chosen by a majority, it can propose any value.

— If that is not the case, then it has to make sure that it
proposes the same value that's been chosen by a majority.

* (Rough) Intuition for the first case

— If there’s a proposal chosen by a majority set S, then any
majority set S’ will intersect with S.

— Thus, if the proposer asks acceptors and gets replies from a
majority that it did not and will not accept any proposal, then
we're fine.

CSE 486/586, Spring 2013 8

“Invariant” to Maintain

* P2c. Forany V and N, if a proposal with value V and
number N is issued, then there is a set S consisting
of a majority of acceptors such that either

— (A) no acceptor in S has accepted or will accept any
proposal numbered less than N or,

— (B) V is the value of the highest-numbered proposal among
all proposals numbered less than N accepted by the
acceptors in S.

CSE 486/586, Spring 2013 9

Paxos Phase 1

« A proposer chooses its proposal number N and
sends a prepare request to acceptors.

* Maintains P2c.

 Acceptors need to reply:

— A promise to not accept any proposal numbered less than N
any more (to make sure that the protocol doesn’t deal with
old proposals)

— If there is, the accepted proposal with the highest number
less than N

CSE 486/586, Spring 2013 10

Paxos Phase 2

« If a proposer receives a reply from a majority, it
sends an accept request with the proposal (N, V).

— V: the highest N from the replies (i.e., the accepted
proposals returned from acceptors in phase 1)

— Or, if no accepted proposal was returned in phase 1, any
value.
« Upon receiving (N, V), acceptors need to maintain
P2c by either:
— Accepting it
— Or, rejecting it if there was another prepare request with N’
higher than N, and it replied to it.

CSE 486/586, Spring 2013 1

Paxos Phase 3

* Learners need to know which value has been
chosen.
* Many possibilities
« One way: have each acceptor respond to all learners
— Might be effective, but expensive
« Another way: elect a “distinguished learner”
— Acceptors respond with their acceptances to this process
— This distinguished learner informs other learners.
— Failure-prone
» Mixing the two: a set of distinguished learners

CSE 486/586, Spring 2013 12

Ny

Problem: Progress (Liveness)

There’s a race condition for proposals.
PO completes phase 1 with a proposal number NO

Before PO starts phase 2, P1 starts and completes
phase 1 with a proposal number N1 > NO.

PO performs phase 2, acceptors reject.

Before P1 starts phase 2, PO restarts and completes
phase 1 with a proposal number N2 > N1.

P1 performs phase 2, acceptors reject.
...(this can go on forever)
How to solve this?

CSE 486/586, Spring 2013 13

Providing Liveness

« Solution: elect a distinguished proposer
— l.e., have only one proposer
« If the distinguished proposer can successfully
communicate with a majority, the protocol guarantees
liveness.

— lL.e., if a process plays all three roles, Paxos can tolerate
failures f< 1/2* N.

« Still needs to get around FLP for the leader election,
e.g., having a failure detector

CSE 486/586, Spring 2013 14

CSE 486/586 Administrivia

* More practice problems & example final posted
* Quick poll: Android platform class
* PhonelLab hiring
— Testbed developer/administrator
» Anonymous feedback form still available.
* Please come talk to me!

CSE 486/586, Spring 2013 15

Google Chubby

» Alock service
— Enables multiple clients to share a lock and coordinate
« A coarse-grained lock service

— Locks are supposed to be held for hours and days, not
seconds.

In addition, it can store small files.
« Design target
— Low-rate locking/unlocking
— Low-volume information storage
* Why would you need something like this?

CSE 486/586, Spring 2013 16

Google Infrastructure Overview

* Google File System (GFS)
— Distributed file system
« Bigtable
— Table-based storage
« MapReduce
— Programming paradigm & its execution framework
« These rely on Chubby.
« Warning: the next few slides are intentionally shallow.
— The only purpose is to give some overview.

CSE 486/586, Spring 2013 17

Google File System

* A cluster file system
— Lots of storage (~12 disks per machine)
— Replication of files to combat failures

CcP
g

CSE 486/586, Spring 2013 18

Google File System

« Files are divided into chunks

— 64MB/chunk

— Distributed & replicated over servers
» Two entities

— One master

— Chunk servers

CSE 486/586, Spring 2013 19

Google File System

» Master maintains all file system metadata
— Namespace
— Access control info
— Filename to chunks mappings
— Current locations of chunks
* Master replicates its data for fault tolerance
* Master periodically communicates with all chunk
servers
— Via heartbeat messages
— To get state and send commands
* Chunk servers respond to read/write requests &
master's commands.

CSE 486/586, Spring 2013 20

Bigtable

« Table-based storage on top of GFS
» Main storage for a lot of Google services
— Google Analytics
— Google Finance
— Personalized search
— Google Earth & Google Maps
— Etc.
« Gives a large logical table view to the clients

— Logical tables are divided into fablets and distributed over
the Bigtable servers.

 Three entities
— Client library
— One master
— Tablet servers
CSE 486/586, Spring 2013 21

"com.cnn.www" —

Bigtable

» Table: rows & columns

— (row, column, timestamp) -> cell contents
« E.g., web pages and relevant info.

