CSE 486/586 Distributed Systems
Content Providers & Services

CSE 486/586, Spring 2013

Content Providers

« A content provider provides a table view of data.

If you write a content provider, any client application
with the permission can enter/read/update/delete
data items in your content provider.

A client application (that uses your content provider)
uses ContentResolver to interact with your content
provider.

You need to extend ContentProvider and implement
necessary methods.

CSE 486/586, Spring 2013

~

How a Client Interacts

« Table identification - URI (android.net.Uri)
— E.g., content://user_dictionary/words
« Insert

— public final Uri ContentResolver.insert (Uri url,
ContentValues values)

« Update
— public final int ContentResolver.update (Uri uri,
ContentValues values, String where, String[] selectionArgs)
* Query

— public final Cursor ContentResolver.query (Uri uri, String[]
projection, String selection, String[] selectionArgs, String
sortOrder)

« Delete

— public final int ContentResolver.delete (Uri url, String where,
String[] selectionArgs)
CSE 486/586, Spring 2013

How to Write a Content Provider

Declare in AndroidManifest.xml

Define a URI that client apps will use

Define permissions

Implement necessary methods in ContentProvider

When implementing ContentProvider, use either the
Android file system or SQLite as the actual data
storage.

g s w2

CSE 486/586, Spring 2013 4

Declare in AndroidManifest.xml

<manifest ... >

<application ... >
<provider android:name=".ExampleProvider" />

</application>
</manifest>

CSE 486/586, Spring 2013

Defining a URI

« Typical format
— content://<authority>/<table name>
— Authority: a global (Android-wide) name for the provider
» E.g., edu.buffalo.cse.cse486.proj1.provider
— Table name: the name of a table that the provider exposes
» Note: a provider can expose more than one table.
» Should be added to AndroidManifest.xml
— E.g., <provider
android:authorities="edu.buffalo.cse.cse486.proj1.provider”
...>...</provider>

CSE 486/586, Spring 2013 6

Define Permissions

» Should define permissions (for others) in
AndroidManifest.xml

« android:permission: Single provider-wide read/write
permission.

— E.g., <provider
android:permission="edu.buffalo.cse.cse486.proj1.provider.
permission.USE_PROJ1_PROVIDER” ...>...</provider>

« android:readPermission: Provider-wide read
permission.

« android:writePermission: Provider-wide write
permission.

CSE 486/586, Spring 2013 7

Necessary Methods

* query()

— Retrieve data from your provider.

insert()

— Insert a new row into your provider.

update()

— Update existing rows in your provider.

delete()

— Delete rows from your provider.

getType()

— Return the MIME type corresponding to a content URI.

onCreate()

— Initialize your provider. The Android system calls this method
immediately after it creates your provider. Notice that your provider
is not created until a ContentResolver object tries to access it.

These need to handle concurrent accesses (need to be
thread-safe)

CSE 486/586, Spring 2013 8

Storage Options

« Internal storage: file system, private to the app
« External storage: file system, open to everybody
« SQLite: database, private to the app

* Read:
http://developer.android.com/guide/topics/data/data-

storage.html

CSE 486/586, Spring 2013 9

Internal Storage

« Saving files directly on the device's internal storage.
+ User uninstallation - files are removed.
« To create and write a private file to the internal

storage:

— Call openFileOutput() with the name of the file and the
operating mode. This returns a FileOutputStream.

— Write to the file with write().

— Close the stream with close().
- Eg.,

String FILENAME = "hello_file";

String string = "hello world!”;

FileOutputStream fos = openFileOutput(FILENAME,
Context. MODE_PRIVATE);

fos.write(string.getBytes());

fos.close(); CSE 486/586, Spring 2013 10

Internal Storage

* MODE_PRIVATE - create the file (or replace a file
of the same name) and make it private to your
application.

« Other modes available are:

— MODE_APPEND, MODE_WORLD_READABLE, and
MODE_WORLD_WRITEABLE.
* To read a file from internal storage:

— Call openFilelnput() and pass it the name of the file to read.
This returns a FileInputStream.

— Read bytes from the file with read().
— Then close the stream with close().

CSE 486/586, Spring 2013 1

External Storage

« Shared "external storage”
— E.g., a removable storage media (such as an SD card) or an
internal (non-removable) storage.
« Files saved to the external storage are:
— World-readable
— Can be modified by the user when they enable USB mass
storage to transfer files on a computer.
» Checking media availability

— Before you do any work with the external storage, you
should always call getExternalStorageState() to check
whether the media is available.

CSE 486/586, Spring 2013 12

Ny

External Storage

» Accessing files on external storage (API Level 8 or
greater)

— Use getExternalFilesDir() to open a File that represents the
external storage directory where you should save your files.

— This method takes a type parameter that specifies the type
of subdirectory you want, such as DIRECTORY_MUSIC and
DIRECTORY_RINGTONES (pass null to receive the root of
your application's file directory). This method will create the
appropriate directory if necessary.

— If the user uninstalls your application, this directory and all
its contents will be deleted.

CSE 486/586, Spring 2013 13

External Storage

» Saving files that should be shared
— For files not specific to your application and that should not
be deleted when your application is uninstalled
— Save them to one of the public directories on the external
storage.
— These directories lay at the root of the external storage,
such as Music/, Pictures/, Ringtones/, and others.
* (API Level 8 or greater)

— Use getExternalStoragePublicDirectory(), passing it the type
of public directory you want, such as DIRECTORY_MUSIC,
DIRECTORY_PICTURES, DIRECTORY_RINGTONES, or
others. This method will create the appropriate directory if
necessary.

CSE 486/586, Spring 2013 14

Services

« A service runs in the background with no Ul for long-
running operations.
— Playing music, sending/receiving network messages, ...
— Subclass of android.app.Service

 Started service

— A service is "started" when an application component (such
as an activity) starts it by calling startService(). Once started,
a service can run in the background indefinitely, even if the
component that started it is destroyed.

« Bound service

— A service is "bound" when an application component binds
to it by calling bindService(). A bound service offers a client-
server interface that allows components to interact with the
service, send requests, get results, and even do so across
processes with interprocess communication (IPC).

CSE 486/586, Spring 2013 15

How to Write a Service

 Declare in AndroidManifest.xml
* Implement necessary methods in Service

CSE 486/586, Spring 2013 16

Declare in AndroidManifest.xml

<manifest ... >

<application ... >
<service android:name="_ExampleService" />

</application>
</manifest>

CSE 486/586, Spring 2013 17

Necessary Methods

« onStartCommand()

— The system calls this method when another component,
such as an activity, requests that the service be started, by
calling startService().

* onBind()

— The system calls this method when another component
wants to bind with the service (such as to perform RPC), by
calling bindService().

« onCreate()

— The system calls this method when the service is first
created, to perform one-time setup procedures (before it
calls either onStartCommand() or onBind()).

« onDestroy()
— The system calls this method when the service is no longer
used and is being destroyed.

CSE 486/586, Spring 2013 18

(&%)

Service Lifecycle

onCreatef)
onStantCommand()
Service
running
A 4
The service is stopped
by itself or a client

Unbounded
service

(Call to

‘N_M"’o\;

onCreate()

{

onBind()
/ Clientsare
boundto |
\ 4

e SOOR .
Al clients unbind by calling
unbindService()

2
onUnbind()

onDestroy()

Bounded
service

CSE 486/586, Spring 2013

