

CSE 486/586 Distributed Systems Byzantine Fault Tolerance --- 1

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Recap

- Digital certificates
 - Binds a public key to its owner
 - Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

CSE 486/586, Spring 2013

2

Byzantine Fault Tolerance

- Fault categories
 - Benign: failures we've been talking about
 - Byzantine: arbitrary failures
- Benign
 - Fail-stop & crash: process halted
 - Omission: msg loss, send-omission, receive-omission
 - All entities still follow the protocol
- Byzantine
 - A broader category than benign failures
 - Process or channel exhibits arbitrary behavior.
 - May deviate from the protocol
 - Can be malicious (attacks, software bugs, etc.)

CSE 486/586, Spring 2013

3

Byzantine Fault Tolerance

- Result: with f faulty nodes, we need $3f + 1$ nodes to tolerate their Byzantine behavior.
 - Fundamental limitation
 - Today's goal is to understand this limitation.
 - Next lecture: a protocol that provides this guarantee.
- How about Paxos (that tolerates benign failures)?
 - With f faulty nodes, we need $2f + 1$ to obtain the majority.

CSE 486/586, Spring 2013

4

“Byzantine”

- Leslie Lamport (again!) defined the problem & presented the result.
- “I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra's dining philosopher's problem received much more attention than it deserves.”
- “At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem.”
- “...The obviously more appropriate Byzantine generals then occurred to me.”

CSE 486/586, Spring 2013

5

Introducing the Byzantine Generals

- Imagine several divisions of the Byzantine army camped outside of a city
- Each division has a general.
- The generals can only communicate by a messenger.

CSE 486/586, Spring 2013

6

Introducing the Byzantine Generals

- They must decide on a common plan of action.
 - What is this problem?
- But, *some of the generals can be traitors.*

CSE 486/586, Spring 2013

7

Requirements

- All **loyal generals** decide upon **the same plan of action** (e.g., attack or retreat).
- A **small number of traitors** cannot cause the **loyal generals** to adopt **a bad plan**.
- There has to be a way to communicate one's opinion to others correctly.

CSE 486/586, Spring 2013

8

The Byzantine Generals Problem

- The problem boils down to how a single general sends the general's own value to the others.
 - Thus, we can simplify it in terms of **a single commanding general** sending an order to **lieutenant generals**.
- Byzantine Generals Problem: a commanding general must send an order to $n-1$ lieutenant generals such that
 - All **loyal lieutenants obey the same order**.
 - If the commanding general is **loyal**, then every **loyal lieutenant** obeys the order the commanding general sends.
- We'll try a simple strategy and see if it works.
 - All-to-all communication: every general sends the opinion & repeatedly sends others' opinions for reliability.
 - Majority: the final decision is the decision of the majority
 - Similar to reliable multicast

CSE 486/586, Spring 2013

9

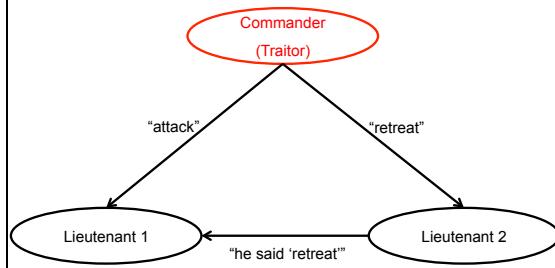
CSE 486/586 Administrivia

- PA4 due this Friday @ 2:59pm.
- Final: 5/6, Monday, 3:30pm – 6:30pm
 - Davis 101
 - Everything up to this Friday
- Anonymous feedback form still available.
- Please come talk to me!

CSE 486/586, Spring 2013

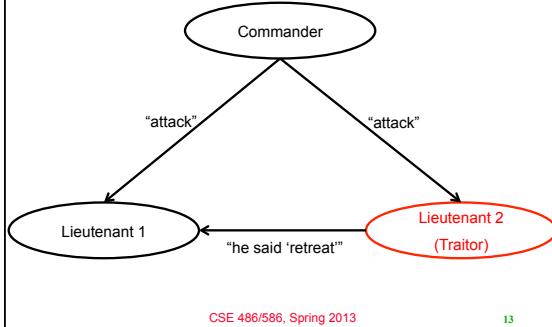
10

Question


- Can three generals agree on the plan of action?
 - One commander
 - Two lieutenants
 - One of them can be a traitor.
 - This means that we have $2f + 1$ nodes.
- Protocol
 - Commander sends out an order ("attack"/"retreat").
 - Lieutenants relay the order to each other for reliability.
 - Lieutenants follow the order of the commander.
- Can you come up with some scenarios where this protocol doesn't work?

CSE 486/586, Spring 2013

11


Understanding the Problem

CSE 486/586, Spring 2013

12

Understanding the Problem

CSE 486/586, Spring 2013

13

Understanding the Problem

- With three generals, it is impossible to solve this problem with one traitor.
- Why not Paxos?
 - Paxos works with $2f + 1$ nodes when f nodes are faulty.
 - In Paxos, f nodes can *fail (or disappear)* from the system, but *they don't lie*.
- In the Byzantine generals problem, f nodes might be *alive and lie*.
- In general, you need $3f + 1$ nodes to tolerate f *faulty nodes* in the Byzantine generals problem.
- Why?

CSE 486/586, Spring 2013

14

Intuition for the Result

- Going back to the original problem setting
 - Each one expresses its opinion (yes/no), we choose the majority's opinion.
- Question: how many votes do I need?
 - In Paxos, I need $f + 1$ votes (agreeing on either yes or no) out of $2f + 1$ nodes, since that's the majority.
 - Will this work with Byzantine failures?
- Let's apply this to the Byzantine generals problem.
 - Let's say we obtain $f + 1$ votes on yes.
 - Up to f nodes can lie \rightarrow getting $f + 1$ votes means that the result can be determined by the Byzantine nodes.
 - E.g., let's say we have $2f + 1$ nodes, and we get $f + 1$ votes on yes. f (faulty) nodes lie (say yes), one non-faulty node says yes, and f non-faulty nodes say no.
- What do we need?

CSE 486/586, Spring 2013

15

Intuition for the Result

- We need more votes from the honest nodes than the faulty nodes.
 - So the faulty nodes can't influence the outcome.
 - If we obtain $2f + 1$ votes, then we have at least $f + 1$ votes from *honest nodes*, one more than the number of potential faulty nodes.
 - This way, we can make sure that honest nodes determine the outcome.
- But, f nodes still might just simply fail, not reply at all.
 - In order to get $2f + 1$ votes under the possibility of f no replies,
 - We need at least $3f + 1$ nodes in total.

CSE 486/586, Spring 2013

16

Summary

- Byzantine generals problem
 - They must decide on a common plan of action.
 - But, some of the generals can be traitors.
- Requirements
 - All loyal generals decide upon the same plan of action (e.g., attack or retreat).
 - A small number of traitors cannot cause the loyal generals to adopt a bad plan.
- Impossibility results
 - With three generals, it's impossible to reach a consensus with one traitor
 - In general, with less than $3f + 1$ nodes, we cannot tolerate f faulty nodes.

CSE 486/586, Spring 2013

17

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2013

18