
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Remote Procedure Call

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap: Finger Table
•  Finding a <key, value> using fingers

2

N86"

86 + 24!

N102"

N20"

20 + 26!

CSE 486/586, Spring 2014

Recall?

3

TCP UDP

IP

Device Drivers

Network Interface

OS

App

Socket API

CSE 486/586, Spring 2014 4

CSE 486/586, Spring 2014 5 CSE 486/586, Spring 2014

Socket API

6

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

establish

connection

send request

read()

send response

C 2

CSE 486/586, Spring 2014

What’s Wrong with Socket API?
•  Low-level read/write
•  Communication oriented
•  Same sequence of calls, repeated many times
•  Etc, etc…
•  Not programmer friendly

7 CSE 486/586, Spring 2014

Another Abstraction
•  RPC (Remote Procedure Call)

– Goal: it should appear that the programmer is calling a local
function

– Mechanism to enable function calls between different
processes

–  First proposed in the 80’s

•  Examples
–  Sun RPC
–  Java RMI
– CORBA

•  Other examples that borrow the idea
–  XML-RPC
–  Android Bound Services with AIDL
– Google Protocol Buffers

8

CSE 486/586, Spring 2014

RPC

•  Client
int main (…)
{
 …
 rpc_call(…);
 …

}

•  Server
…

void rpc_call(…) {
 …

}

…

9 CSE 486/586, Spring 2014

Local Procedure Call
•  E.g., x = local_call(“str”);
•  The compiler generates code to transfer necessary

things to local_call
–  Push the parameters to the stack
– Call local_call

•  The compiler also generates code to execute the
local call.

–  Assigns registers
–  Adjust stack pointers
–  Saves the return value
– Calls the return instruction

10

CSE 486/586, Spring 2014

Remote Procedure Call
•  Give an illusion of doing a local call by using

whatever the OS gives
•  Closer to the programmers

–  Language-level construct, not OS-level support

•  What are some of the challenges?
– How do you know that there are remote calls available?
– How do you pass the parameters?
– How do you find the correct server process?
– How do you get the return value?

11 CSE 486/586, Spring 2014

Stub, Marshalling, & Unmarshalling
•  Stub functions: local interface to make it appear that

the call is local.
•  Marshalling: the act of taking a collection of data

items (platform dependent) and assembling them into
the external data representation (platform
independent).

•  Unmarshalling: the process of disassembling data
that is in external data representation form, into a
locally interpretable form.

12

C 3

CSE 486/586, Spring 2014

RPC Process

13

Client Process

Client Function

Client Stub

Socket API

Server Process

Server Function

Server Stub

Socket API

Marshalling/unmarshalling

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA2 due in 1.5 weeks
•  Midterm on Wednesday (3/12)

14

CSE 486/586, Spring 2014

How Do You Generate Stubs?
•  Ever heard of C/C++, Java, Python syntax for RPC?

– None!

•  Language compilers don’t generate client and server
stubs.

•  Common solution: use a separate language and a
pre-compiler

15 CSE 486/586, Spring 2014

Interface Definition Language (IDL)
•  Allow programmers to express remote procedures,

e.g., names, parameters, and return values.
•  Pre-compilers take this and generate stubs,

marshalling/unmarshalling mechanisms.
•  Similar to writing function definitions

16

CSE 486/586, Spring 2014

Example: SUN XDR

17

const MAX = 1000;	

typedef int FileIdentifier;	

typedef int FilePointer;	

typedef int Length;	

struct Data {	

	

int length;	

	

char buffer[MAX];	

};	

struct writeargs {	

	

FileIdentifier f;	

	

FilePointer position;	

	

Data data;	

};	

struct readargs {	

	

FileIdentifier f;	

	

FilePointer position;	

	

Length length;	

};	

	

program FILEREADWRITE {	

 version VERSION {	

	

void WRITE(writeargs)=1; 	

	

Data READ(readargs)=2;	

 }=2;	

} = 9999;	

CSE 486/586, Spring 2014

Stub Generation

18

Interface !
Specification!

Stub
Generator

Server

Stub

Common

Header

Client

Stub
Client

Source

RPC!
LIBRARY!

Server

Source

Compiler / Linker

RPC!
LIBRARY!