— Rows: URLs

— Columns: actual web page, (out-going) links, (incoming)
links, etc.

— Versioned: using timestamps

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
| | \

CSE 486/586, Spring 2013 22

MapReduce

* Programming paradigm

— Map: (key, value) - list of (intermediate key, intermediate
value)

— Reduce: (intermediate key, list of intermediate values) >
(output key, output value)

— Programmers write Map & Reduce functions within the
interface given (above).
» Execution framework

— Google MapReduce executes Map & Reduce functions over
a cluster of servers

— One master
— Workers

CSE 486/586, Spring 2013 23

MapReduce
» Execution flow

Master

[]

Intermediate
keys partitioned

‘D\"‘“’f’duoe tasks

Reduce workers

Output

Input Files

Map workers

CSE 486/586, Spring 2013 24

Common Theme

* One master & multiple workers
¥+ Why one master?
' — This design simplifies lots of things.

— Mainly used to handle meta data; it's important to reduce the
load of a single master.

— No need to deal with consistency issues
— Mostly fit in the memory > very fast access
* Obvious problem: failure
— We can have one primary and backups.
— We can then elect the primary out of the peers.
* How would you use a lock service like Chubby?

CSE 486/586, Spring 2013 25

Chubby

» A coarse-grained lock service

— Locks are supposed to be held for hours and days, not
seconds.

— In addition, it can store small files.
« Used for various purposes (e.g., the master election)
for GFS, Bigtable, MapReduce
— Potential masters try to create a lock on Chubby
— The first one that gets the lock becomes the master

« Also used for storing small configuration data and
access control lists

CSE 486/586, Spring 2013 26

Chubby Organization

« Chubby cell (an instance) has typically 5 replicas.
— But each cell still serves tens of thousands of clients

« Among 5 replicas, one master is elected.
— Any one replica can be the master.
— They decide who is the master via Paxos.

» The master handles all requests.

application

client processes : O ;

CSE 486/586, Spring 2013 27

Client Interface

« File system interface
— From a client’s point of view, it's almost like accessing a file
system.
 Typical name: /Is/foo/wombat/pouch
— Is (lock service) common to all Chubby names
— foo is the name of the Chubby cell
— /wombat/pouch interpreted within Chubby cell
« Contains files and directories, called nodes

— Any node can be a reader-writer lock: reader (shared) mode
& writer (exclusive) mode

— Files can contain a small piece of information

— Just like a file system, each file is associated with some
meta-data, such as access control lists.

CSE 486/586, Spring 2013 28

Client-Chubby Interaction

+ Clients (library) send KeepAlive messages
— Periodic handshakes

— If Chubby doesn’t hear back from a client, it's considered to
be failed.

« Clients can subscribed to events.

— E.g., File contents modified, child node added, removed, or
modified, lock become invalid, etc.

« Clients cache data (file & meta data)

— If the cached data becomes stale, the Chubby master
invalidates it.

» They Chubby master piggybacks events or cache
invalidations on the KeepAlives

— Ensures clients keep cache consistent

CSE 486/586, Spring 2013 29

Client Lock Usage

« Each lock has a “sequencer” that is roughly a version
number.
* Scenario
— A process holding a lock L issues a request R
— It then fails & lock gets freed.

— Another process acquires L and perform some action before
R arrives at Chubby.

— R may be acted on without the protection of L, and
potentially on inconsistent data.

CSE 486/586, Spring 2013 30

(¢,

Client API

» open() & close()
» GetContentsAndStat()
— Reads the whole file and meta-data
+ SetContents()
— Writes to the file
« Acquire(), TryAcquire(), Release()
— Acquires and releases a lock associated with the file

» GetSequencer(), SetSequencer(), CheckSequencer()

CSE 486/586, Spring 2013

Primary Election Example

All potential primaries open the lock file and attempt
to acquire the lock.

One succeeds and becomes the primary, others
become replicas.

Primary writes identity into the lock file with
SetContents().

Clients and replicas read the lock file with
GetContentsAndStat().

In response to a file-modification event.

CSE 486/586, Spring 2013

Chubby Usage

« A snapshot of a Chubby cell

_ _ stored files 22k
time since last fail-over 18 days 0-1k bytes 90%
fail-over duration 14s 1k-10k bytes 10%
active clients (direct) 22k > 10k bytes 02%
additional proxied clients 32k naming-related 46%
Tilos open T2k mirored ACLs & config info 27%

naming-related 60% i’iz:‘:j‘gmble meta-data l;:
cll.icfn—is—caching—ﬁlc entries 230k RPCPr ate l_z'k/ s
distinct files cached 24k KeepAlive 93%

i 32k GetStat 2%

exclusive locks Tk Open 1%
shared locks 0 CreateSession 1%
oeddieclones 8k GetContentsAndStat 04%
0.1% SetContents 680ppm

Acquire 3ippm

« Few clients hold locks, and shared locks are rare.

— Consistent with locking being used for primary election and

partitioning data among replicas.

CSE 486/586, Spring 2013

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2013

