
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Concurrency Control --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap: Conflicting Operations
•  Two operations are said to be in conflict, if their combined effect

depends on the order they are executed, e.g., read-write, write-
read, write-write (all on same variables). NOT read-read, not on
different variables.

2

Operations of different	

transactions	

Conflict	

 Reason	

read	

 read	

 No	

 Because the effect of a pair of 	

read	

 operations	

does not depend on the order in which they are	

executed	

read	

 write	

 Yes	

 Because the effect of a 	

read	

 and a 	

write	

 operation	

depends on the order of their execution	

 	

write	

 write	

 Yes	

 Because the effect of a pair of 	

write	

 operations	

depends on the order of their execution	

 	

CSE 486/586, Spring 2014

Recap: Serial Equivalence
•  An interleaving of the operations of 2 or more transactions is

said to be serially equivalent if the combined effect is the same
as if these transactions had been performed sequentially (in
some order).

 Transaction T1 Transaction T2
balance = b.getBalance()
b.setBalance = (balance*1.1)

 balance = b.getBalance()

 b.setBalance(balance*1.1)
a.withdraw(balance* 0.1)

 c.withdraw(balance*0.1)

3

100" 200" 300"a:" b:" c:"

278"c:"
a:"

242"b:"

b:" 220"

80"

== T1 (complete) followed!
!by T2 (complete)!

CSE 486/586, Spring 2014

Recap: Serial Equivalence
•  How to provide serial equivalence with conflicting

operations?
–  Execute all pairs of conflicting operations in the same order

for all objects

4

CSE 486/586, Spring 2014

Recap: Serial Equivalence
•  How to provide serial equivalence with conflicting

operations?
–  Execute all pairs of conflicting operations in the same order

for all objects

 Transaction T1 Transaction T2
balance = b.getBalance()
b.setBalance = (balance*1.1)

 balance = b.getBalance()

 b.setBalance(balance*1.1)
a.withdraw(balance* 0.1)
 c.withdraw(balance*0.1)

5

100 200 300 a: b: c:

278 c:
a:

242 b:

b: 220

80

== T1 (complete) followed

 by T2 (complete)

Pairs of Conflicting Operations

CSE 486/586, Spring 2014

Implementing Transactions
•  Two things we wanted to take care of (from the last

lecture)
–  Performance: interleaving of operations
–  Failure: intentional (abort()), unintentional (e.g., process

failure)

•  Interleaving must satisfy serial equivalence
•  What about failures?

–  Should be able to rollback as if no transaction has
happened.

6

C 2

CSE 486/586, Spring 2014

Handling Abort()
•  What can go wrong?

7

Transaction 	

V	

:	

 	

a.withdraw(100);	

b.deposit(100)	

Transaction 	

W	

:	

aBranch.branchTotal()	

a.withdraw(100);	

 $100	

	

	

b.deposit(100)	

	

	

	

$300	

total = a.getBalance()	

 $100	

	

total = total+b.getBalance()	

	

$400	

	

total = total+c.getBalance()	

...	

CSE 486/586, Spring 2014

Strict Executions of Transactions
•  Transactions should delay both their read and write

operations on an object
– Until all transactions that previously wrote that object have

either committed or aborted
–  This is called strict executions.

•  How do we implement serial equivalence & strict
executions? Many ways

•  We’ll see how to do this with locks

8

CSE 486/586, Spring 2014

Using Exclusive Locks
•  Exclusive Locks

 Transaction T1 Transaction T2
begin()
balance = b.getBalance() begin()
 balance = b.getBalance()
b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1)
commit()
 b.setBalance = (balance*1.1)

 c.withdraw(balance*0.1)

 commit()

9

Lock
B

Lock
A

UnLock
B

UnLock
A Lock

C
UnLock

B
UnLock

C

…

WAIT
on B

Lock
B

…

CSE 486/586, Spring 2014

How to Acquire/Release Locks
•  Can’t do it naively

10

Transaction T1 Transaction T2
 x= a.read()
 a.write(20)

 y = b.read()
 b.write(30)
 b.write(x)
 z = a.read()

Lock
A

UnLock
A

Lock
B

UnLock
B Lock

B

UnLock
B

Lock
A

UnLock
A

CSE 486/586, Spring 2014

Using Exclusive Locks
•  Two phase locking

–  To satisfy serial equivalence
–  First phase (growing phase): new locks are acquired
–  Second phase (shrinking phase): locks are only released
–  A transaction is not allowed to acquire any new lock, once it

has released any one lock
•  Strict two phase locking

–  To handle abort() (failures)
–  Locks are only released at the end of the transaction, either

at commit() or abort()

