CSE 486/586 Distributed Systems
Logical Time

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

Last Time

» Clock skews do happen
« Cristian’s algorithm
— One server
— Server-side timestamp and one-way delay estimation
* NTP (Network Time Protocol)
— Hierarchy of time servers
— Estimates the actual offset between two clocks
— Designed for the Internet
« Logical time
— For ordering events, relative time should suffice.
— Will continue today

CSE 486/586, Spring 2014

~

Basics: State Machine

« State: a collection of values of variables
« Event: an occurrence of an action that changes the
state, (i.e., instruction, send, and receive)

* As a program,

— We can think of all possible execution paths.
« At runtime,

— There’s only one path that the program takes.
« Equally applicable to

— A single process

— A distributed set of processes

CSE 486/586, Spring 2014

4

Ordering Basics

« Why did we want to synchronize physical clocks?
* What we need: Ordering of events.
« Arises in many different contexts...

CSE 486/586, Spring 2014

Abstract View
p1
a b my
Py X Physical
c d m time
P3
e f

« Above is what we will deal with most of the time.
’,,/i”' » Ordering question: what do we ultimately want?

— Taking two events and determine which one happened
before the other one.

CSE 486/586, Spring 2014 5

What Ordering?

p1
a b my
p2 "\
c d m,
P
e f
7+ ideal?

— Perfect physical clock synchronization
* Reliably?

— Events in the same process

— Send/receive events

CSE 486/586, Spring 2014

Physical
time

Lamport Timestamps

1 2
p
1 a b m,
D N 4 Physical
2 c d time
m;
1 5
P3
e f
CSE 486/586, Spring 2014 7

Logical Clocks

« Lamport algorithm assigns logical timestamps:
* All processes use a counter (clock) with initial value of zero

* A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the
event as its timestamp.

* Asend (message) event carries its timestamp
* For areceive (message) event the counter is updated by
max(local clock, message timestamp) + 1
« Define a logical relation happened-before (—)
among events:
* On the same process: a — b, if time(a) < time(b)
« If p1 sends mto p2: send(m) — receive(m)
* (Transitivity) fa =band b —=cthen a —c¢

« Shows causality of events
CSE 486/586, Spring 2014

CSE 486/586 Administrivia

* PA2 will be out very soon.
— Sorry for my delay; waiting on new TAs first.
« Please pay attention to your coding style.

CSE 486/586, Spring 2014 9

Find the Mistake: Lamport Logical
Time

Physical Time

b1 PR W
1
2 & < S
p > 3

p3 @
N | ’
p4 @ @
@ Clock Value
_ fimestamp Message
CSE 486/586, Spring 2014 10

Corrected Example: Lamport Logical
Time

Physical Time
p 1 (IOBNO) W
1
p 2 & > = :
3 6
p3
4 7
p4 @ ®® @
@ Clock Value
—timestamp Message

CSE 486/586, Spring 2014 1

One Issue

Physical Time

@ Clock Value

timestamp i logically concurrenﬂ
Message i events :

CSE 486/586, Spring 2014 12

Ny

Vector Timestamps

« With Lamport clock
« e “happened-before” f = timestamp(e) < timestamp (f), but
« timestamp(e) < timestamp (f) 3¢ e “happened-before” f

* ldea?

(10,0 (20,0
P1 a b m,
210 (220 Physicd
P2 c d time
m
00,1 (22,2
P3
e f
CSE 486/586, Spring 2014 13

Vector Logical Clocks

» Vector Logical time addresses the issue:

* All processes use a vector of counters (logical clocks), ith
element is the clock value for process i, initially all zero.

* Each process i increments the it element of its vector upon
an instruction or send event. Vector value is timestamp of
the event.

* A send(message) event carries its vector timestamp
(counter vector)

* For a receive(message) event, V..o lil =
* Max(Vieceiedil » Vinessagelll), if jis not self,

* Viecaiverdil + 1, otherwise

CSE 486/586, Spring 2014

Find a Mistake: Vector Logical Time

Physical Time
p 1 @ams AR Sray
p 2 QoD N (4}%2)
2,0,2,2)
p 3
\ | (2,0,2,3)
p 4 Fo 202

Vector logical clock

(vector timestamp)

M, e
g

CSE 486/586, Spring 2014 15

Comparing Vector Timestamps

« VT, =VT,,

« iff VT,[i] = VT,[il, foralli=1, ..., n
« VT, <= VT,

« iff VT,[i] <= VT,fil, foralli=1, ..., n
< VT, <VT,,

o iff VT, <= VT, &3 (1 <= <=n & VT,[i] < VT, [i))
* VT, is concurrent with VT,
« iff (not VT, <= VT, AND not VT, <=VT,)

CSE 486/586, Spring 2014

The Use of Logical Clocks

« Is a design decision
* NTP error bound

— Local: a few ms

— Wide-area: 10’s of ms

« If your system doesn’t care about this inaccuracy,
then NTP should be fine.

« Logical clocks impose an arbitrary order over
concurrent events anyway
— Breaking ties: process IDs, etc.

CSE 486/586, Spring 2014 17

Summary

« Relative order of events enough for practical
purposes

— Lamport’s logical clocks
— Vector clocks

* Next: How to take a global snapshot

CSE 486/586, Spring 2014

(&%)

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

CSE 486/586, Spring 2014

