CSE 486/586 Distributed Systems Domain Name System

Steve Ko Computer Sciences and Engineering University at Buffalo

CSE 486/586, Spring 2014

Last Time

- · Two multicast algorithms for total ordering
 - Sequencer
 - ISIS
- · Multicast for causal ordering
 - Uses vector timestamps

CSE 486/586, Spring 2014

Today's Question

- How do we organize the nodes in a distributed system?
- Up to the 90's
 - Prevalent architecture: client-server (or master-slave)
 - Unequal responsibilities
- Now
 - Emerged architecture: peer-to-peer
 - Equal responsibilities
- Studying an example client-server: DNS (today)
- Studying peer-to-peer as a paradigm (not just as a file-sharing application)
 - Learn the techniques and principles

CSE 486/586, Spring 2014

Separating Names and IP Addresses

- Names are easier (for us!) to remember
 - www.cnn.com vs. 64.236.16.20
- · IP addresses can change underneath
 - Move www.cnn.com to 173.15.201.39
 - E.g., renumbering when changing providers
- Name could map to multiple IP addresses
- www.cnn.com to multiple replicas of the Web site
 Map to different addresses in different places
- map to different addresses in different pla
- Address of a nearby copy of the Web siteE.g., to reduce latency, or return different content
- Multiple names for the same address
 - E.g., aliases like ee.mit.edu and cs.mit.edu

CSE 486/586, Spring 2014

Two Kinds of Identifiers

- Host name (e.g., www.cnn.com)
 - Mnemonic name appreciated by humans
 - Provides little (if any) information about location
 - Hierarchical, variable # of alpha-numeric characters
- IP address (e.g., 64.236.16.20)
 - Numerical address appreciated by routers
 - Related to host's current location in the topology
 - Hierarchical name space of 32 bits

CSE 486/586, Spring 2014

Hierarchical Assignment Processes

- Host name: www.cse.buffalo.edu
 - Domain: registrar for each top-level domain (e.g., .edu)
 - Host name: local administrator assigns to each host
- IP addresses: 128.205.32.58
 - Prefixes: ICANN, regional Internet registries, and ISPs
 - Hosts: static configuration, or dynamic using DHCP

CSE 486/586, Spring 2014

1

Domain Name System (DNS)

Proposed in 1983 by Paul Mockapetris

CSE 486/586, Spring 2014

Overview: Domain Name System

- A client-server architecture
 - The server-side is still distributed for scalability.
 - But the servers are still a hierarchy of clients and servers
- · Computer science concepts underlying DNS
 - Indirection: names in place of addresses
 - Hierarchy: in names, addresses, and servers
 - Caching: of mappings from names to/from address
- DNS software components
 - DNS resolvers
 - DNS servers
- · DNS queries
 - Iterative queries
 - Recursive queries
- DNS caching based on time-to-live (TTL)

sse

Strawman Solution #1: Local File

- · Original name to address mapping
 - Flat namespace
 - /etc/hosts
 - SRI kept main copy
 - Downloaded regularly
- Count of hosts was increasing: moving from a machine per domain to machine per user
 - Many more downloads
 - Many more updates

CSE 486/586, Spring 2014

Strawman Solution #2: Central Server

- · Central server
 - One place where all mappings are stored
 - All queries go to the central server
- · Many practical problems
 - Single point of failure
 - High traffic volume
 - Distant centralized database
 - Single point of update
 - Does not scale

Need a distributed, hierarchical collection of servers

SE 486/586, Spring 2014

10

Domain Name System (DNS)

- · Properties of DNS
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers
- · Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
- Authoritative DNS servers
- Performing the translations
 - Local DNS servers
 - Resolver software

CSE 486/586, Spring 2014

DNS Root Servers • 13 root servers (see http://www.root-servers.org/) · Labeled A through M A Verisign, Dulles, VA C Cogent, Herndon, VA (also Los Angeles) D U Maryland College Park, MD , K RIPE London (+ Amsterdam, Frankfurt) G US DoD Vienna, VA I Autonomica, Stockholm

(plus 3 other locations) E NASA Mt View, CA H ARL Aberdeen, MD F Internet Software C. Pal m WIDE Tokyo Alto, CA (and 17 other B USC-ISI Marina del Rey, CA L ICANN Los Angeles, CA CSE 486/586, Spring 2014

С

TLD and Authoritative DNS Servers

- Top-level domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, fr, ca, jp)
 - Typically managed professionally
 - » Network Solutions maintains servers for "com"
 - » Educause maintains servers for "edu"
- · Authoritative DNS servers
 - Provide public records for hosts at an organization
 - For the organization's servers (e.g., Web and mail)
 - Can be maintained locally or by a service provider

CSE 486/586, Spring 2014

Distributed Hierarchical Database

unnamed root

com edu of the proof of the proof

Using DNS

- · Local DNS server ("default name server")
 - Usually near the end hosts who use it
 - Local hosts configured with local server (e.g., /etc/ resolv.conf) or learn the server via DHCP
- · Client application
 - Extract server name (e.g., from the URL)
 - Do gethostbyname() to trigger resolver code
- Server application
 - Extract client IP address from socket
 - Optional gethostbyaddr() to translate into name

CSE 486/586, Spring 2014

CSE 486/586 AdministriviaPA1 grades will be out today on UBLearns.

