
C 1

CSE 486/586, Spring 2013

CSE 486/586 Distributed Systems
Content Providers & Services

CSE 486/586, Spring 2013

Content Providers
•  A content provider provides a table view of data.
•  If you write a content provider, any client application

with the permission can enter/read/update/delete
data items in your content provider.

•  A client application (that uses your content provider)
uses ContentResolver to interact with your content
provider.

•  You need to extend ContentProvider and implement
necessary methods.

2

CSE 486/586, Spring 2013

How a Client Interacts
•  Table identification à URI (android.net.Uri)

–  E.g., content://user_dictionary/words

•  Insert
–  public final Uri ContentResolver.insert (Uri url,

ContentValues values)
•  Update

–  public final int ContentResolver.update (Uri uri,
ContentValues values, String where, String[] selectionArgs)

•  Query
–  public final Cursor ContentResolver.query (Uri uri, String[]

projection, String selection, String[] selectionArgs, String
sortOrder)

•  Delete
–  public final int ContentResolver.delete (Uri url, String where,

String[] selectionArgs)
3 CSE 486/586, Spring 2013

How to Write a Content Provider
1.  Declare in AndroidManifest.xml
2.  Define a URI that client apps will use
3.  Define permissions
4.  Implement necessary methods in ContentProvider
5.  When implementing ContentProvider, use either the

Android file system or SQLite as the actual data
storage.

4

CSE 486/586, Spring 2013

Declare in AndroidManifest.xml
<manifest ... >
 ...
 <application ... >
 <provider android:name=".ExampleProvider" />
 ...
 </application>
</manifest>

5 CSE 486/586, Spring 2013

Defining a URI
•  Typical format

–  content://<authority>/<table name>
–  Authority: a global (Android-wide) name for the provider

»  E.g., edu.buffalo.cse.cse486.proj1.provider
–  Table name: the name of a table that the provider exposes

»  Note: a provider can expose more than one table.

•  Should be added to AndroidManifest.xml
–  E.g., <provider

android:authorities=“edu.buffalo.cse.cse486.proj1.provider”
…>…</provider>

6

C 2

CSE 486/586, Spring 2013

Define Permissions
•  Should define permissions (for others) in

AndroidManifest.xml
•  android:permission: Single provider-wide read/write

permission.
–  E.g., <provider

android:permission=“edu.buffalo.cse.cse486.proj1.provider.
permission.USE_PROJ1_PROVIDER” …>…</provider>

•  android:readPermission: Provider-wide read
permission.

•  android:writePermission: Provider-wide write
permission.

7 CSE 486/586, Spring 2013

Necessary Methods
•  query()

–  Retrieve data from your provider.
•  insert()

–  Insert a new row into your provider.
•  update()

–  Update existing rows in your provider.
•  delete()

–  Delete rows from your provider.
•  getType()

–  Return the MIME type corresponding to a content URI.
•  onCreate()

–  Initialize your provider. The Android system calls this method
immediately after it creates your provider. Notice that your provider
is not created until a ContentResolver object tries to access it.

•  These need to handle concurrent accesses (need to be
thread-safe)

8

CSE 486/586, Spring 2013

Storage Options
•  Internal storage: file system, private to the app
•  External storage: file system, open to everybody
•  SQLite: database, private to the app
•  Read:

http://developer.android.com/guide/topics/data/data-
storage.html

9 CSE 486/586, Spring 2013

Internal Storage
•  Saving files directly on the device's internal storage.
•  User uninstallation à files are removed.
•  To create and write a private file to the internal

storage:
– Call openFileOutput() with the name of the file and the

operating mode. This returns a FileOutputStream.
– Write to the file with write().
– Close the stream with close().

•  E.g.,
String FILENAME = "hello_file";
String string = "hello world!”;
FileOutputStream fos = openFileOutput(FILENAME,

Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

10

CSE 486/586, Spring 2013

Internal Storage
•  MODE_PRIVATE à create the file (or replace a file

of the same name) and make it private to your
application.

•  Other modes available are:
– MODE_APPEND, MODE_WORLD_READABLE, and

MODE_WORLD_WRITEABLE.
•  To read a file from internal storage:

– Call openFileInput() and pass it the name of the file to read.
This returns a FileInputStream.

– Read bytes from the file with read().
–  Then close the stream with close().

11 CSE 486/586, Spring 2013

External Storage
•  Shared "external storage”

–  E.g., a removable storage media (such as an SD card) or an
internal (non-removable) storage.

•  Files saved to the external storage are:
– World-readable
– Can be modified by the user when they enable USB mass

storage to transfer files on a computer.

•  Checking media availability
–  Before you do any work with the external storage, you

should always call getExternalStorageState() to check
whether the media is available.

12

C 3

CSE 486/586, Spring 2013

External Storage
•  Accessing files on external storage (API Level 8 or

greater)
– Use getExternalFilesDir() to open a File that represents the

external storage directory where you should save your files.
–  This method takes a type parameter that specifies the type

of subdirectory you want, such as DIRECTORY_MUSIC and
DIRECTORY_RINGTONES (pass null to receive the root of
your application's file directory). This method will create the
appropriate directory if necessary.

–  If the user uninstalls your application, this directory and all
its contents will be deleted.

13 CSE 486/586, Spring 2013

External Storage
•  Saving files that should be shared

–  For files not specific to your application and that should not
be deleted when your application is uninstalled

–  Save them to one of the public directories on the external
storage.

–  These directories lay at the root of the external storage,
such as Music/, Pictures/, Ringtones/, and others.

•  (API Level 8 or greater)
– Use getExternalStoragePublicDirectory(), passing it the type

of public directory you want, such as DIRECTORY_MUSIC,
DIRECTORY_PICTURES, DIRECTORY_RINGTONES, or
others. This method will create the appropriate directory if
necessary.

14

CSE 486/586, Spring 2013

Services
•  A service runs in the background with no UI for long-

running operations.
–  Playing music, sending/receiving network messages, …
–  Subclass of android.app.Service

•  Started service
–  A service is "started" when an application component (such

as an activity) starts it by calling startService(). Once started,
a service can run in the background indefinitely, even if the
component that started it is destroyed.

•  Bound service
–  A service is "bound" when an application component binds

to it by calling bindService(). A bound service offers a client-
server interface that allows components to interact with the
service, send requests, get results, and even do so across
processes with interprocess communication (IPC).

15 CSE 486/586, Spring 2013

How to Write a Service
•  Declare in AndroidManifest.xml
•  Implement necessary methods in Service

16

CSE 486/586, Spring 2013

Declare in AndroidManifest.xml
<manifest ... >
 ...
 <application ... >
 <service android:name=".ExampleService" />
 ...
 </application>
</manifest>

17 CSE 486/586, Spring 2013

Necessary Methods
•  onStartCommand()

–  The system calls this method when another component,
such as an activity, requests that the service be started, by
calling startService().

•  onBind()
–  The system calls this method when another component

wants to bind with the service (such as to perform RPC), by
calling bindService().

•  onCreate()
–  The system calls this method when the service is first

created, to perform one-time setup procedures (before it
calls either onStartCommand() or onBind()).

•  onDestroy()
–  The system calls this method when the service is no longer

used and is being destroyed.

18

C 4

CSE 486/586, Spring 2013

Service Lifecycle

19

