CSE 486/586 Distributed Systems
Byzantine Fault Tolerance --- 2

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2013

Recap

 Fault categories
— Benign
— Byzantine
» Consensus results
— Paxos: f (benign) faulty nodes - 2f + 1 total nodes
— BFT: f (Byzantine) faulty nodes > 3f + 1 total nodes
« Byzantine generals problem
— A commanding general & N - 7 lieutenant generals
— All loyal lieutenants obey the same order.

— If the commanding general is loyal, then every loyal
lieutenant obeys the order the commanding general sends.

CSE 486/586, Spring 2013

Practical Byzantine Fault Tolerance

Byzantine fault tolerance (BFT) protocols thought to
be too expensive and impractical.
PBFT (Practical BFT) was then proposed, which
showed a rather inexpensive & practical BFT
protocol.

— With asynchrony & f Byzantine nodes

— This resurrected the interest in BFT protocols.
PBFT is designed for replicated state machines

CSE 486/586, Spring 2013 3

3f+1 for Replicated State Machines

« For liveness, we need to assume that we might only
get N-f. We say that this N-f is our quorum size.

3f+1 for Replicated State Machines

» For correctness, any two quorums must intersect at
least one honest node.

— (N-f) + (N-f) - N >= F+1 > N >= 3f+1

Clients éii éi]

CSE 486/586, Spring 2013 5

Servers
%,
+
Clients g
CSE 486/586, Spring 2013
PBFT

« A BFT protocol for primary-backup
« Itis optimal, i.e., operates with 3f+1 nodes.
 Deal with two things (recall from last lecture)
— Malicious primary
— Consensus
« Everyone uses authentication to verify who they're
talking with.
* How it works
— Primary performs operations

— Backups monitor the primary and do a view change if they
detect a primary failure.

CSE 486/586, Spring 2013

System Setting

« Each replica has an id i (between 0 and N-1)
« A view number v identifies the current primary.
— Current primary: i = v mod N
— If the current primary fails, the next primary is (i + 1) mod N
« Each client request has a sequence number
« All messages are authenticated using crypto-based
techniques.
— Anyone can verify who sent the message & if the message
content is correct.
— Using public-key signatures, message authentication codes,
and message digests

— Forgery is practically not possible, limiting what a faulty node
can do.

CSE 486/586, Spring 2013 7

Client Protocol

A client sends a signed request to the primary.
— The primary can still lie (later).

All replicas reply directly to the client.

The client waits until it receives f + 1 replies with the
same result.

The client accepts the result.

If the client doesn’t receive replies soon enough, it
multicasts the request to all replicas.

CSE 486/586, Spring 2013 8

Primary-Backup Protocol

« Normal case operation
— Three phases: Pre-prepare, prepare, commit

— A sequence number for each operation, which is agreed and
verified by all replicas to detect malicious primary

* View changes
— When the primary fails

CSE 486/586, Spring 2013 9

Normal Case Operation

* Three phases
— PRE-PREPARE picks order of requests
— PREPARE ensures order within views
— COMMIT ensures order across views

* Replicas remember messages in log

* Messages are authenticated

The primary can still lie.

— Send different sequence number for the same
operation to different replicas

— Use a duplicate sequence number for operation

CSE 486/586, Spring 2013 10

Pre-Prepare Phase

» The primary picks a sequence number n.
Request: m

{PRE-PREPARE, v, n, m}

Primary: Replica 0\
Replica 1 \
Replica 2 \

Replica

CSE 486/586, Spring 2013 1

Prepare Phase

Request: m

PRE-PREPARE

Primary: Replica

Replica 1 \/'
/

Replica 2

7
i
i
i
i
’

I

B 7
Replica 3 1

174

Accepted PRE-PREPARE
CSE 486/586, Spring 2013 12

Ny

Prepare Phase

 All replicas exchange PREPARE messages.

Request: m

PRE-PREPARE

Primary: Replica / /'
"(PREPARE, v, n, m}
Replica 1 ¥ 1
A |
1
Replica 2 SN
[I
i\
J |
1

Replica 3

Accepted PRE-PREPARE
CSE 486/586, Spring 2013 13

Prepare Phase

* Replicas wait for 2f+1 matches.

Request: m Collect PRE-PREPARE + 2f matching
H PREPARE A
PRE-PREPARE | | L
[} s
1
1

Primary: Replica
[{PREPARE,v,nm} |/ {

/
/
Replica 1 ,7 ! ',t'
i 1 /!
| !

Replica 2 FA YA
:" s !
AN

Replica 3 i 4 1

,’,/ 1

" |

Accepted PRE-PREPARE

CSE 486/586, Spring 2013 14

Commit Phase

Request: m

PRE-PREPARE

vy

Primary: Replica

Replica 1 \

&

{COMMIT, v, n, m}

Commit Phase

Request: m Collect 2f+1 matching COMMIT: execute and reply
v

Primary: Replica \

SR ARNANNY

Replica 3

v
\
| \
1 |
T T
1 1
1 1
1 1
Replica 1 I | i/
1 1 Fi
1 1 F;
1 1 !
T T
1 1
1 1
1 1
L L
| |
1 |
| |

CSE 486/586, Spring 2013 16

Replica 2 \\ \\ \
Replica 3
CSE 486/586, Spring 2013 15
View Change

 Provide liveness when primary fails
— Timeouts trigger view changes
— Select new primary (= v mod N)

« Brief protocol

— Replicas send VIEW-CHANGE message along with the
requests they prepared so far

— New primary collects 2f+1 VIEW-CHANGE messages

— Constructs information about committed requests in
previous views

CSE 486/586, Spring 2013 17

More Issues

« ...that we don’t discuss.
« Garbage collection

* Recovery

« State transfer

« Optimizations

CSE 486/586, Spring 2013 18

Summary

* Practical Byzantine Fault Tolerance
— Rather practical BFT
* Three phases
— Pre-prepare
— Prepare
— Commit
* View change
— When the primary fails, the next id becomes the new primary

CSE 486/586, Spring 2013 19

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2013

20

