
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Reliable Multicast --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Last Time
•  Global states

–  A union of all process states
– Consistent global state vs. inconsistent global state

•  The “snapshot” algorithm
•  Take a snapshot of the local state
•  Broadcast a “marker” msg to tell other processes to record
•  Start recording all msgs coming in for each channel until

receiving a “marker”
•  Outcome: a consistent global state

2

CSE 486/586, Spring 2014

Today’s Question
•  How do a group of processes communicate?
•  Unicast (best effort or reliable)

– One-to-one: Message from process p to process q.
–  Best effort: message may be delivered, but will be intact
– Reliable: message will be delivered

•  Broadcast
– One-to-all: Message from process p to all processes
–  Impractical for large networks

•  Multicast
– One-to-many: “Local” broadcast within a group g of

processes

•  What are the issues?
–  Processes crash (we assume crash-stop)
– Messages get delayed

3 CSE 486/586, Spring 2014

Why: Examples

4

CSE 486/586, Spring 2014

Why: Examples
•  Akamai’s Configuration Management System (called

ACMS)
–  A core group of 3-5 servers.
– Continuously multicast to each other the latest updates.
–  After an update is reliably multicast within this group, it is

then sent out to all the (1000s of) servers Akamai has all
over the world.

•  Air Traffic Control System
– Commands by one ATC need to be ordered (and reliable)

multicast out to other ATC’s.

•  Newsgroup servers
– Multicast to each other in a reliable and ordered manner.

5 CSE 486/586, Spring 2014

The Interface

6

Application
(at process p)

MULTICAST PROTOCOL

send

multicast

Incoming
messages

deliver

multicast

One process p

C 2

CSE 486/586, Spring 2014

What: Properties to Consider
•  Liveness: guarantee that something good will happen

eventually
–  For the initial state, there is a reachable state where the

predicate becomes true.
–  “Guarantee of termination” is a liveness property

•  Safety: guarantee that something bad will never
happen

–  For any state reachable from the initial state, the predicate is
false.

– Deadlock avoidance algorithms provide safety

•  Liveness and safety are used in many other CS
contexts.

7 CSE 486/586, Spring 2014

Basic Multicast (B-multicast)
•  A straightforward way to implement B-multicast is to

use a reliable one-to-one send (unicast) operation:
–  B-multicast(g,m): for each process p in g, send(p,m).
–  receive(m): B-deliver(m) at p.

•  Guarantees?
–  All processes in g eventually receive every multicast

message…
– … as long as the sender doesn’t crash

8

CSE 486/586, Spring 2014

What: Reliable Multicast Goals
•  Integrity: A correct (i.e., non-faulty) process p delivers

a message m at most once.
–  “Non-faulty”: doesn’t deviate from the protocol & alive

•  Agreement: If a correct process delivers message m,
then all the other correct processes in group(m) will
eventually deliver m.

–  Property of “all or nothing.”
•  Validity: If a correct process multicasts (sends)

message m, then it will eventually deliver m itself.
– Guarantees liveness to the sender.

•  Validity and agreement together ensure overall
liveness: if some correct process multicasts a
message m, then, all correct processes deliver m too.

9 CSE 486/586, Spring 2014

Reliable Multicast Overview
•  Keep a history of messages for at-most-once delivery
•  Everyone repeats multicast upon a receipt of a

message for agreement & validity.
– Why?

10

CSE 486/586, Spring 2014

Reliable R-Multicast Algorithm

On initialization
 Received := {};	

For process p to R-multicast message m to group g
 B-multicast(g,m); 	
	(p∈ g is included as destination)

On B-deliver(m) at process q with g = group(m)
 if (m ∉ Received):	
	 	Received := Received ∪ {m};	
	 	if (q ≠ p):	
	 	 	B-multicast(g,m);	
	 	R-deliver(m)	

R-multicast"

B-multicast"

reliable unicast"

“USES”"

“USES”"

11 CSE 486/586, Spring 2014

Reliable R-Multicast Algorithm

On initialization
 Received := {};	

For process p to R-multicast message m to group g
 B-multicast(g,m); 	
	(p∈ g is included as destination)

On B-deliver(m) at process q with g = group(m)
 if (m ∉ Received):	
	 	Received := Received ∪ {m};	
	 	if (q ≠ p):	
	 	 	B-multicast(g,m);	
	 	R-deliver(m)	

Integrity

Validity
Agreement

12

C 3

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA2 is out.
•  New TA: Yavuz Yilmaz

– Office hours: W 12pm – 3pm

13 CSE 486/586, Spring 2014

Ordered Multicast Problem

•  Each process delivers received messages
independently.

•  The question is, what ordering does each process
use?

•  Three meaningful types of ordering
–  FIFO
– Causal
–  Total 14

P1

P2

P3

M1

M2

CSE 486/586, Spring 2014

FIFO Ordering
•  Preserving the process order
•  The message delivery order at each process should

preserve the message sending order from every
process.

•  For example,
–  P1: m0, m1, m2
–  P2: m3, m4, m5
–  P3: m6, m7, m8

•  FIFO? (m0, m3, m6, m1, m4, m7, m2, m5, m8)
–  Yes!

