CSE 486/586 Distributed Systems
Peer-to-Peer Architecture --- 1

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

Last Time

* DNS as an example client-server architecture
« Properties of DNS
— Distributed over a collection of DNS servers
— Organized in a hierarchy of servers
« Hierarchy of DNS servers
— Root servers
— Top-level domain (TLD) servers
— Authoritative DNS servers
* Brief look at how a CDN works

CSE 486/586, Spring 2014

This Week’s Question

* How do we organize the nodes in a distributed
system?
Up to the 90’s

— Prevalent architecture: client-server (or master-slave)

— Unequal responsibilities
* Now

— Emerged architecture: peer-to-peer

— Equal responsibilities
Studying an example of client-server: DNS (last time)
Today: studying peer-to-peer as a paradigm (not just
as a file-sharing application, but will still use file-
sharing as the main example)

— Learn the techniques and principles

CSE 486/586, Spring 2014

Motivation: Distributing a Large File

« A client-server architecture can do it...
- D F bits

upload rate ug

L]

d,

Download rates d;

CSE 486/586, Spring 2014

Motivation: Distributing a Large File

« ...but sometimes not good enough.
— Limited bandwidth
— One server can only serve so many clients.
* Increase the upload rate from the server-side?
— Higher link bandwidth at the one server
— Multiple servers, each with their own link
— Requires deploying more infrastructure
« Alternative: have the receivers help
— Receivers get a copy of the data
— And then redistribute the data to other receivers
— To reduce the burden on the server

CSE 486/586, Spring 2014

Motivation: Distributing a Large File

« Peer-to-peer to help

Upload rates u;
Download rates d;

CSE 486/586, Spring 2014

7 Challenges of Peer-to-Peer

« Peers come and go
— Peers are intermittently connected
— May come and go at any time
— Or come back with a different IP address
* How to locate the relevant peers?
— Peers that are online right now
— Peers that have the content you want
* How to motivate peers to stay in system?
— Why not leave as soon as download ends?
— Why bother uploading content to anyone else?
* How to download efficiently?
— The faster, the better

CSE 486/586, Spring 2014 7

Locating Relevant Peers

» Evolution of peer-to-peer

— Central directory (Napster)

— Query flooding (Gnutella)

— Hierarchical overlay (Kazaa, modern Gnutella)
« Design goals

— Scalability

— Simplicity

— Robustness

— Plausible deniability

CSE 486/586, Spring 2014 8

The First: Napster

Filename| Info about

Store a directory, i.e.,
filenames with peer pointers
PennyLane.mp3 |Beatles, @

28.84.92.23:1006

napster.com
Servers

Client machines
(“Peers”)

Store their
own files

CSE 486/586, Spring 2014 9

The First: Napster

2. All servers search their lists (ternary tree algo.)

Store peer pointers
.~ for all files

napster.com Servers §

Store their own
e files

S
& 0 4. ping candidates
5. download from best host

CSE 486/586, Spring 2014 10

The First: Napster

« Server’s directory continually updated
— Always know what file is currently available
— Point of vulnerability for legal action
* Peer-to-peer file transfer
— No load on the server
— Plausible deniability for legal action (but not enough)
« Proprietary protocol
— Login, search, upload, download, and status operations
— No security: cleartext passwords and other vulnerability
* Bandwidth issues
— Suppliers ranked by apparent bandwidth & response time
« Limitations:
— Decentralized file transfer, but centralized lookup

CSE 486/586, Spring 2014 1

The Second: Gnutella

Store their own files

« Complete decentralization

Servants (“Peers”)

Also store
‘peer pointers”

Connected in an overlay graph (== each link is an implicit Internet path)

CSE 486/586, Spring 2014 12

Ny

The Second: Gnutella

Query’s flooded out, ttl-restricted, forwarded only once

The Second: Gnutella

Successful results QueryHit’s routed on reverse path

CSE 486/586, Spring 2014 13

CSE 486/586, Spring 2014

The Second: Gnutella

« Advantages

— Fully decentralized

— Search cost distributed

— Processing per node permits powerful search semantics
« Disadvantages

— Search scope may be quite large

— Search time may be quite long

— High overhead, and nodes come and go often

CSE 486/586, Spring 2014 15

The Third: KaAzA

Middle ground between
Napster & Gnutella

Each peer is either a
group leader (super
peer) or assigned to a
group leader
— TCP connection between
peer and its group leader
— TCP connections between
some pairs of group
leaders
Group leader tracks the
content in all its children

@ ordinary peer

. group-leader peer

neighoring relationships.
in overlay network

CSE 486/586, Spring 2014

The Third: KaZaA

« A supernode stores a directory listing
(<filename,peer pointer>), similar to Napster servers

* Supernode membership changes over time
* Any peer can become (and stay) a supernode,
provided it has earned enough reputation

— Kazaalite: participation level (=reputation) of a user between
0 and 1000, initially 10, then affected by length of periods of
connectivity and total number of uploads

— More sophisticated reputation schemes invented, especially
based on economics

« A peer searches by contacting a nearby supernode

CSE 486/586, Spring 2014 17

CSE 486/586 Administrivia

 Please start PA2 if you haven't. It's only two weeks
away.

