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Last Time

» Clock skews do happen
« Cristian’s algorithm
— One server
— Server-side timestamp and one-way delay estimation
* NTP (Network Time Protocol)
— Hierarchy of time servers
— Estimates the actual offset between two clocks
— Designed for the Internet
« Logical time
— For ordering events, relative time should suffice.
— Will continue today
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Basics: State Machine

« State: a collection of values of variables
« Event: an occurrence of an action that changes the
state, (i.e., instruction, send, and receive)

* As a program,

— We can think of all possible execution paths.
« At runtime,

— There’s only one path that the program takes.
« Equally applicable to

— A single process

— A distributed set of processes
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Ordering Basics

« Why did we want to synchronize physical clocks?
* What we need: Ordering of events.
« Arises in many different contexts...
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« Above is what we will deal with most of the time.
’,,/i”' » Ordering question: what do we ultimately want?

— Taking two events and determine which one happened
before the other one.
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What Ordering?
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— Perfect physical clock synchronization
* Reliably?

— Events in the same process

— Send/receive events
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Lamport Timestamps
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Logical Clocks

« Lamport algorithm assigns logical timestamps:
* All processes use a counter (clock) with initial value of zero

* A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the
event as its timestamp.

* Asend (message) event carries its timestamp
* For areceive (message) event the counter is updated by
max(local clock, message timestamp) + 1
« Define a logical relation happened-before (—)
among events:
* On the same process: a — b, if time(a) < time(b)
« If p1 sends mto p2: send(m) — receive(m)
* (Transitivity) fa =band b —=cthen a —c¢

« Shows causality of events
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CSE 486/586 Administrivia

* PA2 will be out very soon.
— Sorry for my delay; waiting on new TAs first.
« Please pay attention to your coding style.
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Find the Mistake: Lamport Logical
Time

Physical Time
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Corrected Example: Lamport Logical
Time
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One Issue

Physical Time

@ Clock Value

timestamp i logically concurrenﬂ
Message i events :
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Vector Timestamps

« With Lamport clock
« e “happened-before” f = timestamp(e) < timestamp (f), but
« timestamp(e) < timestamp (f) 3¢ e “happened-before” f

* ldea?
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Vector Logical Clocks

» Vector Logical time addresses the issue:

* All processes use a vector of counters (logical clocks), ith
element is the clock value for process i, initially all zero.

* Each process i increments the it element of its vector upon
an instruction or send event. Vector value is timestamp of
the event.

* A send(message) event carries its vector timestamp
(counter vector)

* For a receive(message) event, V..o lil =
* Max(Vieceiedil » Vinessagelll),  if jis not self,

* Viecaiverdil + 1, otherwise
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Find a Mistake: Vector Logical Time
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Comparing Vector Timestamps

« VT, =VT,,

« iff VT,[i] = VT,[il, foralli=1, ..., n
« VT, <= VT,

« iff VT,[i] <= VT,fil, foralli=1, ..., n
< VT, <VT,,

o iff VT, <= VT, &3 (1 <= <=n & VT,[i] < VT, [i))
* VT, is concurrent with VT,
« iff (not VT, <= VT, AND not VT, <=VT,)
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The Use of Logical Clocks

« Is a design decision
* NTP error bound

— Local: a few ms

— Wide-area: 10’s of ms

« If your system doesn’t care about this inaccuracy,
then NTP should be fine.

« Logical clocks impose an arbitrary order over
concurrent events anyway
— Breaking ties: process IDs, etc.
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Summary

« Relative order of events enough for practical
purposes

— Lamport’s logical clocks
— Vector clocks

* Next: How to take a global snapshot
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