Client

Program

Server

Program

Compiler / Linker

e.g., in SUN XDR e.g., rpcgen

gcc

.o, .exe

.o, .exe

.c

.c

.c

.c

.h

gcc

C 4

CSE 486/586, Spring 2014

How Do You Find the Server
Process?
•  Solution 1

– Central DB (the first solution proposed)

•  Solution 2
–  Local DB with a well-known port (SUN RPC)

19 CSE 486/586, Spring 2014

Local DB with Well-Known Port

20

Client

Program

Server

procedure Server

Stub

Client

Stub

Network
Code

Port Mapper
SERVER

CLIENT
Finding An RPC:
RPCs live on specific hosts at
specific ports.

Port mapper on the host maps
from RPC name to port#

When a server process is
initialized, it registers its RPCs
(handle) with the port mapper
on the server

A client first connects to port
mapper (daemon on standard
port) to get this handle

The call to RPC is then made
by connecting to the
corresponding port

CSE 486/586, Spring 2014

How to Pass Parameters?
•  Pass by value: no problem

–  Just copy the value

•  What about pointers/references?
– Need to copy the actual data as well
– Marshall them at the client and unmarshall them at the

server
–  Pass the local pointers/references

•  What about complex data structures? struct, class,
etc.

– Need to have a platform independent way of representing
data

21 CSE 486/586, Spring 2014

External Data Representation
•  Communication between two heterogeneous

machines
– Different byte ordering (big-endian & little-endian)
– Different sizes of integers and other types
– Different floating point representations
– Different character sets
–  Alignment requirements

•  Used in general contexts, not just in RPCs

22

CSE 486/586, Spring 2014

Example: Google Protocol Buffers
•  Goal: language- and platform-neutral way to specify

and serialize data
•  Provides syntax & pre-compiler (open-source)

–  Pre-compiler generates code to manipulate objects for a
specific language, e.g, C++, Java, Python.

–  The runtime support applies a fast & sloppy compression
algorithm.

message Book {

 required string title = 1;
 repeated string author = 2;
 optional BookStats statistics = 3;
 message BookStats {
 required int32 sales =1;
 }

}
23 CSE 486/586, Spring 2014

What About Failures?
•  Local calls do not fail.
•  Remote calls might fail.
•  Programmers should deal with this.

– No transparency here

24

C 5

CSE 486/586, Spring 2014

Failure Modes of RPC

Execute

Reply!

correct
function"

Execute,

Crash

Request!

Crash

Request!

Request!

Execute

Reply!

Execute

Reply!

crash
before
reply !

crash
before
execution!

lost
request"

Channel
fails
during
reply !

Client
machine
fails
before
receiving
reply !

25 CSE 486/586, Spring 2014

Invocation Semantics
•  Local procedure call: exactly-once
•  Remote procedure call:

–  0 times: server crashed or server process died before
executing server code

–  1 time: everything worked well, as expected
–  1 or more: excess latency or lost reply from server and client

retransmission

•  When do these make sense?
–  Idempotent functions: OK to run any number of times
– Non-idempotent functions: cannot do it

•  What we can offer
–  At least once
–  At most once

26

CSE 486/586, Spring 2014

Invocation Semantics

Fault tolerance measures	

 Invocation 	

semantics	

Retransmit request 	

message	

Duplicate 	

filtering	

Re-execute procedure 	

or retransmit reply	

No	

Yes	

Yes	

Not applicable	

No	

Yes	

Not applicable	

Re-execute procedure	

Retransmit old reply	

 At-most-once	

At-least-once	

Maybe	

27 CSE 486/586, Spring 2014

Remote Method Invocation (RMI)

object A	

 object B	

skeleton	

Request	

proxy for B	

Reply	

Communication	

Remote 	

 Remote reference	

Communication	

 module	

 module	

reference module	

 module	

for B's class	

& dispatcher	

remote	

client	

 	

server	

Process P1 (“client”)" Process P2 (“server”)"

28

CSE 486/586, Spring 2014

Summary
•  RPC enables programmers to call functions in

remote processes.
•  IDL (Interface Definition Language) allows

programmers to define remote procedure calls.
•  Stubs are used to make it appear that the call is

local.
•  Semantics

– Cannot provide exactly once
–  At least once
–  At most once
– Depends on the application requirements

29 CSE 486/586, Spring 2014 30

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

