
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Failure Detectors

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap
•  Three most important things

– Read the documentation.
– Do it; write your code.
–  Learn how to debug.

•  Android programming model
–  Event-driven
– Hidden main() calls appropriate callbacks depending on

events from outside.

•  Main components
–  Activity, Service, ContentProvider, and BroadcastReceiver

2

CSE 486/586, Spring 2014

Today’s Question
•  How do we handle failures?

– Cannot answer this fully (yet!)

•  You’ll learn new terminologies, definitions, etc.
•  Let’s start with some new definitions.

3 CSE 486/586, Spring 2014

Two Different System Models

•  Synchronous Distributed System
•  Each message is received within bounded time
•  Each step in a process takes lb < time < ub
•  (Each local clock’s drift has a known bound)
•  Examples: Multiprocessor systems

•  Asynchronous Distributed System
•  No bounds on message transmission delays
•  No bounds on process execution
•  (The drift of a clock is arbitrary)

•  Examples: Internet, wireless networks, datacenters, most
real systems

•  These are used to reason about how protocols would
behave, e.g., in formal proofs.

4

CSE 486/586, Spring 2014

Failure Model

•  What is a failure?
•  We’ll consider: process omission failure

•  A process disappears.
•  Permanently: crash-stop (fail-stop) – a process halts and

does not execute any further operations
•  Temporarily: crash-recovery – a process halts, but then

recovers (reboots) after a while
•  We will focus on crash-stop failures

•  They are easy to detect in synchronous systems

•  Not so easy in asynchronous systems

5 CSE 486/586, Spring 2014

Why, What, and How
•  Why design a failure detector?

–  First step to failure handling

•  What do we want from a failure detector?
– No miss (completeness)
– No mistake (accuracy)

•  How do we design one?

6

C 2

CSE 486/586, Spring 2014

What is a Failure Detector?

pi pj

7 CSE 486/586, Spring 2014

What is a Failure Detector?

pi pj

Crash-stop failure

(pj is a failed process)

8

CSE 486/586, Spring 2014

What is a Failure Detector?

pi

needs to know about pj’s failure

(pi is a non-faulty process

or alive process)
Crash-stop failure

(pj is a failed process)

pj

There are two styles of failure detectors

9 CSE 486/586, Spring 2014

•  pi queries pj once every T
time units

•  If pj does not respond
within another T time units
of being sent the ping, pi
detects/declares pj as failed

I. Ping-Ack Protocol

pi pj

•  pj replies

ping

ack

If pj fails, then within T time units, pi will send

it a ping message. pi will time out within

another T time units.

Worst case Detection time = 2T

The waiting time ‘T’ can be parameterized.

10

CSE 486/586, Spring 2014

II. Heartbeating Protocol

pi pj

•  pj maintains a sequence
number

•  pj sends pi a heartbeat with
incremented seq. number
after every T time units

•  If pi has not received a new
heartbeat for the past, say 3T
time units, since it received
the last heartbeat, then pi
detects pj as failed

heartbeat

If T ≫ round trip time of messages, then worst case detection time ~ 3T (why?)

The ‘3’ can be changed to any positive number since it is a parameter

11 CSE 486/586, Spring 2014

In a Synchronous System
•  The Ping-Ack and Heartbeat failure detectors are

always correct. For example,
–  Ping-Ack: set waiting time ‘T’ to be > round-trip time upper

bound
– Heartbeat: set waiting time ‘3*T’ to be > round-trip time

upper bound
•  The following property is guaranteed:

–  If a process pj fails, then pi will detect its failure as long as pi
itself is alive

–  Its next ack/heartbeat will not be received (within the
timeout), and thus pi will detect pj as having failed

12

C 3

CSE 486/586, Spring 2014

Failure Detector Properties
•  What do you mean a failure detector is “correct”?
•  Completeness = every process failure is eventually

detected (no misses)
•  Accuracy = every detected failure corresponds to a

crashed process (no mistakes)
•  What is a protocol that is 100% complete?
•  What is a protocol that is 100% accurate?
•  Completeness and Accuracy

– Can both be guaranteed 100% in a synchronous distributed
system (with reliable message delivery in bounded time)

– Can never be guaranteed simultaneously in an
asynchronous distributed system

– Why?

13 CSE 486/586, Spring 2014

Completeness and Accuracy in
Asynchronous Systems
•  Impossible because of arbitrary message delays,

message losses
–  If a heartbeat/ack is dropped (or several are dropped) from

pj, then pj will be mistakenly detected as failed => inaccurate
detection

– How large would the T waiting period in ping-ack or 3*T
waiting period in heartbeating, need to be to obtain 100%
accuracy?

–  In asynchronous systems, delay/losses on a network link are
impossible to distinguish from a faulty process

•  Heartbeating – satisfies completeness but not
accuracy (why?)

•  Ping-Ack – satisfies completeness but not accuracy
(why?)

14

CSE 486/586, Spring 2014

Completeness or Accuracy?
(in Asynchronous System)
•  Most failure detector implementations are willing to

tolerate some inaccuracy, but require 100%
completeness.

