
C 1 

CSE 486/586, Spring 2013 

CSE 486/586 Distributed Systems 
Google Chubby Lock Service 

Steve Ko 
Computer Sciences and Engineering 

University at Buffalo 
 
 
 

CSE 486/586, Spring 2013 

Recap 
•  Paxos is a consensus algorithm. 

–  Proposers? 
–  Acceptors? 
–  Learners? 

•  A proposer always makes sure that, 
–  If a value has been chosen, it always proposes the same 

value. 

•  Three phases 
–  Prepare: “What’s the last proposed value?” 
–  Accept: “Accept my proposal.” 
–  Learn: “Let’s tell other guys about the consensus.” 

2 

CSE 486/586, Spring 2013 

Recap: First Requirement 
•  In the absence of failure or msg loss, we want a 

value to be chosen even if only one value is 
proposed by a single proposer. 

•  P1. An acceptor must accept the first proposal that it 
receives. 

3 CSE 486/586, Spring 2013 

Recap: Second Requirement 
•  But the first requirement is not enough! 

–  There are cases that do not provide any consensus. 

•  We need to accept multiple proposals. 
•  Then we need to guarantee that once a majority 

chooses a value, all majorities should choose the 
same value. 

–  I.e., all chosen proposals have the same value. 
–  This guarantees only one value to be chosen. 
–  This gives our next requirement. 

•  P2. If a proposal with value V is chosen, then every 
higher-numbered proposal that is chosen has value 
V. 

4 

CSE 486/586, Spring 2013 

Recap: Strengthening P2 
•  OK; how do we guarantee that? 
•  Can acceptors do something? 

–  Yes! 

•  So we can strengthen P2: 

•  P2a. If a proposal with value V is chosen, then every 
higher-numbered proposal accepted by any acceptor 
has value V. 

•  By doing this, we have change the requirement to be 
something that acceptors need to guarantee. 

5 CSE 486/586, Spring 2013 

Recap: Strengthening P2 
•  But guaranteeing P2a might be difficult because of 

P1. 
•  Scenario 

–  A value V is chosen. 
–  An acceptor C never receives any proposal (due to 

asynchrony). 
–  A proposer fails, recovers, and issues a different proposal 

with a higher number and a different value. 
– C accepts it (violating P2a). 

6 



C 2 

CSE 486/586, Spring 2013 

Recap: Combining P1 & P2a 
•  Then can proposers do anything about that? 
•  P2b. If a proposal with value V is chosen, then every 

higher-numbered proposal issued by any proposer 
has value V. 

•  Now we have changed the requirement P2 to 
something that each proposer has to guarantee. 

7 CSE 486/586, Spring 2013 

How to Guarantee P2b 
•  P2b. If a proposal with value v is chosen, then every 

higher-numbered proposal issued by any proposer 
has value V. 

•  Two cases for a proposer proposing (N, V) 
–  If a proposer knows that there is and will be no proposal N’ < 

N chosen by a majority, it can propose any value. 
–  If that is not the case, then it has to make sure that it 

proposes the same value that’s been chosen by a majority. 

•  (Rough) Intuition for the first case 
–  If there’s a proposal chosen by a majority set S, then any 

majority set S’ will intersect with S. 
–  Thus, if the proposer asks acceptors and gets replies from a 

majority that it did not and will not accept any proposal, then 
we’re fine. 

8 

CSE 486/586, Spring 2013 

“Invariant” to Maintain 

 
•  P2c. For any V and N, if a proposal with value V and 

number N is issued, then there is a set S consisting 
of a majority of acceptors such that either 

–  (A) no acceptor in S has accepted or will accept any 
proposal numbered less than N or, 

–  (B) V is the value of the highest-numbered proposal among 
all proposals numbered less than N accepted by the 
acceptors in S. 

9 CSE 486/586, Spring 2013 

Paxos Phase 1 
•  A proposer chooses its proposal number N and 

sends a prepare request to acceptors. 
•  Maintains P2c. 
•  Acceptors need to reply: 

–  A promise to not accept any proposal numbered less than N 
any more (to make sure that the protocol doesn’t deal with 
old proposals) 

–  If there is, the accepted proposal with the highest number 
less than N 

10 

CSE 486/586, Spring 2013 

Paxos Phase 2 
•  If a proposer receives a reply from a majority, it 

sends an accept request with the proposal (N, V). 
–  V: the highest N from the replies (i.e., the accepted 

proposals returned from acceptors in phase 1) 
– Or, if no accepted proposal was returned in phase 1, any 

value. 
•  Upon receiving (N, V), acceptors need to maintain 

P2c by either: 
–  Accepting it 
– Or, rejecting it if there was another prepare request with N’ 

higher than N, and it replied to it. 