CSE 486/586, Spring 2014

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu local DNS server dns.poly.edu TLD DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu cis.poly.edu cs.cs.umass.edu cs.cs.umass.edu cs.cs.umass.edu cs.cs.umass.edu cs.cs.umass.edu cs.cs.umass.edu

DNS Caching

- · Performing all these queries take time
 - And all this before the actual communication takes place
 - E.g., 1-second latency before starting Web download
- · Caching can substantially reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.cnn.com) visited often
 - Local DNS server often has the information cached
- · How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes the cached entry after TTL expires

CSE 486/586, Spring 2014

Negative Caching

- · Remember things that don't work
 - Misspellings like www.cnn.comm and www.cnnn.com
 - These can take a long time to fail the first time
 - Good to remember that they don't work
 - ... so the failure takes less time the next time around

CSE 486/586, Spring 2014

DNS Resource Records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g. foo.com)
 - value is hostname of authoritative name server for this domain
- Type=CNAME
 - name is alias for some "canonical" (the real) name: www.ibm.com is really srveast.backup2.ibm.com
 - value is canonical name
- Type=MX
- value is name of mailserver associated with name

Reliability

- · DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas
- · UDP used for queries
 - Need reliability: must implement this on top of UDP
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- · Same identifier for all queries
 - Don't care which server responds

Inserting Resource Records into DNS

- · Example: just created startup "FooBar"
- · Register foobar.com at Network Solutions
 - Provide registrar with names and IP addresses of your authoritative name server (primary and secondary)
 - Registrar inserts two RRs into the com TLD server:
 - » (foobar.com, dns1.foobar.com, NS)
 - » (dns1.foobar.com, 212.212.212.1, A)
- Put in authoritative server dns1.foobar.com
 - Type A record for www.foobar.com
- Type MX record for foobar.com
- · Play with "dig" on UNIX

CSE 486/586, Spring 2014

;nytimes.com.		IN	ANY	
, ny cimes . com.		114	ANI	
;; ANSWER SECTION:				
nytimes.com. NYTIMES.COM.S7A1	267 . PSMTP.com.	IN	MX	100
nytimes.com. NYTIMES.COM.S7A2	267 . PSMTP.com.	IN	MX	200
nytimes.com.	267	IN	A	199.239.137.200
nytimes.com.	267	IN	A	199.239.136.200
nytimes.com. ip4:199.239.138.0 ~all"	267 0/24 includ			v=spf1 mx ptr .com include:authsmtp.com
nytimes.com. root.nslt.nytime:	267 s.com. 2009	IN 070102 1	SOA 1800 3600	ns1t.nytimes.com. 0 604800 3600
nytimes.com.	267	IN	NS	nydns2.about.com.
nytimes.com.	267	IN	NS	ns1t.nytimes.com.
nytimes.com.	267	IN	NS	nydns1.about.com.
;; AUTHORITY SECTIO	ON:			
nytimes.com.	267	IN	NS	nydns1.about.com.
nytimes.com.	267	IN	NS	ns1t.nytimes.com.
nytimes.com.	267	TN	NS	nydns2.about.com.

```
$ dig nytimes.com +norec @a.root-servers.net
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53675
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 14
" OUESTION SECTION:
;nytimes.com.
;; AUTHORITY SECTION:
                                          NS
                                                   K.GTLD-SERVERS.NET.
com.
                         172800 IN
                                          NS
                                                  E.GTLD-SERVERS.NET.
com.
                         172800 IN
                                                  D GTI D-SERVERS NET.
com.
                                          NS
com.
                         172800 IN
                                          NS
                                                  LGTI D-SERVERS NET
                         172800 IN
                                          NS
                                                  C.GTLD-SERVERS.NET.
;; ADDITIONAL SECTION:
A.GTLD-SERVERS.NET.
                         172800 IN
                                                   192.5.6.30
A.GTLD-SERVERS.NET.
                         172800 IN
                                                  2001:503:a83e::2:30
                                          AAAA
B.GTLD-SERVERS.NET.
                         172800 IN
                                                   192.33.14.30
                          172808E 486/586, Spring 2014 2001:503:231d:
B GTI D-SERVERS NET
```


Content Distribution Networks (CDNs)

Content providers are CDN customers

Content replication

- CDN company installs thousands of servers throughout Internet
 - In large datacenters
 - Or, close to users
- CDN replicates customers' content
- When provider updates content, CDN updates servers

CSE 486/586, Spring 2014

Content Distribution Networks

- · Replicate content on many servers
- Challenges
 - How to replicate content
 - Where to replicate content
 - How to find replicated content
 - How to choose among replicas
 - How to direct clients towards a replica

CSE 486/586, Spring 2014

Server Selection

- · Which server?
 - Lowest load: to balance load on servers
 - Best performance: to improve client performance
 - » Based on what? Location? RTT? Throughput? Load?
 - Any alive node: to provide fault tolerance
- · How to direct clients to a particular server?
 - As part of routing: anycast, cluster load balancer
 - As part of application: HTTP redirect
 - As part of naming: DNS

CSE 486/586, Spring 2014

Summary

- DNS as an example client-server architecture
- Why?
 - Names are easier (for us!) to remember
 - IP addresses can change underneath
 - Name could map to multiple IP addresses
 - Map to different addresses in different places
 - Multiple names for the same address
- · Properties of DNS
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers, top-level domain (TLD) servers, authoritative DNS servers

CSE 486/586, Spring 2014

Acknowledgements

 These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Michael Freedman (Princeton), and Jennifer Rexford (Princeton).

CSE 486/586, Spring 2014