
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Android Programming

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap
•  What to put on top of physical networks?

–  Layers providing survivability

•  Where to put functionalities?
–  Fate-sharing & end-to-end arguments
–  IP layer doesn’t provide much
–  TCP handles most of the survivability issues

•  TCP & UDP: the two transport protocols of the
Internet

•  What interface do applications see?
–  Socket API

2

CSE 486/586, Spring 2014

Today
•  Basic Android programming interleaved with a review

of PA1
•  Mainly programming model and components

3 CSE 486/586, Spring 2014

The Hack: Emulator Port Forwarding

4

AVD0

IP: 10.0.2.15

AVD1

IP: 10.0.2.15

VR0 VR1

Host

IP: 10.0.2.2

10000 10000

11108 11112

CSE 486/586, Spring 2014

Three Most Important Things
•  Read the documentation.

–  You will not be able to do anything without reading the
documentation.

–  Learn how to use the APIs.
–  Learn how to use the constructs, e.g., AsyncTask,

Messenger, etc.

•  Do it; write your code.
– No learning without doing

•  Learn how to debug.
– Using LogCat, DDMS, etc.

5 CSE 486/586, Spring 2014

Android Programming Model
•  No main()
•  Four main components: Activity, Service,

ContentProvider, BroadcastReceiver
•  You need to implement at least one of them to write an

Android app.
•  Event-driven
•  Permissions

•  For certain APIs, you need to request permissions in
AndroidManifest.xml.

•  These APIs are called protected APIs or sensitive APIs
•  Many permissions, e.g., internet, external storage, etc.

C 2

CSE 486/586, Spring 2014

What? No main()?
•  There is a main()! It’s just that it’s hidden.
•  Zygote starts at boot.
•  Launcher sends a message to start an activity.
•  Zygote forks a new VM instance that loads

ActivityThread.
•  ActivityThread has the real main() for an app.

•  ActivityThread calls the app’s onCreate(), onStart(),
etc.

CSE 486/586, Spring 2014

Example - Activity

CSE 486/586, Spring 2014

Example - Activity

CSE 486/586, Spring 2014

Declare in AndroidManifest.xml
<manifest ... >
 ...
 <application ... >
 <activity android:name=".ExampleActivity" />
 ...
 </application>
</manifest>

10

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA 2 will be out by the end of this week.
•  Please use Piazza; all announcements will go there.
•  Please come to my office during the office hours!

– Give feedback about the class, ask questions, etc.

11 CSE 486/586, Spring 2014

Services
•  A service runs in the background with no UI for long-

running operations.
–  Playing music, sending/receiving network messages, …
–  Subclass of android.app.Service

•  Started service
–  A service is "started" when an application component (such

as an activity) starts it by calling startService(). Once started,
a service can run in the background indefinitely, even if the
component that started it is destroyed.

•  Bound service
–  A service is "bound" when an application component binds

to it by calling bindService(). A bound service offers a client-
server interface that allows components to interact with the
service, send requests, get results, and even do so across
processes with interprocess communication (IPC).

12

C 3

CSE 486/586, Spring 2014

How to Write a Service
•  Declare in AndroidManifest.xml
•  Implement necessary methods in Service

13 CSE 486/586, Spring 2014

Declare in AndroidManifest.xml
<manifest ... >
 ...
 <application ... >
 <service android:name=".ExampleService" />
 ...
 </application>
</manifest>

14

CSE 486/586, Spring 2014

Necessary Methods
•  onStartCommand()

–  The system calls this method when another component,
such as an activity, requests that the service be started, by
calling startService().

•  onBind()
–  The system calls this method when another component

wants to bind with the service (such as to perform RPC), by
calling bindService().

•  onCreate()
–  The system calls this method when the service is first

created, to perform one-time setup procedures (before it
calls either onStartCommand() or onBind()).

•  onDestroy()
–  The system calls this method when the service is no longer

used and is being destroyed.

15 CSE 486/586, Spring 2014

Service Lifecycle

16

CSE 486/586, Spring 2014

Content Providers
•  A content provider provides a table view of data.
•  If you write a content provider, any client application

with the permission can enter/read/update/delete
data items in your content provider.

•  A client application (that uses your content provider)
uses ContentResolver to interact with your content
provider.

•  You need to extend ContentProvider and implement
necessary methods.

17 CSE 486/586, Spring 2014

How a Client Interacts
•  Table identification à URI (android.net.Uri)

–  E.g., content://user_dictionary/words

•  Insert
–  public final Uri ContentResolver.insert (Uri url,

ContentValues values)
•  Update

–  public final int ContentResolver.update (Uri uri,
ContentValues values, String where, String[] selectionArgs)

•  Query
–  public final Cursor ContentResolver.query (Uri uri, String[]

projection, String selection, String[] selectionArgs, String
sortOrder)

•  Delete
–  public final int ContentResolver.delete (Uri url, String where,

String[] selectionArgs)
18

C 4

CSE 486/586, Spring 2014

How to Write a Content Provider
1.  Declare in AndroidManifest.xml
2.  Define a URI that client apps will use
3.  Define permissions
4.  Implement necessary methods in ContentProvider
5.  When implementing ContentProvider, use either the

Android file system or SQLite as the actual data
storage.

19 CSE 486/586, Spring 2014

Declare in AndroidManifest.xml
<manifest ... >
 ...
 <application ... >
 <provider android:name=".ExampleProvider" />
 ...
 </application>
</manifest>

20

CSE 486/586, Spring 2014

Defining a URI
•  Typical format

–  content://<authority>/<table name>
–  Authority: a global (Android-wide) name for the provider

»  E.g., edu.buffalo.cse.cse486.proj1.provider
–  Table name: the name of a table that the provider exposes

»  Note: a provider can expose more than one table.

•  Should be added to AndroidManifest.xml
–  E.g., <provider

android:authorities=“edu.buffalo.cse.cse486.proj1.provider”
…>…</provider>

21 CSE 486/586, Spring 2014

Define Permissions
•  Should define permissions (for others) in

AndroidManifest.xml
•  android:permission: Single provider-wide read/write

permission.
–  E.g., <provider

android:permission=“edu.buffalo.cse.cse486.proj1.provider.
permission.USE_PROJ1_PROVIDER” …>…</provider>

•  android:readPermission: Provider-wide read
permission.

•  android:writePermission: Provider-wide write
permission.

22

CSE 486/586, Spring 2014

Necessary Methods
•  query()

–  Retrieve data from your provider.
•  insert()

–  Insert a new row into your provider.
•  update()

–  Update existing rows in your provider.
•  delete()

–  Delete rows from your provider.
•  getType()

–  Return the MIME type corresponding to a content URI.
•  onCreate()

–  Initialize your provider. The Android system calls this method
immediately after it creates your provider. Notice that your provider
is not created until a ContentResolver object tries to access it.

•  These need to handle concurrent accesses (need to be
thread-safe)

23

