CSE 486/586 Distributed Systems
Concurrency Control --- 3

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586, Spring 2014

Recap

« Strict execution of transactions?

— Delay both their read and write operations on an object until
all transactions that previously wrote that object have either
committed or aborted

» Two phase locking?
— Growing phase
— Shrinking phase
« Strict two phase locking?
— Release locks only at either commit() or abort()

CSE 486/586, Spring 2014 2

CSE 486/586 Administrivia

« PA3 deadline: 4/11 (Friday)
* Midterm: Next Monday

CSE 486/586, Spring 2014

Distributed Transactions

* Transactions that invoke operations at multiple
servers

z©o

Flat Distributed Transaction Nested Distributed Transaction

CSE 486/586, Spring 2014 4

Coordinator and Participants

» Coordinator

—In charge of begin,

commit, and abort .
licipant
« Participants
— Server processes
that handle local cipant
operations
icipant

Coordinator & Participants
CSE 486/586, Spring 2014

Example of Distributed Transactions

openTransaction

participant
closeTransactio,

A 9 a.withdraw(4);

BranchX

articipant

b.withdraw(T,

Client B e b.withdraw(3);

T =openTransaction

a.withdraw(4); Blanchig
c.deposit(4); icipant
b.withdraw(3); )
d.deposit(3); c c.deposit(4);
closeTransaction
D e d.deposit(3);
Note: the coordinator is in one of the servers, e.g. BranchX
BranchZ

CSE 486/586, Spring 2014 6




Atomic Commit Problem

Atomicity principle requires that either all the
distributed operations of a transaction complete, or
all abort.
At some stage, client executes closeTransaction().
Now, atomicity requires that either all participants
(remember these are on the server side) and the
coordinator commit or all abort.
What problem statement is this?

* Consensus

Failure model
* Arbitrary message delay & loss
* Crash-recovery with persistent storage

CSE 486/586, Spring 2014 7

Atomic Commit

* We need to ensure safety in real-life implementation.
* Never have some agreeing to commit, and others agreeing
to abort.
First cut: one-phase commit protocol. The
coordinator communicates either commit or abort, to
all participants until all acknowledge.
What can go wrong?

* Doesn’t work when a participant crashes before receiving
this message.

* Does not allow participant to abort the transaction, e.g.,
under deadlock.

CSE 486/586, Spring 2014 8

Two-Phase Commit

* First phase
¢ Coordinator collects a vote (commit or abort) from each
participant (which stores partial results in permanent storage
before voting).
¢ Second phase

* If all participants want to commit and no one has crashed,
coordinator multicasts commit message

* If any participant has crashed or aborted, coordinator
multicasts abort message to all participants

CSE 486/586, Spring 2014 9

Two-Phase Commit

« Communication

Coordinator Participant
tep status step status
it?

1 prepared to comrﬁr%

(waiting for votes) Ye, 2 prepared to commi]
3 committed — loCommit (uncertain)

.—Wd_’ 4 committed
done

CSE 486/586, Spring 2014 10

Two-Phase Commit

* To deal with server crashes
¢ Each participant saves tentative updates into permanent
storage, right before replying yes/no in first phase.
Retrievable after crash recovery.
¢ To deal with canCommit? loss
* The participant may decide to abort unilaterally after a
timeout (coordinator will eventually abort)

* To deal with Yes/No loss, the coordinator aborts the
transaction after a timeout (pessimistic!). It must
announce doAbort to those who sent in their votes.

* To deal with doCommit loss

* The participant may wait for a timeout, send a getDecision
request (retries until reply received) — cannot abort after
having voted Yes but before receiving doCommit/doAbort!

CSE 486/586, Spring 2014 1

Problems with 2PC

« It's a blocking protocol.
« Other ways are possible, e.g., 3PC.
« Scalability & availability issues

CSE 486/586, Spring 2014 12

Ny



Summary

« Increasing concurrency
— Non-exclusive locks
— Two-version locks
— Hierarchical locks
« Distributed transactions
— One-phase commit cannot handle failures & abort well

— Two-phase commit mitigates the problems of one-phase
commit

— Two-phase commit has its own limitation: blocking

CSE 486/586, Spring 2014 13

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586, Spring 2014




