
C 1 

CSE 486/586, Spring 2013 

CSE 486/586 Distributed Systems 
Byzantine Fault Tolerance --- 2 

Steve Ko 
Computer Sciences and Engineering 

University at Buffalo 
 
 
 

CSE 486/586, Spring 2013 

Recap 
•  Fault categories 

–  Benign 
–  Byzantine 

•  Consensus results 
–  Paxos: f (benign) faulty nodes à 2f + 1 total nodes 
–  BFT: f (Byzantine) faulty nodes à 3f + 1 total nodes 

•  Byzantine generals problem 
–  A commanding general & N - 1 lieutenant generals 
–  All loyal lieutenants obey the same order. 
–  If the commanding general is loyal, then every loyal 

lieutenant obeys the order the commanding general sends. 

2 

CSE 486/586, Spring 2013 

Practical Byzantine Fault Tolerance 
•  Byzantine fault tolerance (BFT) protocols thought to 

be too expensive and impractical. 
•  PBFT (Practical BFT) was then proposed, which 

showed a rather inexpensive & practical BFT 
protocol. 

– With asynchrony & f Byzantine nodes 
–  This resurrected the interest in BFT protocols. 

•  PBFT is designed for replicated state machines 

3 CSE 486/586, Spring 2013 

3f+1 for Replicated State Machines 
•  For liveness, we need to assume that we might only 

get N-f. We say that this N-f is our quorum size. 

4 

Servers 

Clients 

Writ
e X 

Write X (lost) X 
W

ri
te

 X
 W

rite X 

CSE 486/586, Spring 2013 

3f+1 for Replicated State Machines 
•  For correctness, any two quorums must intersect at 

least one honest node. 
–  (N-f) + (N-f) - N >= f+1 à N >= 3f+1 

5 

Write Y (delayed) 

W
rit

e 
Y 

W
ri

te
 Y

 W
rite Y 

Servers 

Clients 

CSE 486/586, Spring 2013 

PBFT 
•  A BFT protocol for primary-backup 
•  It is optimal, i.e., operates with 3f+1 nodes. 
•  Deal with two things (recall from last lecture) 

– Malicious primary 
– Consensus 

•  Everyone uses authentication to verify who they’re 
talking with. 

•  How it works 
–  Primary performs operations 
–  Backups monitor the primary and do a view change if they 

detect a primary failure. 



C 2 

CSE 486/586, Spring 2013 

System Setting 
•  Each replica has an id i (between 0 and N-1) 
•  A view number v identifies the current primary. 

– Current primary: i = v mod N 
–  If the current primary fails, the next primary is (i + 1) mod N 

•  Each client request has a sequence number 
•  All messages are authenticated using crypto-based 

techniques. 
–  Anyone can verify who sent the message & if the message 

content is correct. 
– Using public-key signatures, message authentication codes, 

and message digests 
–  Forgery is practically not possible, limiting what a faulty node 

can do. 

7 CSE 486/586, Spring 2013 

Client Protocol 
•  A client sends a signed request to the primary. 

–  The primary can still lie (later). 

•  All replicas reply directly to the client. 
•  The client waits until it receives f + 1 replies with the 

same result. 
•  The client accepts the result. 
•  If the client doesn’t receive replies soon enough, it 

multicasts the request to all replicas. 

8 

CSE 486/586, Spring 2013 

Primary-Backup Protocol 
•  Normal case operation 

–  Three phases: Pre-prepare, prepare, commit 
–  A sequence number for each operation, which is agreed and 

verified by all replicas to detect malicious primary 

•  View changes 
– When the primary fails 

9 CSE 486/586, Spring 2013 

Normal Case Operation 
•  Three phases 

–  PRE-PREPARE picks order of requests 
–  PREPARE ensures order within views 
– COMMIT ensures order across views 

•  Replicas remember messages in log 
•  Messages are authenticated 
•  The primary can still lie. 

– Send different sequence number for the same 
operation to different replicas 

– Use a duplicate sequence number for operation 

10 

CSE 486/586, Spring 2013 

Pre-Prepare Phase 
•  The primary picks a sequence number n. 

11 

Primary: Replica 0 

Replica 1 

Replica 2 

Replica 3 

Request: m 

{PRE-PREPARE, v, n, m} 

Fail 

CSE 486/586, Spring 2013 

Prepare Phase 

12 

Request: m 

PRE-PREPARE 

Primary: Replica 0 

Replica 1 

Replica 2 

Replica 3 Fail 

Accepted PRE-PREPARE 



C 3 

CSE 486/586, Spring 2013 

Prepare Phase 
•  All replicas exchange PREPARE messages. 

13 

Request: m 

PRE-PREPARE 

Primary: Replica 0 

Replica 1 

Replica 2 

Replica 3 Fail 

{PREPARE, v, n, m} 

Accepted PRE-PREPARE 
CSE 486/586, Spring 2013 

Prepare Phase 
•  Replicas wait for 2f+1 matches. 

14 

Request: m 

PRE-PREPARE 

Primary: Replica 0 

Replica 1 

Replica 2 

Replica 3 Fail 

{PREPARE, v, n, m} 

Accepted PRE-PREPARE 

Collect PRE-PREPARE + 2f matching 
PREPARE 

CSE 486/586, Spring 2013 

Commit Phase 

15 

Request: m 

PRE-PREPARE 

Primary: Replica 0 

Replica 1 

Replica 2 

Replica 3 Fail 

PREPARE 

{COMMIT, v, n, m} 

CSE 486/586, Spring 2013 

Commit Phase 

16 

Request: m 

PRE-PREPARE 

Primary: Replica 0 

Replica 1 

Replica 2 

Replica 3 Fail 

PREPARE COMMIT 

Collect 2f+1 matching COMMIT: execute and reply 

CSE 486/586, Spring 2013 

View Change 
•  Provide liveness when primary fails 

–  Timeouts trigger view changes 
–  Select new primary (= v mod N) 

•  Brief protocol 
– Replicas send VIEW-CHANGE message along with the 

requests they prepared so far 
– New primary collects 2f+1 VIEW-CHANGE messages 
– Constructs information about committed requests in 

previous views 

17 CSE 486/586, Spring 2013 

More Issues 
•  …that we don’t discuss. 
•  Garbage collection 
•  Recovery 
•  State transfer 
•  Optimizations 

18 



C 4 

CSE 486/586, Spring 2013 

Summary 
•  Practical Byzantine Fault Tolerance 

– Rather practical BFT 

•  Three phases 
–  Pre-prepare 
–  Prepare 
– Commit 

•  View change 
– When the primary fails, the next id becomes the new primary 

19 CSE 486/586, Spring 2013 20 

Acknowledgements 
•  These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC). 