11 CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  Midterm: 3/31 (Monday)
•  PA3 deadline: 4/11 (Friday)

12

C 3

CSE 486/586, Spring 2014

Can We Do Better?
•  What we saw was “exclusive” locks.
•  Non-exclusive locks: break a lock into a read lock

and a write lock
•  Allows more concurrency

– Read locks can be shared (no harm to share)
– Write locks should be exclusive

13 CSE 486/586, Spring 2014

Non-Exclusive Locks
 non-exclusive lock compatibility

 Lock already Lock requested
 set read write
 none OK OK
 read OK WAIT
 write WAIT WAIT

•  A read lock is promoted to a write lock when the
transaction needs write access to the same object.

•  A read lock shared with other transactions’ read
lock(s) cannot be promoted. Transaction waits for
other read locks to be released.

•  Cannot demote a write lock to read lock during
transaction – violates the 2P principle

14

CSE 486/586, Spring 2014

Example: Non-Exclusive Locks

 Transaction T1 Transaction T2

OpenTransaction()
balance = b.getBalance() OpenTransaction()
 balance = b.getBalance()
 b.setBalance =balance*1.1

Commit

15

R-Lock
B

…

R-
Lock

B

Cannot Promote lock on B, Wait

Promote lock on B

CSE 486/586, Spring 2014

2PL: a Problem

•  What happens in the example below?
 Transaction T1 Transaction T2

OpenTransaction()
balance = b.getBalance() OpenTransaction()
 balance = b.getBalance()
 b.setBalance =balance*1.1

b.setBalance=balance*1.1

16

R-Lock
B

…

R-Lock
B

Cannot Promote lock on B, Wait

Cannot Promote lock on B, Wait

…

CSE 486/586, Spring 2014

Deadlock Conditions
•  Necessary conditions

– Non-sharable resources (locked objects)
– No lock preemption
– Hold & wait or circular wait

17

T U

Wait for Held by

Held by Wait for

A
B T

U

Wait for Held by

Held by Wait for

A
B

V
W

...

...

Wait for

Wait for Held by

Held by

Hold & Wait Circular Wait

CSE 486/586, Spring 2014

Preventing Deadlocks
•  Acquiring all locks at once
•  Acquiring locks in a predefined order
•  Not always practical:

–  Transactions might not know which locks they will need in
the future

•  One strategy: timeout
–  If we design each transaction to be short and fast, then we

can abort() after some period of time.

18

C 4

CSE 486/586, Spring 2014

Extracting Even More Concurrency
•  Allow writing tentative versions of objects

–  Letting other transactions read from the previously committed
version

•  Allow read and write locks to be set together by different
transactions

–  Unlike non-exclusive locks
•  Read operations wait only if another transaction is

committing the same object
•  Disallow commit if other uncompleted transactions have

read the objects
–  These transactions must wait until the reading transactions

have committed

•  This allows for more concurrency than read-write locks
–  Writing transactions risk waiting or rejection when commit

19 CSE 486/586, Spring 2014

Two-Version Locking
•  Three types of locks: read lock, write lock, commit

lock
–  Transaction cannot get a read or write lock if there is a

commit lock

•  When the transaction coordinator receives a request
to commit

– Converts all that transaction’s write locks into commit locks
–  If any objects have outstanding read locks, transaction must

wait until the transactions that set these locks have
completed and locks are released

•  Compare with read/write locks:
– Read operations are delayed only while transactions are

committed
– Read operations of one transaction can cause a delay in the

committing of other transactions

20

CSE 486/586, Spring 2014

Two-Version Locking

lock compatibility
 Lock already Lock requested
 set read write commit
 none OK OK OK
 read OK OK WAIT
 write OK WAIT
 commit WAIT WAIT

21 CSE 486/586, Spring 2014

Summary
•  Strict Execution

– Delaying both their read and write operations on an object
until all transactions that previously wrote that object have
either committed or aborted

•  Strict execution with exclusive locks
–  Strict 2PL

•  Increasing concurrency
– Non-exclusive locks
–  Two-version locks
– Hierarchical locks

22

CSE 486/586, Spring 2014 23

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