11 CSE 486/586, Spring 2013 

Paxos Phase 3 
•  Learners need to know which value has been 

chosen. 
•  Many possibilities 
•  One way: have each acceptor respond to all learners 

– Might be effective, but expensive 

•  Another way: elect a “distinguished learner” 
–  Acceptors respond with their acceptances to this process 
–  This distinguished learner informs other learners. 
–  Failure-prone 

•  Mixing the two: a set of distinguished learners 

12 



C 3 

CSE 486/586, Spring 2013 

Problem: Progress (Liveness) 
•  There’s a race condition for proposals. 
•  P0 completes phase 1 with a proposal number N0 
•  Before P0 starts phase 2, P1 starts and completes 

phase 1 with a proposal number N1 > N0. 
•  P0 performs phase 2, acceptors reject. 
•  Before P1 starts phase 2, P0 restarts and completes 

phase 1 with a proposal number N2 > N1. 
•  P1 performs phase 2, acceptors reject. 
•  …(this can go on forever) 
•  How to solve this? 

13 CSE 486/586, Spring 2013 

Providing Liveness 
•  Solution: elect a distinguished proposer 

–  I.e., have only one proposer 

•  If the distinguished proposer can successfully 
communicate with a majority, the protocol guarantees 
liveness. 

–  I.e., if a process plays all three roles, Paxos can tolerate 
failures f < 1/2 * N. 

•  Still needs to get around FLP for the leader election, 
e.g., having a failure detector 

14 

CSE 486/586, Spring 2013 

CSE 486/586 Administrivia 
•  More practice problems & example final posted 
•  Quick poll: Android platform class 
•  PhoneLab hiring 

–  Testbed developer/administrator 
•  Anonymous feedback form still available. 
•  Please come talk to me! 

15 CSE 486/586, Spring 2013 

Google Chubby 
•  A lock service 

–  Enables multiple clients to share a lock and coordinate 

•  A coarse-grained lock service 
–  Locks are supposed to be held for hours and days, not 

seconds. 
•  In addition, it can store small files. 
•  Design target 

–  Low-rate locking/unlocking 
–  Low-volume information storage 

•  Why would you need something like this? 

16 

CSE 486/586, Spring 2013 

Google Infrastructure Overview 
•  Google File System (GFS) 

– Distributed file system 

•  Bigtable 
–  Table-based storage 

•  MapReduce 
–  Programming paradigm & its execution framework 

•  These rely on Chubby. 
•  Warning: the next few slides are intentionally shallow. 

–  The only purpose is to give some overview. 

17 CSE 486/586, Spring 2013 

Google File System 
•  A cluster file system 

–  Lots of storage (~12 disks per machine) 
– Replication of files to combat failures 

18 

CP
U	
CP

U	
CP
U	
CP

U	
CP
U	
CP

U	
CP
U	
CP

U	
CP
U	
CP

U	
CP
U	


CP
U	
CP

U	
CP
U	
CP

U	
CP
U	
CP

U	
CP
U	
CP

U	
CP
U	
CP

U	
CP
U	




C 4 

CSE 486/586, Spring 2013 

Google File System 
•  Files are divided into chunks 

–  64MB/chunk 
– Distributed & replicated over servers 

•  Two entities 
– One master 
– Chunk servers 

19 CSE 486/586, Spring 2013 

Google File System 
•  Master maintains all file system metadata 

– Namespace 
–  Access control info 
–  Filename to chunks mappings 
– Current locations of chunks 

•  Master replicates its data for fault tolerance 
•  Master periodically communicates with all chunk 

servers 
–  Via heartbeat messages 
–  To get state and send commands 

•  Chunk servers respond to read/write requests & 
master’s commands. 

20 

CSE 486/586, Spring 2013 

Bigtable 
•  Table-based storage on top of GFS 
•  Main storage for a lot of Google services 

– Google Analytics 
– Google Finance 
–  Personalized search 
– Google Earth & Google Maps 
–  Etc. 

•  Gives a large logical table view to the clients 
–  Logical tables are divided into tablets and distributed over 

the Bigtable servers. 

•  Three entities 
– Client library 
– One master 
–  Tablet servers 

21 CSE 486/586, Spring 2013 

Bigtable 
•  Table: rows & columns 

–  (row, column, timestamp) -> cell contents 

•  E.g., web pages and relevant info. 
– Rows: URLs 
– Columns: actual web page, (out-going) links, (incoming) 

links, etc. 
–  Versioned: using timestamps 

22 

CSE 486/586, Spring 2013 

MapReduce 
•  Programming paradigm 

– Map: (key, value) à list of (intermediate key, intermediate 
value) 

– Reduce: (intermediate key, list of intermediate values) à 
(output key, output value) 

–  Programmers write Map & Reduce functions within the 
interface given (above). 