* (In class) Midterm: 3/12

CSE 486/586, Spring 2014

(&%)

Now: BitTorrent

» Key motivation: popular content
— Popularity exhibits temporal locality (Flash Crowds)
— E.g., Slashdot/Digg effect, CNN Web site on 9/11, release of

a new movie or game
» Focused on efficient fetching, not searching

— Distribute same file to many peers
— Single publisher, many downloaders

* Preventing free-loading

CSE 486/586, Spring 2014

Tracker

« Infrastructure node
— Keeps track of peers participating in the torrent

« Peers register with the tracker

— Peer registers when it arrives
— Peer periodically informs tracker it is still there

» Tracker selects peers for downloading

— Returns a random set of peers

— Including their IP addresses
— So the new peer knows who to contact for data

« Can be “trackerless” using DHT

CSE 486/586, Spring 2014

Key Feature: Parallel Downloading

« Divide large file into many pieces
— Replicate different pieces on different peers
— A peer with a complete piece can trade with other peers

— Peer can (hopefully) assemble the entire file

« Allows simultaneous downloading
— Retrieving different parts of the file from different peers at

the same time
— And uploading parts of the file to peers

— Important for very large files
» System Components

— Web server
— Tracker

— Peers
20

CSE 486/586, Spring 2014

Chunks
« Large file divided into smaller pieces

— Fixed-sized chunks
— Typical chunk size of 256 Kbytes

 Allows simultaneous transfers
— Downloading chunks from different neighbors

— Uploading chunks to other neighbors
 Learning what chunks your neighbors have

— Periodically asking them for a list
« File done when all chunks are downloaded

CSE 486/586, Spring 2014

BitTorrent Protocol BitTorrent Protocol
Web Server Tracker Web Server Tracker
@
<\°°‘\
52

= &2

2

[- -

Peer Peer

Peer [Seed] Peer [Seed]
[Leech] [Leech]

Downloader Peer Downloader Peer

“us” [Leech] “us” [Leech]

CSE 486/586, Spring 2014 23 CSE 486/586, Spring 2014 24

BitTorrent Protocol

Web Server Tracker

Peer
Peer [Seed]
[Leech] -
Downloader Peer
“us” [Leech]
CSE 486/586, Spring 2014 25

BitTorrent Protocol

Web Server Tracker

Shake-hand

S5
Peer ey
Ny
[Leech]
Downloader Peer
“us” [Leech]

CSE 486/586, Spring 2014

Peer
[Seed]

BitTorrent Protocol

Web Server Tracker

pieces

Peer

[Leech]
Downloader Peer
“Us” [Leech]

CSE 486/586, Spring 2014 27

BitTorrent Protocol

Web Server Tracker

pieces

Peer

[Leech]
Downloader Peer
“Us” [Leech]

CSE 486/586, Spring 2014

BitTorrent Protocol

Web Server Tracker

Peer

Peer [Seed]
[Leech]

Downloader Peer

“us” [Leech]

CSE 486/586, Spring 2014 29

Chunk Request Order

* Which chunks to request?
— Could download in order
— Like an HTTP client does

« Problem: many peers have the early chunks
— Peers have little to share with each other
— Limiting the scalability of the system

« Problem: eventually nobody has rare chunks
— E.g., the chunks need the end of the file
— Limiting the ability to complete a download

« Solutions: random selection and rarest first

CSE 486/586, Spring 2014

Rarest Chunk First

» Which chunks to request first?
— The chunk with the fewest available copies
— l.e., the rarest chunk first
« Benefits to the peer
— Avoid starvation when some peers depart
« Benefits to the system
— Avoid starvation across all peers wanting a file
— Balance load by equalizing # of copies of chunks

CSE 486/586, Spring 2014 31

Preventing Free-Riding

» Vast majority of users are free-riders
— Most share no files and answer no queries
— Others limit # of connections or upload speed
« Afew “peers” essentially act as servers
— A few individuals contributing to the public good
— Making them hubs that basically act as a server
« BitTorrent prevent free riding
— Allow the fastest peers to download from you
— Occasionally let some free loaders download

CSE 486/586, Spring 2014 32

Preventing Free-Riding

« Peer has limited upload bandwidth
— And must share it among multiple peers
* Prioritizing the upload bandwidth: tit for tat
— Favor neighbors that are uploading at highest rate
» Rewarding the top four neighbors
— Measure download bit rates from each neighbor
— Reciprocates by sending to the top four peers
— Recompute and reallocate every 10 seconds
» Optimistic unchoking
— Randomly try a new neighbor every 30 seconds
— So new neighbor has a chance to be a better partner

CSE 486/586, Spring 2014 33

Gaming BitTorrent

 BitTorrent can be gamed, too
— Peer uploads to top N peers at rate 1/N
— E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
— ... then peer uploading at rate 9 gets treated quite well
» Best to be the N peer in the list, rather than 1st
— Offer just a bit more bandwidth than the low-rate peers
— But not as much as the higher-rate peers
— And you'll still be treated well by others
 BitTyrant software
— Uploads at higher rates to higher-bandwidth peers
— http://bittyrant.cs.washington.edu/

CSE 486/586, Spring 2014 34

BitTorrent Today

« Significant fraction of Internet traffic

— Estimated at 30%

— Though this is hard to measure
* Problem of incomplete downloads

— Peers leave the system when done

— Many file downloads never complete

— Especially a problem for less popular content
« Still lots of legal questions remains
 Further need for incentives

CSE 486/586, Spring 2014 35

Summary

« Evolution of peer-to-peer

— Central directory (Napster)

— Query flooding (Gnutella)

— Hierarchical overlay (Kazaa, modern Gnutella)
 BitTorrent

— Focuses on parallel download

— Prevents free-riding
* Next: Distributed Hash Tables

CSE 486/586, Spring 2014 36

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC), Michael
Freedman (Princeton), and Jennifer Rexford
(Princeton).

CSE 486/586, Spring 2014