•  FIFO? (m0, m4, m6, m1, m3, m7, m2, m5, m8)
– No!

15 CSE 486/586, Spring 2014

Causal Ordering
•  Preserving the happened-before relations
•  The message delivery order at each process should

preserve the happened-before relations across all
processes.

•  For example,
–  P1: m0, m1, m2
–  P2: m3, m4, m5
–  P3: m6, m7, m8
– Cross-process happened-before: m0 à m4, m5 à m8

•  Causal? (m0, m3, m6, m1, m4, m7, m2, m5, m8)
–  Yes!

•  Causal? (m0, m4, m1, m7, m3, m6, m2, m5, m8)
– No!

16

CSE 486/586, Spring 2014

Total Ordering
•  Every process delivers all messages in the same

order.
•  For example,

–  P1: m0, m1, m2
–  P2: m3, m4, m5
–  P3: m6, m7, m8

•  Total?
–  P1: m7, m1, m2, m4, m5, m3, m6, m0, m8
–  P2: m7, m1, m2, m4, m5, m3, m6, m0, m8
–  P3: m7, m1, m2, m4, m5, m3, m6, m0, m8

•  Total?
–  P1: m7, m1, m2, m4, m5, m3, m6, m0, m8
–  P2: m7, m2, m1, m4, m5, m3, m6, m0, m8
–  P3: m7, m1, m2, m4, m5, m3, m6, m8, m0

17 CSE 486/586, Spring 2014

Ordered Multicast
•  FIFO ordering: If a correct process issues

multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’ will have already
delivered m.

•  Causal ordering: If multicast(g,m) à multicast(g,m’)
then any correct process that delivers m’ will have
already delivered m.

–  Typically, à defined in terms of multicast communication
only

•  Total ordering: If a correct process delivers message
m before m’ (independent of the senders), then any
other correct process that delivers m’ will have
already delivered m.

18

C 4

CSE 486/586, Spring 2014

Total, FIFO and Causal Ordering

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

• Totally ordered messages
T1 and T2.

• FIFO-related messages F1
and F2.

• Causally related messages
C1 and C3

• Total ordering does not
imply causal ordering.

•  Causal ordering implies
FIFO ordering

•  Causal ordering does not
imply total ordering.

•  Hybrid mode: causal-total
ordering, FIFO-total
ordering.

19 CSE 486/586, Spring 2014

Display From Bulletin Board Program

Bulletin board:	

 os.interesting	

Item	

 From	

 Subject	

23	

 A.Hanlon	

 Mach	

 	

 	

24	

 G.Joseph	

 Microkernels	

25	

 A.Hanlon	

 Re: Microkernels	

26	

 T.L’Heureux	

 RPC performance	

27	

 M.Walker	

 Re: Mach	

end	

What is the most appropriate ordering for this application?"
"(a) FIFO (b) causal (c) total"

20

CSE 486/586, Spring 2014

Providing Ordering Guarantees (FIFO)

•  Look at messages from each process in the order
they were sent:

–  Each process keeps a sequence number for each of the
other processes.

–  When a message is received, if message # is:
»  as expected (next sequence), accept
»  higher than expected, buffer in a queue
»  lower than expected, reject

21 CSE 486/586, Spring 2014

Implementing FIFO Ordering
•  Sp

g: the number of messages p has sent to g.
•  Rq

g: the sequence number of the latest group-g
message p has delivered from q.

•  For p to FO-multicast m to g
–  p increments Sp

g by 1.
–  p “piggy-backs” the value Sp

g onto the message.
–  p B-multicasts m to g.

•  At process p, Upon receipt of m from q with
sequence number S:

–  p checks whether S= Rq
g+1. If so, p FO-delivers m and

increments Rq
g

–  If S > Rq
g+1, p places the message in the hold-back queue

until the intervening messages have been delivered and S=
Rq

g+1.

22

CSE 486/586, Spring 2014

Hold-back Queue for Arrived Multicast
Messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

23 CSE 486/586, Spring 2014

Example: FIFO Multicast

P1"

P2"

P3"

0 0 0!

Physical Time"

1 0 0! 2 0 0!

1 0 0! 2 0 0! 2 1 0!

2 1 0!

0 0 0!

0 0 0!

2 1 0!

0 0 0! 1 0 0! 2 1 0!

1" 1" 2" 2" 1"

1"

Reject:
1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0!

Buffer
2>0 +1

Accept:
1 = 0 + 1

2 0 0!

Accept
Buffer
2 =1 + 1

Accept
1 = 0 + 1

Sequence Vector!0 0 0!

(do NOT be confused with vector timestamps)!
“Accept” = Deliver!

24

1

C 5

CSE 486/586, Spring 2014

Summary
•  Reliable Multicast

– Reliability
– Ordering
– R-multicast

•  Ordered Multicast
–  FIFO ordering
–  Total ordering
– Causal ordering

•  Next: continue on multicast

25 CSE 486/586, Spring 2014 26

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

