
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Consistency --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap
•  Views?

–  Versioned membership

•  View-synchronous group communication?
–  Providing group communication with a dynamic group
–  A way to design replicated state machines
–  “What happens in the view, stays in the view.”

2

CSE 486/586, Spring 2014

Examples

3

p!

q!

r!

V(p,q,r)!

p!

q!

r!

V(p,q,r)!

p!

q!

r!

V(p,q,r)!

p!

q!

r!

V(p,q,r)!

X
XX

V(q,r)!

V(q,r)!

V(q,r)!

V(q,r)!

X

X X

Not Allowed! Not Allowed!

Allowed! Allowed!

CSE 486/586, Spring 2014

Consistency

4

Client! Front End!
RM"

RM"

RM"
Client! Front End!

Client! Front End!

Service!
server!

server!

server!

Replica Manager"

•  Consider that this is a storage service that serves read/
write requests.

•  Need consistent updates to all copies of object

CSE 486/586, Spring 2014

Consistency Question
•  How do we ensure that multiple copies have the

same object?
•  Let’s think about this in terms of read/write

operations…
•  From the client’s perspective, when do you know if

an object has a new value?
•  It depends on when writes become visible to reads.
•  There are several guarantees we can provide.

–  Linearizability
–  Sequential consistency
– Causal consistency
– …

•  We’ll see the first two; and later the third.

5 CSE 486/586, Spring 2014

Linearizability
•  What would be the strongest (and probably most

natural) form of consistency?
•  Linearizability

–  A read operation returns the most recent write, regardless of
the clients.

•  Think of a single system read/write. What happens
for a write followed by a read?

•  Why does this mean in a distributed setting?
– Multiple clients can interact with different servers. Servers

maintain replicas.
– Client C1 writes to server S1 at time t, client C2 reads from

server S2 at time t+1. S2 should return what C1 wrote.

6

C 2

CSE 486/586, Spring 2014

Linearizability: Deriving the
Definition
•  What’s the first requirement in maintaining replicas?

–  It should act as a single copy.
–  I.e., if you say that your system provides linearizability then it

should appear to your clients that your system only has
single copies of objects.

•  How (conceptually, not algorithmically)?
– Hint with a single server with a single client as follows.
– Given a set of operations from the client, there is a single

order (program order) that explains what values were written
and what values were read on a single copy.

–  Adapt that in a distributed setting?
•  Single copy semantics

–  There should be a single interleaving of operations that
explains the results of all clients’ read/write operations as if
all of them were done over a single copy.

7 CSE 486/586, Spring 2014

Linearizability: Deriving the
Definition
•  Can you come up with a single interleaving?

– C1: write A
– C2: write B
– C3: read B, read A
– C4: read B, read A
– One possibility: C2 (write B) -> C3 (read B) -> C4 (read B) ->

C1 (write A) -> C3 (read A) -> C4 (read A)

•  Can you come up with a single interleaving?
– C1: write A
– C2: write B
– C3: read B, read A
– C4: read A, read B

8

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA3 deadline: 4/11 (Friday)

9 CSE 486/586, Spring 2014

Linearizability: Deriving the
Definition
•  Linearizability

•  Single-copy semantics
•  A read operation returns the most recent write, regardless

of the clients.

•  Real-time aspect
–  You always should read what is written right before you.
–  I.e., A write should be visible to the next read immediately.

•  Problem: read and write operations take time

10

CSE 486/586, Spring 2014

Linearizability Subtleties
•  Clear-cut (black---write & red---read)

•  Not-so-clear-cut (parallel)
– Case 1:

– Case 2:

– Case 3:

11 CSE 486/586, Spring 2014

Linearizability Subtleties
•  An operation takes time to finish.

–  E.g., a read op R starts at X ms and finishes at Y ms.

•  A value written by a write operation becomes
(physically) visible at some point during the
operation.

–  E.g., a write op W starts at X ms and finishes at Y ms. At Z
ms (X < Z < Y), the value gets actually written and becomes
visible.

•  What’s a reasonable thing to do with this?
–  If W finishes at X, R starts at Y, and X < Y, then R should

read what W wrote.
–  If R overlaps with W, then it can read either the previous

value or the value written by W.

12

C 3

CSE 486/586, Spring 2014

Linearizability Subtleties
•  Definite guarantee

•  Relaxed guarantee when overlap
•  Case 1

•  Case 2

•  Case 3

13 CSE 486/586, Spring 2014

Linearizability
•  Let’s say you’re an oracle.
•  Let your clients make requests (concurrent read/write).
•  Let your system (with replicas) execute the requests.
•  Write down the real-time execution of operations of your

system. Two things to write down:
–  At what points in time each operation starts and ends.
–  Real-time precedence among operations: if A ends then B

starts in real time, then A precedes B. (Caution: this is not a
total order.)

•  See if you can come up with an ordering of operations
that meets three conditions:

–  All operations in the ordering appear one at a time as if each
operation happened atomically.

–  The ordering gives the correct result as if it was done over a
single copy.

–  The ordering preserves the real-time precedence of operations
(i.e., the ordering written down from the above).

14

CSE 486/586, Spring 2014

Linearizability
•  Let the sequence of read and update operations that

client i performs in some execution be oi1, oi2,….
–  "Program order" for the client

•  (Textbook definition) A replicated shared object
service is linearizable if for any execution (real), there
is some interleaving of operations (virtual) issued by
all clients that:

–  meets the specification of a single correct copy of objects
–  is consistent with the real times at which each operation

occurred during the execution

•  Main goal: any client will see (at any point of time) a
copy of the object that is correct and consistent

•  The strongest form of consistency

15 CSE 486/586, Spring 2014

Linearizability Examples
•  Example 1

•  Example 2

16

a.write(x)
a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x
If this were
a.read() -> 0, it
wouldn’t support
linearizability.

CSE 486/586, Spring 2014

Linearizability Examples
•  Example 3

17

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)

CSE 486/586, Spring 2014

Chain Replication
•  One technique to provide linearizability

18

N0 N1 N2

Reads Replies Writes

Head Tail

C 4

CSE 486/586, Spring 2014

Summary
•  Linearizability

–  Single-copy semantics
– Real-time aspect

•  A read operation returns the most recent write,
regardless of the clients.

19 CSE 486/586, Spring 2014 20

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

