CSE 486/586 Distributed Systems
Android Programming

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

Recap ,”

* What to put on top of physical networks?
— Layers providing survivability
« Where to put functionalities?
— Fate-sharing & end-to-end arguments
— IP layer doesn'’t provide much
— TCP handles most of the survivability issues
« TCP & UDP: the two transport protocols of the
Internet
* What interface do applications see?
— Socket API

CSE 486/586, Spring 2014

~

Today

« Basic Android programming interleaved with a review
of PA1

* Mainly programming model and components

CSE 486/586, Spring 2014

The Hack: Emulator Port Forwarding

AVDO AVD1
IP: 10.0.2.15 IP:10.0.2.15
10000 10000
T T

| E VRO | | VR1
1

11108

Host
IP: 10.0.2.2

11112

CSE 486/586, Spring 2014

Three Most Important Things

« Read the documentation.

— You will not be able to do anything without reading the
documentation.

— Learn how to use the APlIs.

— Learn how to use the constructs, e.g., AsyncTask,
Messenger, etc.

* Do it; write your code.

— No learning without doing
« Learn how to debug.

— Using LogCat, DDMS, etc.

CSE 486/586, Spring 2014

Android Programming Model

* No main()
» Four main components: Activity, Service,
ContentProvider, BroadcastReceiver

* You need to implement at least one of them to write an
Android app.

« Event-driven

« Permissions

« For certain APIs, you need to request permissions in
AndroidManifest.xml.

« These APIs are called protected APIs or sensitive APls
« Many permissions, e.g., internet, external storage, etc.

CSE 486/586, Spring 2014

What? No main()?

There is a main()! It's just that it's hidden.
Zygote starts at boot.
Launcher sends a message to start an activity.

Zygote forks a new VM instance that loads
ActivityThread.

« ActivityThread has the real main() for an app.

ActivityThread calls the app’s onCreate(), onStart(),
etc.

CSE 486/586, Spring 2014

Example - Activity

public class Activity extends ApplicationContext {
protected void onCreate(Bundle savedInstanceState);

protected void onStart();
protected void onRestart();
protected void onResume();
protected void onPause();
protected void onStop();

protected void onDestroy();

CSE 486/586, Spring 2014

Example - Activity

Resumed
(visible)
onResume() onPause()
} onResume()
Started \ Paused
(visible) (partially visible)
onStart(t onstop()
onStart(
(‘Stopped
Created
onCreate) % / \qq(bidden),

4 cn[)e;uoy!]

|
|a| ‘ Destroyed

CSE 486/586, Spring 2014

Declare in AndroidManifest.xml

<manifest ... >

<application ... >
<activity android:name=".ExampleActivity" />

</application>
</manifest>

CSE 486/586, Spring 2014 10

CSE 486/586 Administrivia

* PA 2 will be out by the end of this week.
« Please use Piazza; all announcements will go there.

« Please come to my office during the office hours!
— Give feedback about the class, ask questions, etc.

CSE 486/586, Spring 2014 1

Services

» Aservice runs in the background with no Ul for long-
running operations.
— Playing music, sending/receiving network messages, ...
— Subclass of android.app.Service
« Started service

— A service is "started" when an application component (such
as an activity) starts it by calling startService(). Once started,
a service can run in the background indefinitely, even if the
component that started it is destroyed.

* Bound service

— A service is "bound" when an application component binds
to it by calling bindService(). A bound service offers a client-
server interface that allows components to interact with the
service, send requests, get results, and even do so across
processes with interprocess communication (IPC).

CSE 486/586, Spring 2014 12

Ny

How to Write a Service

» Declare in AndroidManifest.xml
« Implement necessary methods in Service

CSE 486/586, Spring 2014 13

Declare in AndroidManifest.xml

<manifest ... >

<application ... >
<service android:name=".ExampleService" />

</application>
</manifest>

CSE 486/586, Spring 2014 14

Necessary Methods

« onStartCommand()

— The system calls this method when another component,
such as an activity, requests that the service be started, by
calling startService().

+ onBind()

— The system calls this method when another component
wants to bind with the service (such as to perform RPC), by
calling bindService().

« onCreate()

— The system calls this method when the service is first
created, to perform one-time setup procedures (before it
calls either onStartCommand() or onBind()).

« onDestroy()

— The system calls this method when the service is no longer
used and is being destroyed.

CSE 486/586, Spring 2014 15

Service Lifecycle

[caiito Callto
stanService() bindService()
onCreate() onCreate()
onStantCommand() onBind()
c Clients are
) bound to
J service
T i
The service is stopped Al cients unbind by calling
by itself or a ciient unbindService()
onUnbind()
onDestroy() onDestroy()
[service [service
shut down shut down
9 4 A J
Unbounded Bounded
service service
CSE 486/586, Spring 2014 16

Content Providers

« A content provider provides a table view of data.

If you write a content provider, any client application
with the permission can enter/read/update/delete
data items in your content provider.

A client application (that uses your content provider)
uses ContentResolver to interact with your content
provider.

You need to extend ContentProvider and implement
necessary methods.

CSE 486/586, Spring 2014 17

How a Client Interacts

« Table identification - URI (android.net.Uri)
— E.g., content://user_dictionary/words

* Insert
— public final Uri ContentResolver.insert (Uri url,
ContentValues values)
« Update
— public final int ContentResolver.update (Uri uri,
ContentValues values, String where, String[] selectionArgs)
* Query
— public final Cursor ContentResolver.query (Uri uri, String[]
projection, String selection, String[] selectionArgs, String
sortOrder)
* Delete
— public final int ContentResolver.delete (Uri url, String where,

String[] selectionArgs)
CSE 486/586, Spring 2014 18

(&%)

How to Write a Content Provider

Declare in AndroidManifest.xml

Define a URI that client apps will use

Define permissions

Implement necessary methods in ContentProvider

When implementing ContentProvider, use either the
Android file system or SQLite as the actual data
storage.

arwb=

CSE 486/586, Spring 2014 19

Declare in AndroidManifest.xml

<manifest ... >

<application ... >
<provider android:name=".ExampleProvider" />

</application>
</manifest>

CSE 486/586, Spring 2014 20

Defining a URI

« Typical format
— content://<authority>/<table name>
— Authority: a global (Android-wide) name for the provider
» E.g., edu.buffalo.cse.cse486.proj1.provider
— Table name: the name of a table that the provider exposes
» Note: a provider can expose more than one table.
« Should be added to AndroidManifest.xml
— E.g., <provider
android:authorities="edu.buffalo.cse.cse486.proj1.provider”

CSE 486/586, Spring 2014 21

Define Permissions

Should define permissions (for others) in
AndroidManifest.xml

android:permission: Single provider-wide read/write
permission.

— E.g., <provider
android:permission="edu.buffalo.cse.cse486.proj1.provider.
permission.USE_PROJ1_PROVIDER” ...>...</provider>

android:readPermission: Provider-wide read
permission.
android:writePermission: Provider-wide write
permission.

CSE 486/586, Spring 2014 22

Necessary Methods

* query()

— Retrieve data from your provider.

insert()

— Insert a new row into your provider.

update()

— Update existing rows in your provider.

delete()

— Delete rows from your provider.

getType()

— Return the MIME type corresponding to a content URI.

onCreate()

— Initialize your provider. The Android system calls this method
immediately after it creates your provider. Notice that your provider
is not created until a ContentResolver object tries to access it.

These need to handle concurrent accesses (need to be
thread-safe)

CSE 486/586, Spring 2014 23

