
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Concurrency Control --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Banking Example (Once Again)
•  Banking transaction for a customer (e.g., at ATM or

browser)
–  Transfer $100 from saving to checking account
–  Transfer $200 from money-market to checking account
– Withdraw $400 from checking account

•  Transaction
1.  savings.deduct(100)
2.  checking.add(100)
3.  mnymkt.deduct(200)
4.  checking.add(200)
5.  checking.deduct(400)
6.  dispense(400)

2

CSE 486/586, Spring 2014

Wait…We’ve Seen This Before…
•  What are some things that can go wrong?

– Multiple clients
– Multiple servers

•  How do you solve this?
– Group everything as if it’s a single step

•  Where have we seen this?
– Mutual exclusion lecture

•  So, we’re done?
– No, we’re not satisfied.

3 CSE 486/586, Spring 2014

Concurrent Transactions

•  Process 1

lock(mutex);
savings.deduct(100);
checking.add(100);
mnymkt.deduct(200);
checking.add(200);
checking.deduct(400);
dispense(400);
unlock(mutex);

•  Process 2

lock(mutex);
savings.deduct(200);
checking.add(200);
unlock(mutex);

4

CSE 486/586, Spring 2014

Why Not Satisfied?

 1. savings.deduct(100)
 2. checking.add(100)
 3. mnymkt.deduct(200)
 4. checking.add(200)
 5. checking.deduct(400)
 6. dispense(400)

5

A failure at these
points means the
customer loses
money; we need
to restore old state"

A failure at
these points
does not cause
lost money, but
old steps
cannot be
repeated"

CSE 486/586, Spring 2014

Recap: Locks & Transactions
•  What we discussed in mutual exclusion is one big

lock.
–  Everyone else has to wait.
–  It does not necessarily deal with failures.

•  Performance
– Observation: we can interleave some operations from

different processes.

•  Failure
–  If a process crashes while holding a lock

•  Let’s go beyond simple locking!

6

C 2

CSE 486/586, Spring 2014

Transaction
•  Abstraction for grouping multiple operations into one
•  A transaction is indivisible (atomic) from the point of

view of other transactions
– No access to intermediate results/states
–  Free from interference by other operations

•  Primitives
–  begin(): begins a transaction
–  commit(): tries completing the transaction
–  abort(): aborts the transaction

•  Implementing transactions
–  Performance: finding out what operations we can interleave
–  Failure: dealing with failures, rolling back changes if

necessary

7 CSE 486/586, Spring 2014

Properties of Transactions: ACID
•  Atomicity: All or nothing
•  Consistency: if the server starts in a consistent state,

the transaction ends with the server in a consistent
state.

•  Isolation: Each transaction must be performed
without interference from other transactions, i.e., the
non-final effects of a transaction must not be visible
to other transactions.

•  Durability: After a transaction has completed
successfully, all its effects are saved in permanent
storage.

8

CSE 486/586, Spring 2014

What Can Go Wrong?

 Transaction T1 Transaction T2
balance = b.getBalance()

 balance = b.getBalance()
 b.setBalance(balance*1.1)

b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

•  T1/T2’s update on the shared object, “b”, is lost

9

100" 200" 300"a:" b:" c:"

280"c:"

80"a:"

220"b:"

220"b:"

CSE 486/586, Spring 2014

Lost Update Problem
•  One transaction causes loss of info. for another:
consider three account objects

 Transaction T1 Transaction T2
balance = b.getBalance()

 balance = b.getBalance()
 b.setBalance(balance*1.1)

b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

•  T1/T2’s update on the shared object, “b”, is lost

10

100" 200" 300"a:" b:" c:"

280"c:"

80"a:"

220"b:"

220"b:"

CSE 486/586, Spring 2014

What Can Go Wrong?

 Transaction T1 Transaction T2
a.withdraw(100)

 total = a.getBalance()
 total = total + b.getBalance

b.deposit(100)
 total = total + c.getBalance

•  T1’s partial result is used by T2, giving the wrong
result

11

100" 200"

0.00"

a:" b:"

 00"a:"

500"

200"

300"c:"

total"

300"b:"

CSE 486/586, Spring 2014

Inconsistent Retrieval Problem
•  Partial, incomplete results of one transaction are
retrieved by another transaction.

 Transaction T1 Transaction T2
a.withdraw(100)

 total = a.getBalance()
 total = total + b.getBalance

b.deposit(100)
 total = total + c.getBalance

•  T1’s partial result is used by T2, giving the wrong
result

12

100" 200"

0.00"

a:" b:"

 00"a:"

500"

200"

300"c:"

total"

300"b:"

C 3

CSE 486/586, Spring 2014

What is “Correct”?
•  How would you define correctness?

 Transaction T1 Transaction T2
balance = b.getBalance() balance = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) c.withdraw(balance*0.1)

13

100" 200" 300"a:" b:" c:"

CSE 486/586, Spring 2014

Concurrency Control: Providing
“Correct” Interleaving
•  An interleaving of the operations of 2 or more transactions is

said to be serially equivalent if the combined effect is the same
as if these transactions had been performed sequentially (in
some order).