•  Execution framework 
– Google MapReduce executes Map & Reduce functions over 

a cluster of servers 
– One master 
– Workers 

23 CSE 486/586, Spring 2013 

MapReduce 
•  Execution flow 

24 

Master	


Input Files	
 Output	


Map workers	

Reduce workers	


M 

M 

M 

R 

R 

Input files sent to 
map tasks Intermediate 

keys partitioned 
into reduce tasks 



C 5 

CSE 486/586, Spring 2013 

Common Theme 
•  One master & multiple workers 
•  Why one master? 

–  This design simplifies lots of things. 
– Mainly used to handle meta data; it’s important to reduce the 

load of a single master. 
– No need to deal with consistency issues 
– Mostly fit in the memory à very fast access 

•  Obvious problem: failure 
– We can have one primary and backups. 
– We can then elect the primary out of the peers. 

•  How would you use a lock service like Chubby? 

25 CSE 486/586, Spring 2013 

Chubby 
•  A coarse-grained lock service 

–  Locks are supposed to be held for hours and days, not 
seconds. 

–  In addition, it can store small files. 

•  Used for various purposes (e.g., the master election) 
for GFS, Bigtable, MapReduce 

–  Potential masters try to create a lock on Chubby 
–  The first one that gets the lock becomes the master 

•  Also used for storing small configuration data and 
access control lists 

26 

CSE 486/586, Spring 2013 

Chubby Organization 
•  Chubby cell (an instance) has typically 5 replicas. 

–  But each cell still serves tens of thousands of clients 

•  Among 5 replicas, one master is elected. 
–  Any one replica can be the master. 
–  They decide who is the master via Paxos. 

•  The master handles all requests. 
 

27 CSE 486/586, Spring 2013 

Client Interface 
•  File system interface 

–  From a client’s point of view, it’s almost like accessing a file 
system. 

•  Typical name: /ls/foo/wombat/pouch 
–  ls (lock service) common to all Chubby names 
–  foo is the name of the Chubby cell 
–  /wombat/pouch interpreted within Chubby cell 

•  Contains files and directories, called nodes 
–  Any node can be a reader-writer lock: reader (shared) mode 

& writer (exclusive) mode 
–  Files can contain a small piece of information 
–  Just like a file system, each file is associated with some 

meta-data, such as access control lists. 

28 

CSE 486/586, Spring 2013 

Client-Chubby Interaction 
•  Clients (library) send KeepAlive messages 

–  Periodic handshakes 
–  If Chubby doesn’t hear back from a client, it’s considered to 

be failed. 

•  Clients can subscribed to events. 
–  E.g., File contents modified, child node added, removed, or 

modified, lock become invalid, etc. 

•  Clients cache data (file & meta data) 
–  If the cached data becomes stale, the Chubby master 

invalidates it. 

•  They Chubby master piggybacks events or cache 
invalidations on the KeepAlives 

–  Ensures clients keep cache consistent 

29 CSE 486/586, Spring 2013 

Client Lock Usage 
•  Each lock has a “sequencer” that is roughly a version 

number. 
•  Scenario 

–  A process holding a lock L issues a request R 
–  It then fails & lock gets freed. 
–  Another process acquires L and perform some action before 

R arrives at Chubby. 
– R may be acted on without the protection of L, and 

potentially on inconsistent data. 

30 



C 6 

CSE 486/586, Spring 2013 

Client API 
•  open() & close() 
•  GetContentsAndStat() 

– Reads the whole file and meta-data 

•  SetContents() 
– Writes to the file 

•  Acquire(), TryAcquire(), Release() 
–  Acquires and releases a lock associated with the file 

•  GetSequencer(), SetSequencer(), CheckSequencer() 

31 CSE 486/586, Spring 2013 

Primary Election Example 
•  All potential primaries open the lock file and attempt 

to acquire the lock. 
•  One succeeds and becomes the primary, others 

become replicas. 
•  Primary writes identity into the lock file with 

SetContents(). 
•  Clients and replicas read the lock file with 

GetContentsAndStat(). 
•  In response to a file-modification event. 

32 

CSE 486/586, Spring 2013 

Chubby Usage 
•  A snapshot of a Chubby cell 

 
•  Few clients hold locks, and shared locks are rare. 

– Consistent with locking being used for primary election and 
partitioning data among replicas. 

33 CSE 486/586, Spring 2013 34 

Acknowledgements 
•  These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC). 


