CSE 486/586 Distributed Systems
Concurrency Control --- 2

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

//S’ Recap: Conflicting Operations

* Two operations are said to be in conflict, if their combined effect
depends on the order they are executed, e.g., read-write, write-
read, write-write (all on same variables). NOT read-read, not on
different variables.

Operations of different Conflict Reason
transactions

read read No Because the effect of a pair of read operations
does not depend on the order in which they are
executed

read write Yes Because the effect of a read and a write operation

depends on the order of their execution
write write Yes Because the effect of a pair of wrire operations
depends on the order of their execution

CSE 486/586, Spring 2014 2

¥ Recap: Serial Equivalence

* Aninterleaving of the operations of 2 or more transactions is
said to be serially equivalent if the combined effect is the same
as if these transactions had been performed sequentially (in
some order).

a[100] b e
Transaction T1 Transaction T2
balance = b.getBalance() ==T1 (complete) followed
b.setBalance = (balance*1.1) by T2 (complete)
b: [p20

balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance* 0.1) a:|l8o

c.withdraw(balance*0.1)

CSE 486/586, Spring 2014 3

¥ Recap: Serial Equivalence

* How to provide serial equivalence with conflicting
operations?

— Execute all pairs of conflicting operations in the same order
for all objects

CSE 486/586, Spring 2014 4

Recap: Serial Equivalence

- How to provide serial equivalence with conflicting
operations?

— Execute all pairs of conflicting operations in the same order
for all objects

Transaction T1 Transaction T2

balance = b.getBalance()

b.setBalance = (balance*1.1 ==T1 (complete) followed
b: [220 by T2 (complete)

balance = b.getBalance()

b.setBalance(balance*1.1)

awithdraw(balance* 0.1) a:[o
c.withdraw(balance*0.1)

Pairs of Conflicting Operations

CSE 486/586, Spring 2014 5

Implementing Transactions

» Two things we wanted to take care of (from the last
lecture)

— Performance: interleaving of operations

— Failure: intentional (abort()), unintentional (e.g., process
failure)

« Interleaving must satisfy serial equivalence
* What about failures?

— Should be able to rollback as if no transaction has
happened.

CSE 486/586, Spring 2014 6

Handling Abort()

p ¥ « What can go wrong?

TransactionV: Transaction W:
a.withdraw(100); B b Hotal
b.deposit(100) aBranch.branchTotal()
awithdraw(100); $100
total = a.getBalance() $100
b.deposit(100) $300
total = total+b.getBalance() $400
total = total+c .getBalance()

CSE 486/586, Spring 2014 7

Strict Executions of Transactions

Transactions should delay both their read and write
operations on an object

— Until all transactions that previously wrote that object have
either committed or aborted

— This is called strict executions.

How do we implement serial equivalence & strict
executions? Many ways

We’'ll see how to do this with locks

CSE 486/586, Spring 2014

Using Exclusive Locks
* Exclusive Locks

Transaction T1
begin()

L
balance = b.getBalance() -

b.setBalance = (balance*1.1)
a.withdraw(balance* 0.1) | Lock

commit()
m Lock b.setBalance = (balance*1.1)

m c.withdraw(balance*0.1)

commit()

Transaction T2

CSE 486/586, Spring 2014 9

How to Acquire/Release Locks

« Can'’t do it naively

ansaction T1 | Transaction T2
LCk x= a.read()
— a.write(20)
A b.write(30)
b.write(x)
z = a.read()

CSE 486/586, Spring 2014

Using Exclusive Locks

» Two phase locking
— To satisfy serial equivalence
— First phase (growing phase): new locks are acquired
— Second phase (shrinking phase): locks are only released

— A transaction is not allowed to acquire any new lock, once it
has released any one lock

« Strict two phase locking
— To handle abort() (failures)

— Locks are only released at the end of the transaction, either
at commit() or abort()

CSE 486/586, Spring 2014 1

CSE 486/586 Administrivia

« Midterm: 3/31 (Monday)
» PAS3 deadline: 4/11 (Friday)

CSE 486/586, Spring 2014

Ny

¥ Can We Do Better?