 Transaction T1 Transaction T2
balance = b.getBalance()
b.setBalance = (balance*1.1)

 balance = b.getBalance()

 b.setBalance(balance*1.1)
a.withdraw(balance* 0.1)

 c.withdraw(balance*0.1)

14

100" 200" 300"a:" b:" c:"

278"c:"
a:"

242"b:"

b:" 220"

80"

== T1 (complete) followed!
!by T2 (complete)!

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  Midterm: 3/6 (Wednesday) in class

–  Everything up to leader election
–  1-page cheat sheet is allowed.

15 CSE 486/586, Spring 2014

Providing Serial Equivalence
•  What operations are we considering?

•  Read/write

•  What operations matter for correctness?
•  When write is involved

 Transaction T1 Transaction T2
balance = b.getBalance() balance = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) c.withdraw(balance*0.1)

16

100" 200" 300"a:" b:" c:"

CSE 486/586, Spring 2014

Conflicting Operations
•  Two operations are said to be in conflict, if their combined effect

depends on the order they are executed, e.g., read-write, write-
read, write-write (all on same variables). NOT read-read, not on
different variables.

17

Operations of different	

transactions	

Conflict	

 Reason	

read	

 read	

 No	

 Because the effect of a pair of 	

read	

 operations	

does not depend on the order in which they are	

executed	

read	

 write	

 Yes	

 Because the effect of a 	

read	

 and a 	

write	

 operation	

depends on the order of their execution	

 	

write	

 write	

 Yes	

 Because the effect of a pair of 	

write	

 operations	

depends on the order of their execution	

 	

CSE 486/586, Spring 2014

Conditions for Correct Interleaving
•  What should we need to do to guarantee serial

equivalence with conflicting operations?
•  Case 1

•  T1.1 -> T1.2 -> T2.1 -> T2.2 -> T1.3 -> T2.3

•  Case 2
•  T1.1 -> T2.1 -> T2.2 -> T1.2 -> T1.3 -> T2.3

•  Which one’s correct and why?

18

Transaction T1 Transaction T2
1. balance = b.getBalance() 1. balance = b.getBalance()
2. b.setBalance = (balance*1.1) 2. b.setBalance(balance*1.1)
3. a.withdraw(balance* 0.1) 3. c.withdraw(balance*0.1)

C 4

CSE 486/586, Spring 2014

Conflicting Operations
•  Insight for serial equivalence

•  Outcomes of write operations in one transaction to all
shared objects should be either consistently visible to the
other transaction or the other way round.

•  The effect of an operation refers to
•  The value of an object set by a write operation
•  The result returned by a read operation.

•  Two transactions are serially equivalent if and only if all pairs of
conflicting operations (pair containing one operation from each
transaction) are executed in the same order (transaction order)
for all objects (data) they both access.

19 CSE 486/586, Spring 2014

Example of Conflicting Operations
•  An interleaving of the operations of 2 or more transactions is said
to be serially equivalent if the combined effect is the same as if
these transactions had been performed sequentially (in some
order).

 Transaction T1 Transaction T2
balance = b.getBalance()
b.setBalance = (balance*1.1)

 balance = b.getBalance()

 b.setBalance(balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

20

100 200 300 a: b: c:

278 c:
a:

242 b:

b: 220

80

== T1 (complete) followed

 by T2 (complete)

Pairs of Conflicting Operations

CSE 486/586, Spring 2014

Another Example
Transaction T1 Transaction T2
 x= a.read()
 a.write(20)

 y = b.read()
 b.write(30)
 b.write(x)
 z = a.read()

 x= a.read()
 a.write(20)

 z = a.read()
 b.write(x)
 y = b.read()
 b.write(30)

21

Serially
equivalent
interleaving
of
operations

Conflicting
Ops.

Non-
serially
equivalent
interleaving
of
operations

CSE 486/586, Spring 2014

Inconsistent Retrievals Problem

22

Transaction 	

V	

:	

 	

a.withdraw(100)	

b.deposit(100)	

Transaction 	

W	

:	

aBranch.branchTotal()	

a.withdraw(100);	

 $100	

total = a.getBalance()	

 $100	

total = total+b.getBalance()	

 $300	

total = total+c.getBalance()	

b.deposit(100)	

 $300	

Both withdraw and deposit contain a write operation

CSE 486/586, Spring 2014

Serially-Equivalent Ordering

23

Transaction 	

V	

:	

 	

a.withdraw(100);	

b.deposit(100)	

Transaction 	

W	

:	

aBranch.branchTotal()	

a.withdraw(100);	

 $100	

	

	

b.deposit(100)	

	

	

	

$300	

total = a.getBalance()	

 $100	

	

total = total+b.getBalance()	

	

$400	

	

total = total+c.getBalance()	

...	

CSE 486/586, Spring 2014

Summary
•  Transactions need to provide ACID
•  Serial equivalence defines correctness of executing

concurrent transactions
•  It is handled by ordering conflicting operations

24

C 5

CSE 486/586, Spring 2014 25

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