•  Plenty of distributed apps designed assuming 100%
completeness, e.g., p2p systems

–  “Err on the side of caution”.
–  Processes not “stuck” waiting for other processes

•  But it’s ok to mistakenly detect once in a while since
– the victim process need only rejoin as a new process

•  Both Hearbeating and Ping-Ack provide
–  Probabilistic accuracy (for a process detected as failed, with

some probability close to 1.0 (but not equal), it is true that it
has actually crashed).

15 CSE 486/586, Spring 2014

Failure Detection in a Distributed
System
•  That was for one process pj being detected and one

process pi detecting failures
•  Let’s extend it to an entire distributed system
•  Difference from original failure detection is

– We want failure detection of not merely one process (pj), but
all processes in system

16

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA2 will be out by this weekend.
•  Please use Piazza; all announcements will go there.

–  If you want an invite, let me know.

•  Please come to my office during the office hours!
– Give feedback about the class, ask questions, etc.

17 CSE 486/586, Spring 2014

Failure Detection in a Distributed
System
•  That was for one process pj being detected and one

process pi detecting failures
•  Let’s extend it to an entire distributed system
•  Difference from original failure detection is

– We want failure detection of not merely one process (pj), but
all processes in system

•  Any idea?

18

C 4

CSE 486/586, Spring 2014

Centralized Heartbeat

19

…
pj, Heartbeat Seq. l++

pj

pi

Downside?
CSE 486/586, Spring 2014

Ring Heartbeat

20

pj, Heartbeat Seq. l++
pj

…

…

pi

Downside?

CSE 486/586, Spring 2014

All-to-All Heartbeat

21

pj, Heartbeat Seq. l++

…

pj

pi

Advantage: Everyone is able to keep track of everyone

Downside? CSE 486/586, Spring 2014

Efficiency of Failure Detector: Metrics

•  Bandwidth: the number of messages sent in the
system during steady state (no failures)

–  Small is good

•  Detection Time
–  Time between a process crash and its detection
–  Small is good

•  Scalability: Given the bandwidth and the detection
properties, can you scale to a 1000 or million nodes?

–  Large is good

•  Accuracy
–  Large is good (lower inaccuracy is good)

22

CSE 486/586, Spring 2014

Accuracy Metrics
•  False Detection Rate: Average number of failures

detected per second, when there are in fact no
failures

•  Fraction of failure detections that are false

•  Tradeoffs: If you increase the T waiting period in
ping-ack or 3*T waiting period in heartbeating what
happens to:

– Detection Time?
–  False positive rate?
– Where would you set these waiting periods?

23 CSE 486/586, Spring 2014

Other Types of Failures
•  Let’s discuss the other types of failures
•  Failure detectors exist for them too (but we won’t

discuss those)

24

C 5

CSE 486/586, Spring 2014

Processes and Channels

25

process p process q

Co mm un icat ion chann el

send

Ou tgo ing messa ge bu ffe r Incoming messa ge bu ffe r

receivem

CSE 486/586, Spring 2014

Other Failure Types
•  Communication omission failures

–  Send-omission: loss of messages between the sending
process and the outgoing message buffer (both inclusive)

»  What might cause this?
–  Channel omission: loss of message in the communication

channel
»  What might cause this?

–  Receive-omission: loss of messages between the incoming
message buffer and the receiving process (both inclusive)

»  What might cause this?

26

CSE 486/586, Spring 2014

Other Failure Types
•  Arbitrary failures

–  Arbitrary process failure: arbitrarily omits intended
processing steps or takes unintended processing steps.

–  Arbitrary channel failures: messages may be corrupted,
duplicated, delivered out of order, incur extremely large
delays; or non-existent messages may be delivered.

•  Above two are Byzantine failures, e.g., due to
hackers, man-in-the-middle attacks, viruses, worms,
etc.

•  A variety of Byzantine fault-tolerant protocols have
been designed in literature!

27 CSE 486/586, Spring 2014

Omission and Arbitrary Failures

Class of failure	
 Affects	
 Description	

Fail-stop	
 Process	
 Process halts and remains halted. Other processes may	

detect this state.	

Omission	
 Channel	
 A message inserted in an outgoing message buffer never	

arrives at the other end’s incoming message buffer.	

Send-omission	
 Process	
 A process completes a 	
send,	
 but the message is not put	

in its outgoing message buffer.	

Receive-omission	
Process	
 A message is put in a process’s incoming message	

buffer, but that process does not receive it.	

Arbitrary	

(Byzantine)	

Process or	

channel	

Process/channel exhibits arbitrary behaviour: it may	

send/transmit arbitrary messages at arbitrary times,	

commit omissions; a process may stop or take an	

incorrect step.	

28

CSE 486/586, Spring 2014

Summary
•  Failure detectors are required in distributed systems

to keep system running in spite of process crashes
•  Properties – completeness & accuracy, together

unachievable in asynchronous systems but
achievable in synchronous systems

– Most apps require 100% completeness, but can tolerate
inaccuracy

•  2 failure detector algorithms - heartbeating and ping
•  Distributed FD through heartbeating: centralized,

ring, all-to-all
•  Metrics: bandwidth, detection time, scale, accuracy
•  Other types of failures
•  Next: the notion of time in distributed systems

29 CSE 486/586, Spring 2014 30

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