* What we saw was “exclusive” locks.
* Non-exclusive locks: break a lock into a read lock
and a write lock

« Allows more concurrency
— Read locks can be shared (no harm to share)
— Write locks should be exclusive

CSE 486/586, Spring 2014 13

Non-Exclusive Locks

non-exclusive lock compatibility

Lock already Lock requested
set read write
none OK OK
read OK WAIT
write WAIT WAIT

» Aread lock is promoted to a write lock when the
transaction needs write access to the same object.

» Aread lock shared with other transactions’ read
lock(s) cannot be promoted. Transaction waits for
other read locks to be released.

» Cannot demote a write lock to read lock during

transaction — violates the 2P principle
CSE 486/586, Spring 2014 14

Example: Non-Exclusive Locks

Transaction T1 Transaction T2

OpenTransaction()

balance = b.getBalance() OpenTransaction() R
() Lock
B

balance = b.getBalance
b.setBalance =balance*1.1
‘ Cannot Promote lock on B, Wait ‘

Promote lock on B

Commit

CSE 486/586, Spring 2014 15

7 2PL: a Problem

* What happens in the example below?

Transaction T1 Transaction T2

OpenTransaction()
balance = b.getBalance()

OpenTransaction() Lock
balance = b.getBalance()
b.setBalance =balance*1.1
‘ Cannot Promote lock on B, Wait ‘

b.setBalance=balance*1.1

Cannot Promote lock on B, Wait ‘

CSE 486/586, Spring 2014 16

Deadlock Conditions

* Necessary conditions
— Non-sharable resources (locked objects)
— No lock preemption
— Hold & wait or circular wait

Hel it for
“MJE

ﬂaﬂiﬂ@<ﬁe}g by <Wait for

El

" ——/ — > 9
Wait for Held by Held b Wait for Held by
Hold & Wait Circular Wait

CSE 486/586, Spring 2014 17

Preventing Deadlocks

 Acquiring all locks at once
« Acquiring locks in a predefined order

* Not always practical:

— Transactions might not know which locks they will need in
the future

» One strategy: timeout

— If we design each transaction to be short and fast, then we
can abort() after some period of time.

CSE 486/586, Spring 2014 18

Extracting Even More Concurrency

Allow writing tentative versions of objects

— Letting other transactions read from the previously committed
version

Allow read and write locks to be set together by different
transactions

— Unlike non-exclusive locks
Read operations wait only if another transaction is
committing the same object
Disallow commit if other uncompleted transactions have
read the objects

— These transactions must wait until the reading transactions
have committed

This allows for more concurrency than read-write locks
— Writing transactions risk waiting or rejection when commit

CSE 486/586, Spring 2014 19

Two-Version Locking

» Three types of locks: read lock, write lock, commit
lock
— Transaction cannot get a read or write lock if there is a
commit lock
* When the transaction coordinator receives a request
to commit
— Converts all that transaction’s write locks into commit locks
— If any objects have outstanding read locks, transaction must
wait until the transactions that set these locks have
completed and locks are released
« Compare with read/write locks:

— Read operations are delayed only while transactions are
committed

— Read operations of one transaction can cause a delay in the
committing of other transactions

CSE 486/586, Spring 2014 20

Two-Version Locking

lock compatibility

Summary

« Strict Execution

— Delaying both their read and write operations on an object
until all transactions that previously wrote that object have
either committed or aborted

« Strict execution with exclusive locks
— Strict 2PL
* Increasing concurrency
— Non-exclusive locks
— Two-version locks
— Hierarchical locks

CSE 486/586, Spring 2014 22

Lock already Lock requested
set read write commit

none OK OK OK
read OK OK WAIT
write OK | WAIT

commit WAIT | WAIT

CSE 486/586, Spring 2014 21
Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2014 23

